新人教版七年级数学上册:有理数综合复习(讲义及答案)

合集下载

人教版初一数学上册《有理数》全章复习与巩固(提高)知识讲解

人教版初一数学上册《有理数》全章复习与巩固(提高)知识讲解

《有理数》全章复习与巩固(提高)知识讲解【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】(1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a=1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【高清课堂:有理数的复习与提高 357129 复习例题2】【变式1】选择题 (1)已知四种说法:①|a|=a 时,a>0;|a|=-a 时, a<0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|.其中说法正确的个数是( ) A .1 B .2 C .3 D .4 (2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C【变式2】(2015•呼伦贝尔)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 【答案】9.6×106.2.(2016•江西校级模拟)如果m ,n 互为相反数,那么|m+n ﹣2016|=________. 【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|. 【答案】2016.【解析】解:∵m ,n 互为相反数, ∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016; 故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算【高清课堂:有理数专题复习 357133 有理数的混合运算】3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷- ()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】 解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4. 先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算: 1111447710+++⨯⨯⨯ (1)20052008+⨯的值. 【答案与解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1113200812007320086692008⎛⎫=- ⎪⎝⎭=⨯=【总结升华】根据题中提供的拆项方法把每一项拆成11133n n ⎛⎫- ⎪+⎝⎭的形式,然后再进行计算.举一反三:【高清课堂:有理数的复习与提高 例2】 【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(2014•香洲区校级二模)(1)阅读下面材料:点A ,B 在数轴上分别表示实数a ,b ,A ,B 两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案与解析】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3.③当代数式|x+1|十|x﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和. 【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A .【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来. 举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( ).A .1132 B .1360 C .1495 D .1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号).①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②. 类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的.(1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11;(2).(-by ); 根据等式的性质1,等式两边都加上-by ;(3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a b c c =++. C .在等式b c a a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b.【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80. 可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式. 举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。

人教七年级数学上册1.2有理数基础知识概括及同步练习题(含解析)

人教七年级数学上册1.2有理数基础知识概括及同步练习题(含解析)

人教七年级数学上册1.2有理数基础知识概括及同步练习题知识点1:有理数的有关概念有理数:整数和分数统称为有理数。

注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。

但是本讲中的分数不包括分母是1的分数。

(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。

(3)“0”即不是正数,也不是负数,但“0”是整数。

整数包括正整数、零、负整数。

例如:1、2、3、0、-1、-2、-3等等。

分数包括正分数和负分数,例如:1/2、0.6、-1/2、-0.6等等。

知识点2:有理数的分类(1) 按整数、分数的关系分类:(2) 按正数、负数与0的关系分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。

如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a≥0表明a是非负数;a≤0表明a是非正数。

知识点3:数轴数轴是理解有理数概念与运算的重要工具,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想。

正如华罗庚教授诗云:数与形,本是相倚依,焉能分作两边飞。

数缺形时少直觉,形少数是难入微。

数形结合百般好,隔裂分家万事非。

切莫忘,几何代数统一体,永远联系,切莫分离!数与形的第一次联姻——数轴,使数与直线上的点之间建立了对应关系,揭示了数与形的内在联系,并由此成为数形结合的基础。

1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

数轴的定义包含三层含义:(1) 数轴是一条直线,可以向两端无限延伸;(2) 数轴有三要素——原点、正方向、单位长度,三者缺一不可;(3) 原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。

2.数轴的画法:(1) 画一条直线(一般画成水平的直线)。

(2) 在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。

人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)

人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)

人教版七年级上册数学《有理数》单元复习整合练考点一:正负数的意义一.知识点回顾:二.典型习题1.如果收入100元记作+100元,那么支出100元记作( )A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( )A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( )A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( )A.6B.-6C.D.-2.-15的绝对值为()A.-15B.15C.-D.3.-的倒数是( )A.-2B.C.2D.14.-a一定是( )A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是()A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( )A.-5B.-1C.0D.12.计算(-3)×9的结果等于( )A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= .6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;2.比较有理数a×10n和b×10m的大小,不仅要比较a和b的大小,更要比较m和n的大小.典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( )A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( )A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( )A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( )A.十分位B.个位C.十位D.百位人教版七年级上册数学《有理数》单元复习整合练(解析版)考点一:正负数的意义一.知识点回顾:正负数意义的本质区别正数和负数意义的本质区别是表示具有相反意义的量,通过正(负)数表示的意义,从而确定负(正)数表示的意义.二.典型习题1.如果收入100元记作+100元,那么支出100元记作( A)A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( B)A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A)A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):城市悉尼纽约时差/时+2 -13当北京6月15日23时,悉尼、纽约的时间分别是( A)A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( C)A.6B.-6C.D.-2.-15的绝对值为( B )A.-15B.15C.-D.3.-的倒数是( A)A.-2B.C.2D.14.-a一定是( D)A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是(A)A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为0.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( A)A.-5B.-1C.0D.12.计算(-3)×9的结果等于( A)A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( B)A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( A)A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= -.6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.【解析】(1)原式=16+18-9-15=10;(2)原式=×24+×24-×24-=-4+14-9-=;(3)原式=-9+4×(-5)-6=-9-20-6=-35.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( D)A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( D)A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( D)A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( C)A.十分位B.个位C.十位D.百位。

