微分算子法典型例题讲解

合集下载

数学分析5.5微分(含习题详解)

数学分析5.5微分(含习题详解)

数学分析5.5微分(含习题详解)第五章导数和微分5 微分一、微分的概念定义1:设函数y=f(x)定义在点x0的某邻域U(x0)内. 当给x0一个增量△x,x0+△x∈U(x0)时,相应地得到函数的增量为△y=f(x0+△x)-f(x0). 如果存在常数A,使得△y能表示为△y=A△x +o(△x),则称函数f在点x0可微,并称上式中的第一项A△x为f在点x0的微分,记作:dy=A△x,或df(x)=A△x.当A≠0时,微分dy称为增量△y的线性主部。

定理5.10:函数f在点x0可微的充要条件是函数f在点x0可导,而且定义中的A=f’(x0).证:先证必要性:若f在点x0可微,则△y=A△x +o(△x),即=A+o(1),两边取极限得:f’(x0)==(A+o(1))=A.再证充分性:若f在点x0可导,则f在点x0的有限增量公式为:△y=f’(x0)△x+o(△x),根据微分的定义,f在点x0可微且有dy=f’(x0)△x.微分的几何意义:(如图)当自变量由x0增加到x0+△x时,函数增量△y= f(x0+△x)-f(x0)=RQ,而微分则是在点P处的切线上与△x所对应的增量,即dy=f’(x0)△x=RQ’,且==f’(x0)=0,所以当f ’(x 0)≠0时,=0. 即当x →x 0时线段Q ’Q 远小于RQ ’。

若函数y=f(x)在区间I 上每一点都可微,则称f 为I 上的可微函数.函数y=f(x)在I 上任一点x 处的微分记作dy=f ’(x)△x ,x ∈I. 特别地,当y=x 时,dy=dx=△x ,则微分也可记为dy=f ’(x)dx ,即f ’(x)=,可见函数的导数等于函数微分与自变量微分的商。

因此导数也常称为微商。

二、微分的运算法则1、d[u(x)±v(x)]=du(x)±dv(x);2、d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);3、d=;4、d(f ?g(x))=f ’(u)g ’(x)dx ,其中u=g(x),或dy=f ’(u)du.例1:求y=x 2lnx+cosx 2的微分。

微分算子法

微分算子法

高阶常微分方程的微分算子法撰写摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。

但是有一个例外:常系数线性微分方程。

我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐次方程的特解。

本节主要讨论微分算子法。

1.求方程230y y y ''''''--=的通解. 解 记()n n yD y =,将方程写成32230D y D y Dy --=或32(23)0D D D y --=我们熟知,其实首先要解特征方程32230D D D --=得0,1,3D =-故知方程有三特解31,,x xe e -,由于此三特解为线性无关,故立得通解3123x xy C C e C e -=++注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是1111()()()()()n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成11()(()())n n n L y D a x D a x y -≡+++L()f x =可以把上面括号整体看作一种运算,常称为线性微分算子。

本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。

2.求解 61160y y y y ''''''-+-=解 写成 32(6116)0D D D y -+-=从特征方程3206116D D D =-+-(1)(2)(3)D D D =---解得 1,2,3D =共三实根,故可立即写成特解23123x x xy C e C e C e =++3.求解 39130y y y y ''''''-++=解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根1,23D i =-±,故对应的特解是x e -,2cos3xe x ,2sin 3x e x 从而通解是22123cos3sin 3x x xy C e C e x C e x -=++4.求(4)45440yy y y y ''''''-+-+=之通解.解 写成432(4544)0D D D D y -+-+=或 22(2)(1)0D D y -+=特征根是2,2,D i =±,对应的特解应是22,,cos ,sin x x e xe x x ,故写成通解21234()()cos sin x y x e C C x C x C x =+++5.求1(cos )y y x -''+=的通解解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+设原方程有特解形为*12()cos ()sin y C x x C x x =+其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组12112()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''''+=⎪⎩或12112()cos ()sin 0()sin ()cos (cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''-+=⎪⎩(方程组右端为原方程非齐次项1(cos )x -),解得1sin ()cos xC x x'=-,2()1C x '=或 1()ln cos C x x =,2()C x x =最后得通解为1*()()()y x y x y x =+12cos sin cos ln cos sin C x C x x x x x=+++ 注 对常系数方程,在应用上,不常运用常数变异法,对于特殊非齐次项的常系数方程,下文将提供更简捷的办法。