人教版七年级数学上册有理数章节期末专题复习(含答案)

人教版七年级数学上册有理数章节期末专题复习(含答案)

人教版七年级数学上册有理数章节期末专题复习(含答案)有理数有理数章节期末专题章节期末专题章节期末专题复习复习复习【课标要点】1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算.4.理解有理数的运算律,并能运用运算律简化运算.5.能运用有理数的运算解决简单的问题.6.能对含有较大数字的信息作出合理的解释和推断. 【知识网络】第1讲有理数的基本概念有理数的基本概念有理数的基本概念【知识要点】1. 掌握有理数的意义及其分类方法,会比较有理数的大小.2. 掌握数轴的三要素及有理数与数轴的关系,有理数可以用数轴上的点表示,但数轴上的点并不都表示有理数.3. 理解倒数与相反数都是成对出现的及零没有倒数,但是它有相反数的意义.4. 借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.本节重点是有理数有关概念的理解,难点是负数﹑绝对值概念的理解及应用,关键是对于有理数的基本概念,要能从不同角度去理解、认识.【典型例题】例1 -3的相反数是 ;-5的倒数是 ;-3的绝对值是 .分析:本例主要考查相反数﹑倒数﹑绝对值的概念. 解:(1)3 (2)-15(3)3 例2 比较-87与-98的大小.分析:比较几个负数的大小,一般先求它们的绝对值,再把这几个数用小数或同分母(或同分子)的数来表示,用小数或分数比较大小的方法进行比较,最后用"两个负数相比较,绝对值大的反而小"作出结论.解:解法一:作差比较.-87-(-98)=-87+98=721>0∴-87>-98解法二:把分母化为相同∵|-87|=87=7263,|-98|=7264,又∵7263<7264,∴-87>-98 解法三:把分子化为相同.∵|-87|=87=6456,|-98|=98=6356又∵6456<6356,∴-87>-98 解法四:作商比较∵|-87|=87,|-98|=98,而9887=6463<1∴87<98,∴-87>-98 例3 适合关系式|x +32|+|x -34|=2的整数解x 的个数是()A、1B、2C、3D、0分析:已知等式的意义理解为数轴上的表示x的点到表示-32和34的点的距离和为2,如图所示:从数轴上看出符合条件的整数x只有0和1解:B.a b【知识运用】一、选择题选择题::1.点A 为数轴上表示-2的动点,当A点沿数轴移动4个单位长度到达点B时,点B表示的数是()A .2B .-6C .2或-6D .不同于以上答案 2.|-3|的相反数是()A.-3B.-13C.3D. ±33.若两个有理数a 和b 在数轴上的对应位置如图所示,则下列各式中正确的是()A. a b >B. ||||a b >C. ?D. ||b a4.质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13毫米,第二个为–0.12毫米,第三个为–0.15毫米,第四个为0.11毫米,则质量最差的零件是()A .第一个B .第二个C .第三个D .第四个二、填空题填空题::5.与数轴上表示-2的点相距3个单位,则此点表示的数是_____.6.某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000米高空的气温是-23℃,则地面气温约为_____.7. 12的相反数的倒数是三、解答题解答题::8.如图,加工一种轴,直径在299.5毫米到300.2毫米之间的产品都是合格品,在生产图纸上通常用2.05.0300+?φ来表示这种轴的加工要求,这里300φ表示直径是300毫米,+0.2表示最大限度可以比300毫米多0.2毫米,–0.5表示最大限度可以比300毫米少0.5毫米.加工一根轴,图上标明的加工要求是03.004.045+?φ,如果加工成的轴的直径是44.8毫米,它合格吗?第2讲有理数的运算有理数的运算【知识要点】1.牢固掌握有理数的加法、有理数的碱法、有理数的乘法、有理数的乘方及有理数的混合运算.2.在有理数的运算中灵活运用加法运算律、乘法运算律.3.掌握有理数混合运算顺序,提高运算的速度、准确率.本节重点是有理数的混合运算,难点是提高运算的速度、准确率,关键是正确地运用各种法则,同时掌握运算顺序,并能适当地利用运算定律简化运算. 【典型例题】例1下列计算正确的是()A .-3+2=1 B.2×(-5)=-10 C. |-3|=-3 D.21=1分析:本例综合考查有理数的运算及绝对值的意义,考查起点低,但考查知识点多. 解:B 例2 计算:(1)554-[261+(-4.8)-(-465)](2)-24-3×22×(31-1)÷(-131).分析:在进行有理数的混合运算时,一要注意运算顺序的正确;二要注意符号的变化;三要注意用运算性质时不要出现错误解:(1)554-[261+(-4.8)-(-465)] =554-[261-4.8+465] =554-[7-4.8] =554-2.2=353 (2)解法一:-24-3×22×(31-1)÷(-131) =-16-12×(32)÷(-34) =-16+8×(-43)=-16-6=-22解法二:-24-3×22×(31-1)÷(-131)=-16-12×(31-1)×(-43) =-16-(4-12)×(-43) =-16+(3-9)=-22例3 有一张厚度是0.1mm 的纸,如果将它连续对折20次,会有多厚?