微分方程的算子算法【精选】

微分方程的算子算法【精选】

(1) P(D)( f1( x) f2 ( x)) P(D) f1(x) P(D) f2 (x)
(2) [P1(D) p2 (D)] f ( x) P1(D) f ( x) p2 (D) f ( x)
(3) P(D) P1(D)P2 (D),则
P(D) f (x) P1(D)[P2 (D) f (x)] P2 (D)[P1(D) f (x)]
10
常系数线性微分方程的算子解法
1
9.算子 P ( D)的基本性质及运算法则
(1)
1 (
P(D)
f1( x)
f2 ( x))
1 P(D)
f1( x)
1 P(D)
f2 ( x)
(2) P(D) P1(D)P2 (D),则
1 f ( x) 1 [ 1 f ( x)] 1 [ 1 f ( x)]
, D2

d2 dx 2
,L
, Dn

DDn1

dn dx n
P(D) Dn p1Dn1
P(D) y 0
3
常系数线性微分方程的算子解法
2.解的结构
线性算子 P(D)( y1 y2 ) P(D) y1 P(D) y2 定理1 方程(1)的通解为:y y(x) y *(x) ,其中y(x)
cos x

cos x P(2 )
(P(2 )

0)
12
常系数线性微分方程的算子解法
1
10.算子 P ( D) 的运算公式
(4)
1 [exv( x)] ex 1 v( x)
P(D)
P( D)
(5) 设fk ( x) b0 b1x L bk xk , P(0) pn 0,则

微分算子法例题

微分算子法例题

微分算子法例题
微分算子法是微积分中的一种常用方法,用于求解微分方程和函数的导数。

以下是一个微分算子法的例题:
例题:使用微分算子法求解微分方程 y'' - y = 0。

解答:
首先,我们定义微分算子 D 为导数运算,即 D(y) = y',D^2(y) = y''。

将微分方程 y'' - y = 0 重写为 D^2(y) - y = 0。

现在我们假设 y 的形式为 y = e^(rx),其中 r 是待定系数。

对 y 进行两次导数得到:
D^2(y) = D^2(e^(rx)) = r^2e^(rx)。

将 D^2(y) 和 y 代入初始微分方程,得到:
r^2e^(rx) - e^(rx) = 0。

将 e^(rx) 提取出来,得到:
e^(rx) * (r^2 - 1) = 0。

根据零乘法则,得到两个解:
e^(rx) = 0 或者 r^2 - 1 = 0。

可以发现,e^(rx) = 0 没有实数解,所以我们只关注第二个解:
r^2 - 1 = 0。

解这个二次方程,得到两个解:
r = 1 或者 r = -1。

根据假设的 y 的形式,我们可以得到两个特解:
y1 = e^x,y2 = e^(-x)。

由于微分方程是线性的,所以通解可以通过特解的线性组合得到:
y = C1 * e^x + C2 * e^(-x),
其中 C1 和 C2 是任意常数。

这就是微分算子法求解微分方程 y'' - y = 0 的过程和结果。

第四节 微分算子法

第四节 微分算子法
2 2


3 xy 0,
2
u2 ( x, y, z , t ) 3 xyt B( x, y, z )t 代入方程u tt a u xx , 得到:
2
3
6Bt a 0 Bt
2

2

B( x, y, z ) 0 令 B ( x, y , z ) 0
2
故u ( x, y, z, t ) x 3xy 5 xyz a t 2 6 x 10 xy
2 2 2 2
A( x, y, z ) 0 令 A( x, y, z ) a 2 2 6 x 10 xy
二、波动方程Cauchy问题的解法
utt a 2uxx 0 ( x R, t 0) u( x,0) ( x),ut ( x,0) ( x) ( x R) 1 shat u ( x, t ) chat ( x) ( x) a
2

2

k 0
2

a t [ x
2 k k


2
k!
3 xy 5 xyz ]
2 2
at 2 2 2 x 3xy 5 xyz x 3xy 5 xyz 0 1!2 x 2 3 xy 2 5 xyz 2 a t 2 6 x 10 xy
at k [ ( x)] 1 at k [ ( x)] 2k 1! 2k ! a k 0 k 0
2k 2 k 1
( x)
t k 1

2k
A2k ( x) ( x)t
u1
t k 1

微分方程的求解方法与应用案例分享

微分方程的求解方法与应用案例分享

微分方程的求解方法与应用案例分享微分方程是数学中重要的一门分支,它描述了自然界和社会现象中的变化规律。

微分方程的求解方法多种多样,本文将介绍常见的几种求解方法,并结合实际应用案例进行分享。

一、常微分方程的求解方法1. 可分离变量法可分离变量法是求解一阶常微分方程的常用方法。

首先将方程中的变量分离,然后进行积分得到结果。

例如,对于形如dy/dx=f(x)g(y)的方程,可以将其化简为dy/g(y)=f(x)dx,再对两边同时进行积分即可得到解析解。

2. 齐次方程法齐次方程法适用于形如dy/dx=F(y/x)的方程。

通过令v=y/x,将方程转化为dv/dx=F(v)-v/x,再进行变量分离和积分即可求解。

3. 线性方程法线性方程法适用于形如dy/dx+p(x)y=q(x)的一阶线性微分方程。

通过乘以一个积分因子,可以将方程化为d(μy)/dx=μq(x),再对两边同时积分得到解析解。

4. 变量替换法变量替换法是一种常用的求解微分方程的方法。

通过引入新的变量替换原方程中的变量,可以将方程化为更简单的形式。

例如,对于形如dy/dx=f(ax+by+c)的方程,可以通过引入新的变量u=ax+by+c来进行变量替换,从而简化求解过程。

二、微分方程的应用案例分享1. 放射性衰变问题放射性衰变是微分方程在物理学中的一个重要应用。

以放射性核素的衰变为例,其衰变速率与核素的数量成正比,可以用微分方程dy/dt=-ky来描述,其中y表示核素的数量,t表示时间,k为比例常数。

通过求解这个微分方程,可以得到核素的衰变规律,进而预测未来的衰变情况。

2. 振动问题微分方程在工程学中的应用也非常广泛,例如振动问题。

以简谐振动为例,可以通过微分方程m(d²x/dt²)+kx=0来描述,其中m为质量,k为弹性系数。

通过求解这个微分方程,可以得到振动的解析解,进而研究振动的频率、幅度等特性。

3. 生物种群模型微分方程在生态学中的应用也非常重要,例如生物种群模型。

微分算子法求二阶常系数微分方程的特解ppt

D2 6D 9
y
e3x
D
32
x1
6 D
3
9
y
e3x
x1 D2
1 x2 x y e3x 2
D
y
e3x
1 6
x3
1 2
x2
例题6 求微分方程 y 4y xcos x的一个特解.
解:D2 4
y
x cos
x
y
xcos x D2 4
y
Re
xeix
D2
4
y
Re
eix
2i去换D分母为0 y ex x sin 2x 2D
y
e
x
x
1 2
1 2
cos
2
x
y 1 xex cos 2x 4
y 1 xex cos 2x 4
例题5 求微分方程 y 6y 9y x 1 e3x 的一个特解.
解:D2 6D 9
y
x
1 e3x
y
x 1 e3x
2x
1 x 11 28
例题3 求微分方程 y 4y sin2x 的一个特解.
解:D2 4
y
sin 2 x
y
sin 2 x D2 4
i2i去换D
y
sin 2 x D2 4
分母为0
y x sin2x 2D
y x 1 sin2x 2D
sin2x积分 y
x
1 2
1 2
cos
4
ex sin
F D
x
位移定理
ex
sin x
FD
D 去换 D
5
ex pn x F D
位移定理
ex