有多少层楼高?(假设1层楼高3m )分析分析::此题与细胞分裂道理一样,1张纸叠一次得2张,折叠2次得4张,折叠3次得8张,折叠4次得16张,…,2242821621234====,,,,…由此总结可知对折20次得220张,由一张的厚度可求220的厚度.解:对折1次厚度为201×.mm ;对折2次厚度为2012×.mm ;……对折20次后,厚度为201104857620×=..mm ,即104.8576m.约为105m ,105335÷=(层)答:对折20次的厚度为105m ,有35层楼高.【知识运用】一、选择题1.如果两数的和是负数,那么一定不可能的是() A. 这两个数都是负数B. 这两个一个是负数,一个是零C. 这两个数中一个是正数,另一个是负数,且负数的绝对值较大D. 这两个数都是正数 2.对于有理数a,b 有下面说法:(1)若a+b=0,则a 与b 是互为相反数的数;(2)若a b +<0,则a 与b 异号;(3)若a b +>0,且a 与b 同号,则a>0,b>0;(4)若||||a b >,且a,b 异号,则a b +>0;(5)若||a b <,则a b +>0;其中,正确的说法有() A. 4个B. 3个C. 2个D. 1个3.如果一个整数减去-6是正数,减去-4是负数,则这个数减去9等于() A. -4B. 4C. -14D. 144.若120m n ++?=,则23m n ?+的值是() A 、73?B 、 13?C 、113D 、23二、填空题5.如果|x |-2=4,则x =______,如果x =3,则|x |-1=______.6.观察下列算式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;……通过观察,用你所发现的规律写出811的末位数字是.三、解答题:7.计算(1) 13)18()14(20+? (2)433615431653++?(3)(-3)0 +(-21)-2÷|-2| (4)|31-41|+|41-51|+……+|201-191|8.试一试,玩数学游戏于“金字塔数字”数学游戏(1).先研究数学模型,然后在你观察的基础上填写问题的答案12 = 1 112 = 121 1112 = 12321 11112 = 1234321 111112 =123454321 ……1111111112=(2).先研究下列各个数学模型,然后在你观察的基础上填写问题的答案已知6×7 = 42 66×67 = 4422 666×667 = 444222 6666×6667 = 4444222266666×66667 =第3讲有理数的应用有理数的应用【知识要点】有理数的出现是为了满足实际生活的需要,可见有理数在日常的生产、生活中应用的广泛,纵观近年各地中考题,“用数学的意识”及开放性的问题受到普遍关注,涉及应用数学知识解决联系实际问题的“应用题”数量增多,教学重点、难点:将生活实际问题抽象为数学问题解决【典型例题】例1 股民吉姆上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五六每股涨跌+4+4.5-1-2.5-6+2(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价多少元?(3)已知吉姆买进股票时,付了0.15%的手续费,卖出时还需付成交额0.15%的手续费和0.1%的交易税,如果吉姆在星期六收盘前将全部股票卖出,他的收益情况如何?分析:每天每股价格是买进时每股价格与当天及该天前各天涨跌价的代数和;收益是卖出时的成交额除去手续费和交易税及买进所付的总额.解:(1)星期三收盘时,每股价为:274451345++?=..(元)(2)本周内每天每股的价格为:星期一:274315+=.(元)星期二:27445355++=..(元)星期三:274451345++?=..(元)星期四:2744512532++??=..(元)星期五:27445125626++=..(元)星期六:274451256228+++=..(元)故本周内每股最高价为35.5(元);最低价是每股26(元). (3)由(2)知星期六每股卖出价是28(元).共收益()()2810001015%01%2710001015%8895××××+=....(元)所以吉姆共收益889.5元.例2 有一种“二十四点”的游戏,其游戏的规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只有一次)进行加减乘除四则运算,使其结果等于24. 例如1,2,3,4可作运算:()123424++×=.(注意上述运算与()4123×++应视作相同方法的运算).现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:(1)_______________________ (2)_______________________ (3)_______________________另有四个数3,-5,7,-13.可通过运算式(4)_______________________使其结果等于24.分析:本题属结论开放性试题,对能力的要求较高,解这类试题,一般要经过多次的尝试、探索,解这类题的能力一定要从平时做起.解:(1)()[]34106×++? (2)()()10436??×? (3)()10364×÷?? (4)()()[] ×?+÷13573。

七年级上册有理数单元复习优质讲义(含答案解析)

七年级上册有理数单元复习优质讲义(含答案解析)

;;;中,非负数有(内容提要数轴与相反数例题内容提要绝对值例题2.[单选题]下列说法正确的是( )A.整数就是正整数和负整数 B.负整数的相反数就是非负整数 C.有理数中不是负数就是正数 D.零是自然数,但不是正整数1.[单选题]若x与3互为相反数,则x+1等于( )A.﹣2 B.4 C.﹣4 D.2 2.若与互为相反数,则的值为 .1.[单选题]下列各数中,最小的数是( )A.﹣ B. C.﹣2021 D.﹣1内容提要科学记数法及近似数例题模块二常见考法内容提要有理数的混合运算2.[单选题]如果|x﹣2|=2﹣x,那么x的取值范围是( )A.x≤2 B.x<2 C.x≥2 D.x>23.[单选题]下列说法正确的是( )A.当a为有理数时,﹣a一定表示负数或0 B.在10和14之间只有三个数:11,12,13 C.﹣(+7)与+(﹣7)互为相反数 D.在数轴上表示2的点到原点的距离为24.[单选题]若|x|=5,|y|=2且x<0,y>0,则x+y=( )A.7 B.﹣7 C.3 D.﹣35.已知,则 .1.[单选题]经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过9500万党员的世界第一大政党.9500万用科学记数法表示为( )A.9.5×10 B.9.5×10 C.9.5×10 D.9.5×10 87632.[单选题]近似数27.3万是精确到()A.千位B.万位C.十万位D.十分位例题内容提要简便运算1.[单选题]已知43×47=2021,则(﹣43)的值为( )A.2021 B.﹣2021 C . D.﹣2.[单选题]下列各组的两个数中,运算后的结果相等的是( )A.2和3 B.﹣3和(﹣3) C.﹣2和(﹣2) D.﹣|﹣2|和|﹣2| 3233223.[单选题]若a、b为正整数,且a×b=2×3×5,则下列何者不可能为a、b的最大公因数?( )A.1 B.6 C.8 D.12524.计算(1)(2)(3)5.计算:.例题内容提要实际应用例题1.计算:(1);(2).2.[单选题]求1+2+2+2+…+2的值,可令S=1+2+2+2+…+2,则2S=2+2+2+…+2+2,因此2S﹣S=2﹣1,S=2﹣1.参照以上推理,计算4+4+4+…+4+4的值为( )A.4﹣1 B.4﹣4 C . D.2320162320162320162017 201720172320182019202020203..1.某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,油箱中有10升油摩托车能否最后返回岗亭?内容提要绝对值的化简例题1.已知|a|+a=0,|ab|=ab,|c|﹣c=0,化简|b|﹣|a+b|﹣|c﹣b|+|a﹣c|.2.如图,数轴上有若干个点,每相邻两点相距1个单位长度.其中点A,B,C,D对应的数分别是整数a,b,c,d,且d﹣2a=12,则b+c的值为 .3.化简并填空:(1)当﹣≤x≤1时,化简|3x+1|﹣2|x﹣1|;(2)当|x|+|x+4|最小时,|3x+1|﹣2|x﹣1|的最大值为 .4.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.内容提要数轴上的动点问题例题1.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是 ,点C在数轴上表示的数是 ,线段BC的长= ;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为多少?2.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧有点P,使点P到点A、点B的距离之和为8.请直接写出x的值.x= ;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?模块三数学思想内容提要数形结合思想例题3.