微分方程算子法总结

(性质四)
=(1-D )(x2-x+2)=x2-x
5
dy d2y 2 -x +2y=x 例 9、 2 +2 dx dx
e ,则(D +2D+2)y=x2e-x
2
特解 y
*
= ( D + 1) 2 + 1 x2e
-x
1
-x
=e-x ( D -1 + 1)
(1-D )x
2
1
2
2 x +1 2
=e D 2 1 x2=e +
2 2
e2x D1
2
x
2
=
1 4 2x x 12
e
(性质二)
x
-3 ddxy +3 dy dx
*
y=e ,则(D3-3D2+3D-1)y=e
x x
x
特解 y
= 3 3 e =e (D -1 ) (D +1-1 )
x
1
1

1
=e D 3
d3y 例 5、 3 dx
1 •
1=
3
1 3 x x (性质二) 6
2
1 1 sin(ax)= sin(ax) F(-a 2 ) F(D 2 )
1 1 cos(ax) 2 cos(ax)= F(-a 2 ) F(D )
若 F(-a )= 0 , 则按 i.进行求解, 或者设-a 为 F(-a )
2 2 2
的 m 重根,则
1 1 m sin(ax)=x sin(ax) F(m) (D2 ) F(D 2 )
1
ix e = -1
4
1 d2y * 2 例 6、 2 +y=cosx ,则(D +1)y=cosx ,特解 y = 2 cosx D +1 dx

微分算子法 多项式除法

微分算子法多项式除法摘要:一、微分算子法的概念1.微分算子的定义2.微分算子在数学中的应用二、多项式除法的基本原理1.多项式的表示方法2.多项式除法的步骤3.多项式除法的应用三、微分算子法在多项式除法中的应用1.微分算子法的基本思想2.微分算子法在多项式除法中的具体应用3.微分算子法与传统多项式除法的比较四、微分算子法在实际问题中的应用1.微分算子在微分方程求解中的应用2.微分算子在数据处理和机器学习中的应用正文:微分算子法是一种在数学领域广泛应用的方法,它涉及到微分算子的定义及其在各种问题中的应用。