如图①,点C 在线段AB 上,若BC =2AC 或AC =2BC ,则称点C 是线段AB 的“雅点”,线段AC 、BC 称作互为“雅点”伴侣线段.(1)若点C 为图①中线段AB 的“雅点”AC =6(AC <BC ),则AB = ;(2)若点D 也是图①中线段AB 的“雅点”(不同于点C ),则AC BD ;(填“=”或“≠”)如图②,数轴上有一点E 表示的数为1,向右平移5个单位到达点F ;(3)若M 、N 两点都在线段OF 上,且M ,N 均为线段OF 的“雅点”,求线段MN 的长;(4)图②中,若点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G 所表示的数.1.用绝对值的几何意义解决下列问题:(1)|x+5|=2,求x 的值(2)若|x+4|=|x ﹣2|,求x 的值;内容提要分类讨论思想例题参考答案(3)|x﹣3|﹣|x|=2时,求x的值:(4)|x﹣1|+|x﹣3|>4.求x的取值范围:(5)求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值.1.解答下面的问题:(1)已知a,b是不为0的有理数,当|ab|=﹣ab时,则+的值是 ;(2)已知a,b,c是有理数,当abc<0时,求++的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求++的值.模块一基本概念例题1.C解析:解:在﹣125%;;25;0;﹣0.3;0.67;﹣4;中,非负数有,25,0,0.67,共4个.故选:C.2.D解析:解:A、整数就是正整数和负整数,还有0,故本选项错误;B、负整数的相反数就是正整数,故本选项错误;C、有理数中不是负数就是正数,还有0,故本选项错误;D、零是自然数,但不是正整数,本选项正确;故选:D.例题1.A解析:解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.2.2解析:例题1.C解析:解:题中B选项中为正数,A、C、D选项中都为负数,绝对值最大的是C选项中的﹣2021,故选:C.2.A解析:解:因为|x﹣2|=2﹣x,由负数的绝对值等于它的相反数,0的绝对值是0可得,x﹣2≤0,即x≤2,故选:A.3.D解析:解:A.若a为负数,则﹣a表示正数.故A错误,B.在10和14之间有无数个数,而整数只有三个.故B错误,C.﹣(+7)=﹣7,+(﹣7)=﹣7,它们表示同一个数.故C错误,D.在数轴上表示2的点到原点的距离为2,即|2|=2.故D正确.故选:D.4.D解析:解:∵|x|=5,|y|=2,∴x =±5,y =±2,∵x <0,y >0,∴x =﹣5,y =2,∴x+y =﹣3.故选:D .5.解析:例题1.B解析:解:9500万=9500000000=9.5×10000000=9.5×10,故选:B .2.A解析:模块二常见考法例题1.B解析:解:∵43×47=2021,∴(﹣43)=﹣43×47=﹣2021,故选:B .2.B解析:解:A .2=8,3=9,∴2≠3,故此选项不符合题意;B .﹣3=﹣27,(﹣3)=﹣27,∴﹣3=(﹣3),故此选项符合题意;C .﹣2=﹣4,(﹣2)=4,∴﹣2≠(﹣2),故此选项不符合题意;D .﹣|﹣2|=﹣2,|﹣2|=2,∴﹣|﹣2|≠|﹣2|,故此选项不符合题意;故选:B .3.C解析:解:∵最大公因数为a 、b 都有的因数,而8=2,a×b =2×3×5,a 、b 不可能都含有2,73232333322223523∴8不可能为a 、b 的最大公因数.故选:C .4.﹣4 ﹣42﹣解析:解:(1)原式=﹣2×(﹣)×(﹣4.5)=﹣2×(﹣)×(﹣)=﹣4;(2)原式=(﹣32)×+32×+(﹣32)×=﹣6+20﹣56=﹣42;(3)原式=﹣(﹣)﹣9×(﹣)﹣1=﹣+﹣1=(﹣﹣1)+=﹣+=﹣.5.解析:例题1.(1)﹣1;(2)﹣1..解析:解:(1)原式==16+4﹣21=﹣1;(2)原式=16÷(﹣8)﹣1+2=﹣2﹣1+2=﹣1.2.C解析:解:设S =4+4+4+…+4+4,则4S =4+4+…+4+4,∴4S ﹣S =4﹣4,∴3S =4﹣4,∴S =,即4+4+4+…+4+4的值为.故选:C .3.223201820192320192020202020202320182019解析:例题1.解:(1)如图:(2)4﹣(﹣4)=8(km).答:A同学家离C同学家有8km.(3)4+7+15+4=30(km).答:李老师一共行驶了30km.解析:解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米).答:A在岗亭南方,距岗亭13千米处;(2)|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|+|﹣2|+|﹣13|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),9.6<10答:能返回.2.李老师进行家访,从学校出发,先向西开车行驶4km到达A同学家,继续向西行驶7km到达B同学家,然后又向东行驶15km到达C同学家,最后回到学校.(1)以学校为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴,并在数轴上表示出A、B、C三个同学的家的位置.(2)A同学家离C同学家有多远?(3)李老师一共行驶了多少km?例题1.b.解析:解:∵|a|+a=0,|ab|=ab,|c|﹣c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c﹣b≥0,a﹣c≤0,∴原式=﹣b+a+b﹣c+b﹣a+c=b.2.﹣3.解析:解:由图可知:b=a+3,c=a+4,d=a+7.∴d﹣2a=a+7﹣2a=7﹣a=12,∴a=﹣5,∴b+c=a+3+a+4=2a+7=﹣3.故b+c=﹣3.3.(1)5x﹣1;(2)1解析:(1)解:∵﹣≤x≤1,∴﹣1≤3x≤3,∴3x+1≥0,x﹣1≤0,∴原式=3x+1+2(x﹣1)=5x﹣1;(2)∵当|x|+|x+4|最小时,﹣4≤x≤0,①当﹣4≤x<﹣时,|3x+1|﹣2|x﹣1|=(3x+1)+2(x﹣1)=﹣x﹣3,此时最大值=1,②当﹣≤x≤0时,|3x+1|﹣2|x﹣1|=3x+1+2(x﹣1)=5x﹣1,此时最大值=﹣1,综上所述:|3x+1|﹣2|x﹣1|的最大值为:1,故答案是:1.4.y的最小值为6.解析:解:令2x+6=0,x﹣1=0,x+1=0,解得:x=﹣3,x=1,x=﹣1.当x<﹣3时,则y=﹣2x﹣6﹣x+1﹣4x﹣4=﹣7x﹣9,则没有最小值;当﹣3≤x≤﹣1时,则y=2x+6﹣x+1﹣4x﹣4=﹣3x+3,则最小值为6;当﹣1≤x<1时,则y=2x+6﹣x+1+4x+4=5x+11,则最小值为6;当x≥1时,则y=2x+6+x﹣1+4x+4=7x+9,则最小值为16;故y的最小值为6.例题1.(1)﹣10;14;24.(2)当B、C重合时,t的值为8,在数轴上表示的数为﹣2.(3).解析:解:(1)∵AB=2,点A在数轴上表示的数是﹣12,∴点B在数轴上表示的数是﹣10;∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14.∴BC=14﹣(﹣10)=24.故答案为:﹣10;14;24.(2)当运动时间为t秒时,点B在数轴上表示的数为t﹣10,点C在数轴上表示的数为14﹣2t,∵B、C重合,∴t﹣10=14﹣2t,解得:t=8.答:当B、C重合时,t的值为8,在数轴上表示的数为﹣2.(3)当运动时间为t秒时,点A在数轴上表示的数为﹣t﹣12,点B在数轴上表示的数为﹣t﹣10,点C在数轴上表示的数为14﹣2t,点D在数轴上表示的数为15﹣2t,∵0<t<24,∴点C一直在点B的右侧.∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN=﹣=.故答案为:.2.(1)点P所对应的数=1;(2)5;(3)当点A与点B之间的距离为3个单位长度时,点P所对应的数是﹣3或﹣27.