其中,多项式除法是微分算子法的一个重要应用方向。

本文将首先介绍微分算子法的相关概念,然后阐述多项式除法的基本原理,接着分析微分算子法在多项式除法中的应用,最后讨论微分算子法在实际问题中的具体应用。

一、微分算子法的概念微分算子是一种在数学中广泛应用的算子,它可以用于表示各种变化率和导数。

给定一个函数f(x),我们可以定义微分算子Df(x) 为:Df(x) = f"(x)。

其中,f"(x) 表示函数f(x) 在点x 处的导数。

微分算子可以用于表示各种变化率和导数,例如,一阶导数、二阶导数等。

二、多项式除法的基本原理多项式除法是一种基本的数学运算,它可以用于计算两个多项式相除的结果。

给定两个多项式P(x) 和Q(x),多项式除法的步骤如下:1.将除数Q(x) 的最高次项与被除数P(x) 的最高次项相除,得到商的常数项。

2.将商的多项式乘以除数Q(x),并从被除数P(x) 中减去得到一个新的多项式。

3.将新多项式的最高次项与除数的次高次项相除,得到商的次高次项。

4.将商的多项式乘以除数Q(x),并从新多项式中减去得到一个新的多项式。

5.重复上述过程,直到除数的次数小于被除数的次数,此时多项式除法结束。

三、微分算子法在多项式除法中的应用微分算子法在多项式除法中的应用主要体现在利用微分算子表示多项式的导数,从而简化多项式除法的计算过程。

关于非齐次线性常系数微分方程特解的微分子解法的若干示例

关于非齐次线性常系数微分方程特解的微分算子解法的若干示例一、表示符号把某函数对于自变量x 的导数写成D ,即D=dxd 。

例如,函数y 对x 的一阶导数为y dxdy '=,可以表示成Dy ,同理,y ''可以写成2D y ,三阶、四阶….以此类推D1则代表着求积分,如D1x ,就是⎰xdx ,参看复习指导二、 微分方程的表示如果非齐次方程按降阶写成:)x (f y a y a ya y a n 1n )1n (1)n (0=+'+++-- (1)当然,你也可以写成:)x (f y p y p y p y n 1n )1n (1)n (=+'+++-- ,本质都一样,这种形式相当于(1)方程两边同时除以a 0(0≠)。

这里我们以(1)式为准。

用微分子形式表示方程(1):)x (f y a Dy a y D a y D a n 1n 1n 1n 0=++++-- 方程左边把公因子y 提出来:f(x))y a D a D a D (a n 1n 1n 1n 0=++++--上式中,把)a D a Da D (a n 1n 1n 1n0++++-- 看作关于D 的一个函数表达式,表示成F (D )即F (D )=)a D a Da D (a n 1n 1n 1n 0++++--则方程(1)最终可以写成:F (D )y=f (x )三、 相关结论 F (D )kxe=kxe·F (k )甲也可以写成:)F(k ee )D (F 1kxkx=,(分母不为零时),若分母为零,参见指导书表格内的公式证明:F (D )kxe =kxn 1n 1n 1n0)ea D a Da D (a ++++--=)(ea )(ea )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++--=kxn kx1n kx1-n 1kxn 0ea kea eka e k a ++++-kxn 1n 1-n 1n0-kx=F (k )kxe甲注意此处方程左右两端的写法,表达的意义是不一样的,左边F (D )是求导,具体来说左边是kxn 1n 1n 1n0)ea D a D a D (a ++++-- ,即)(ea )(e a )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++-- ,而方程右边则是)(ekx乘于多项式F (k )其中,左边的带下划线的部分的函数形式与F (D )一样,因此写成F (k )形式,只是字母 是常数k ,而不是求导了,意义也就不同了,它只是个关于k 的多项式了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高阶常微分方程的微分算子法3.求解 39130y y y y ''''''-++=解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根1,23D i =-±,故对应的特解是x e -,2cos3xe x ,2sin 3x e x 从而通解是22123cos3sin 3x x xy C e C e x C e x -=++4.求(4)45440yy y y y ''''''-+-+=之通解.解 写成432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+=特征根是2,2,D i =±,对应的特解应是22,,cos ,sin x x e xe x x ,故写成通解21234()()cos sin x y x e C C x C x C x =+++5.求1(cos )y y x -''+=的通解解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+设原方程有特解形为*12()cos ()sin y C x x C x x =+其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组12112()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''''+=⎪⎩或12112()cos ()sin 0()sin ()cos (cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''-+=⎪⎩(方程组右端为原方程非齐次项1(cos )x -),解得1sin ()cos xC x x'=-,2()1C x '=或 1()ln cos C x x =,2()C x x =最后得通解为1*()()()y x y x y x =+12cos sin cos ln cos sin C x C x x x x x=+++ 注 对常系数方程,在应用上,不常运用常数变异法,对于特殊非齐次项的常系数方程,下文将提供更简捷的办法。

6.求解下列方程 (1)(4)24250yy y y y ''''''++--=(2)4850y y y '''-+=解 (1)12x xy C e C e -=+34(cos 2sin 2)xe C x C x -++(2)12(cossin )22xx x y e C C =+ 7.求解下列cauchy 问题(1)330;y y y y ''''''-+-=(0)1,(0)2,(0)3y y y '''===(2)0;(0)1,(0)0,(0)1y y y y y ''''''''+====解 (1) (1)xy e x =+(2) xy x e -=+8.求解非齐次方程21(0)y y y x x x'''++=≠ 解 本题不是常系数方程,为求通解需先知道齐次方程20y y y x'''++=的两个线性无关的特解。