解析:解:(1)点P所对应的数x==1;(2)由题意得,|﹣1﹣x|+|3﹣x|=8,又因为AB=|﹣1﹣3|=4,PA+PB=8,且点P在原点的右侧,所以点P所表示的数x>3,所以1+x+x﹣3=8,解得x=5,故答案为:5;(3)设移动的时间为t秒,①当点A在点B的左边,使AB=3时,有(3+0.5t)﹣(﹣1+2t)=3,解得t=,此时点P移动的距离为×6=4,因此点P所表示的数为1﹣4=﹣3,②当点A在点B的右边,使AB=3时,有(﹣1+2t)﹣(3+0.5t)=3,解得t=,此时点P移动的距离为×6=28,因此点P所表示的数为1﹣28=﹣27,所以当点A与点B之间的距离为3个单位长度时,点P所对应的数是﹣3或﹣27.3.(1)18;(2)=;(3)MN的长为0或2;(4)G表示的数为:或或8.5或16.解析:解:(1)∵点C为线段AB的“雅点”,AC=6(AC<BC),∴BC=2AC,∵AC=6,∴BC=12,∴AB=AC+BC=18,故答案为:18;(2)∵点D也是线段AB的“雅点”(不同于点C),∴AD=2BD,而AD+BD=18,∴BD=6,∵AC=6,∴AC=BD,故答案为:=;(3)∵数轴上有一点E表示的数为1,向右平移5个单位到达点F,∴OF=1+5=6,M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,①M、N为线段OF的同一个“雅点”时,MN=0,②M、N为线段OF的不同“雅点”,且MF=2OM,ON=2FN,如答图1:∵MF=2OM,OM+FM=6,∴OM=2,∵ON=2FN,ON+FN=6,∴ON=4,∴MN=ON﹣OM=2,③M、N为线段OF的不同“雅点”,且OM=2FM,FN=2ON,如答图2:∵OM=2FM,OM+FM=6,∴OM=4,∵FN=2ON,ON+FN=6,∴ON=2,∴MN=OM﹣ON=2,总上所述,MN的长为0或2;(4)点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,分以下四种情况:①G在线段EF上,EG=2FG,如答图3:∵EG=2FG,EG+FG=5,∴EG=,∵E表示的数为1,∴G点表示的数为1+=,②G在线段EF上,且FG=2EG,如答图4:∵FG=2EG,EG+FG=5,∴EG=,∵E表示的数为1,∴G表示的数为1+=,③G在线段EF外,且EF=2FG,如答图5:∵EF=2FG,EF=5,∴FG=2.5,∴G表示的数是1+5+2.5=8.5,④G在EF外,且FG=2EF,如答图6:∵FG=2EF,EF=5,∴FG=10,∴G表示的数为1+5+10=16,总上所述,G表示的数为:或或8.5或16.模块三数学思想例题1.运用数形结合思想:解析:解:(1)文字语言:数轴上什么数到﹣5的距离等于到2的距离.答案:x为﹣7和﹣3.(2)文字语言:数轴上什么数到﹣4的距离等于到2的距离.图形语言:答案:x=﹣1.(3)文字语言:数轴上什么数到3的距离比到原点(0)的距离大2.图形语言:答案:x=.(4)文字语言:数轴上什么数到1的距离和它到3的距离大于4.图形语言:答案:x>4,x<0.(5)文字语言:数轴上什么数到1,2,3,4,5距离之和最小值.图形语言:答案:6.例题1.(1)0.(2)﹣3或1(3)-1解析:解:(1)a,b是不为0的有理数,当|ab|=﹣ab时,a>0,b<0,或a<0,b>0,当a>0,b<0时,;当 a<0,b>0时,.故答案为:0.(2)∵abc<0,∴a、b、c都是负数或其中一个为负数,另两个为正数,①当a、b、c都是负数,即a<0,b<0,c<0时,则:=﹣1﹣1﹣1=﹣3;②a、b、c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=﹣1+1+1=1(3)∵a,b,c为三个不为0的有理数,且a+b+c=0得,a+b=﹣c,c+a=﹣b,b+c=﹣a.a、b、c有一个为负数,另两个为正数时,设a<0,b>0,c>0,=1﹣1﹣1=﹣1.。