现设用观察法得到两个特解 12sin cos ,x xy y x x== 令12sin cos ()()()x xy x C x C x x x=+ 考虑方程组1212sin cos ()()0sin cos 1()()()()x x C x C x x xx x C x C x x x x ⎧''+=⎪⎪⎨⎪''''+=⎪⎩最后解得1()sin C x x =,2()cos C x x = 故原方程的通解为 12sin cos 1()x x y x C C x x x=++ 注 我们说过,高阶方程中最重要、研究得最彻底的是线性方程,因此我们就从它开始。

因为有了常数变易法,所以重点似乎应放在齐次方程的求解,但是,齐次常系数线性方程的求解来的太容易(只需要解代数方程),这就构成了这一单元的特点:我们着力于求解具有特殊右端(物理学中称此种项为强迫项)的任意高阶非齐次常系数线性方程。

这样做既是为了避免使用繁复的常数变易法,也是为了让解题者掌握一种最实用的技巧——微分算子法9.求解256y y y x '''++=解 写成 2(2)(3)D D y x ++=故对应齐次方程(2)(3)0D D y ++=的通解为23112()x xy x C e C e --=+今用下法求原方程的一个特解*()y x ,显然*()y x 满足*2(2)(3)D D y x ++=今用下法求出*()y x*21()(2)(3)y x x D D =++222222222222222222222211()23112311112311231(1)2241(1)31(1)2241(1)3111(()())224111(()())33911122()()223391561x D D x x D D x x D DD D x D D x D D x D D xx x x x x x x x x x x =-++=-++=-++=-+---+-=-+--+'''=-+'''--+=-+--+=-L L 39 39 198108x +通解为*123212()()()1519618108xxy x y x y x C eC ex x --=+=++-+注 本题所用的方法即微分算子法,此法核心内容是222222221()24412(2)122xx x xy x e D D e D x e x e =-+=-== 14.解xy y e ''-=解 2111()1(1)(1)x x y x e e D D D ==--+ 1111112122x x x e e xe D D ===-g得通解为 121()2xx x y x xe C e C e -=++ 15.求下面方程特解2552y y x x '''-=-+解 221()(52)5y x x x D D =-+- 2222222311(52)5111()(52)51511()[1()](52)555111()[52(102)551(10)]2511()[5]5113x x D D x x DD D Dx x D x x x D x D x x D =-+-=--+-=-++-+=--++-++-=--== 16.求26535x y y y e x '''-+=-+ 解 显然12()()()y x y x y x =+其中121()(3)65x y x e D D =--+1(3)(1)(5)x e D D --- 221()(5)(1)(5)y x x D D =-- 今有11111()(3)(3)15115x xy x e e D D D =-=-----3131314144x x x e e xe D D ===-g 22111()()(5)415y x x D D =-+--222221111()(5)415111(1(1))(5)455256212255x D D D D D D x x x =---=++--+=++ 最后得236212()4255x y x xe x x =+++ 17.求6cos23sin 2y y x x ''+=+的特解 解 12()()()y x y x y x =+2222116cos 23sin 211116cos 23sin 2(2)1(2)12cos 2sin 2x x D D x x i i x x=+++=+++=-- 18.求下面方程的特解13sin 2y y y x '''++=- 解21()(13sin 2)1y x x D D =-++ 22224224221[()1]()11(13)sin 211[1](13)sin 211(13)(1)sin 2(2)(2)1(1)sin 23sin 22cos 2D D D D xD D D D x D D D D x i i D D x x x=--+--+⨯-++=-+-++=--+++=--+=+ 19.求下面方程的特解44cos 2y y y x '''++=解 2()[(2)]y x D =-+2211cos (2)(2)x D D -++g2221(2)cos 2(4)D x D =--。

相关文档
最新文档