人教版初中七年级数学上册第一章《有理数》知识点总结(含答案解析)

人教版初中七年级数学上册第一章《有理数》知识点总结(含答案解析)

人教版初中七年级数学上册第一章《有理数》知识点总结(含答案解析)一、选择题1.(0分)按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】 根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.(0分)若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号 又∵12a =,3b = ∴12a =,3b =-或12a =-,3b =当12a=,3b=-时,15322+-=-a b=当12a=-,3b=时,15322+-+=a b=故选D.【点睛】本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据ab判断出a和b异号.3.(0分)数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.4.(0分)在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.5.(0分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B B 解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.6.(0分)下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个A 解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a -不一定是负数,故该说法错误;②||a 一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.7.(0分)下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 8.(0分)甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃, 根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.9.(0分)下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.10.(0分)若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键. 二、填空题11.(0分)23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.12.(0分)3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义. 13.(0分)数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.14.(0分)(1)-23与25的差的相反数是_____.(2)若|a+2|+|b-3|=0,则a-b=_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b-解析:1615-5123【分析】(1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a、b的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.15.(0分)运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键 解析:162 1(3)3- 【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-]. 故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.16.(0分)计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.17.(0分)我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(0分)运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.19.(0分)计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.20.(0分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB 盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n (n 为正整数)的线段盖住n 或n +1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.三、解答题21.(0分)计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.22.(0分)体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.23.(0分)计算(1)21145()5 -÷⨯-(2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.24.(0分)计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.25.(0分)计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.26.(0分)计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++4【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.27.(0分)计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 28.(0分)计算: (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+3(2)6÷(-2)3-|-22×3|+3÷2×12+1=116(8)123122÷--+⨯⨯+=33121 44--++=-11.【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键.。

人教版七年级上学期数学 第一章《有理数》第1讲 有理数 (答案+解析)

人教版七年级上学期数学 第一章《有理数》第1讲  有理数 (答案+解析)

第1讲有理数1、正数:像1、2.5、这样大于0的数叫做正数;2、负数:在正数前面加上“-〞号,表示比0小的数叫做负数;3、0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①、判断一个数是否是正数或负数,不能用数的前面加不加“+〞“-〞去判断,要严格按照“大于0的数叫做正数;0小的数叫做负数〞去识别。

②、正数和负数的应用:正数和负数通常表示具有相反意义的量。

③、所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④、常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;整数和分数统称为有理数。

有理数的分类如下:〔1〕按定义分类:〔2〕按性质符号分类:概念剖析:①、整数和分数统称为有理数,也就是说假如一个数是有理数,那么它就一定可以化成整数或分数;②、正有理数和0又称为非负有理数,负有理数和0又称为非正有理数③、整数和分数都可以化成小数局部为0或小数局部不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;标有原点、正方向和单位长度的直线叫作数轴。

数轴有三要素:原点、正方向、单位长度。

画一条程度直线,在直线上取一点表示0〔叫做原点〕,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。

概念剖析:①、画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②、数轴的方向不一定都是程度向右的,数轴的方向可以是任意的方向;③、数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等; ④、有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,那么数轴上表示数a 的点在原点的右边,与原点的间隔 是a 个单位长度;表示数a -的点在原点的左边,与原点的间隔 是a 个单位长度。

2019-2020年人教版七年级数学上册 第一章 有理数 有理数混合运算(讲义及答案)

2019-2020年人教版七年级数学上册 第一章 有理数 有理数混合运算(讲义及答案)

有理数混合运算(讲义)➢课前预习1.有理数混合运算顺序:先算_______,再算_______,最后算_______;如果________________________________.2.乘法分配律:=__________________.3.观察下列计算,指出从第几步开始出错,并说明错误原因:以上计算过程,从第____步开始出错,错误原因是_________________________________.以上计算过程,从第____步开始出错,错误原因是________ _________________________.➢知识点睛1.有理数混合运算处理方法:①__________________;②__________________;③__________________.2.有理数运算技巧:___________________________________________________ ___________________________________________________.➢精讲精练1.计算:(1);(2);(3);(4).2.练习:(1);(2);(3);(4).3.()()2019112181614124--⎪⎭⎫⎝⎛--+-⨯- .4..5..6..7..8. .9.201920171751531311⨯+⋅⋅⋅+⨯+⨯+⨯ .10. 计算:.11.计算:.12.计算:.【参考答案】➢课前预习1.乘方,乘除,加减;有括号,先算括号里面的.2.ab+ac3.(1)一,除以变成乘法,应该是乘以(-2).(2)一,运算顺序出错➢知识点睛1.①观察结构划部分;②有序操作依法则;③每步推进一点点.2.①归类组合;②凑整分解;③裂项相消;④倒序相加;⑤错位相减.➢精讲精练1.(1);(2);(3)27;(4)1092.(1);(2)7;(3);(4).3.84.-75.966.-827.-43.68.-10010099.201910.4 99511.12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数综合复习(讲义)
课前预习
1. 比较大小:
(1)-2 ___ -3;
-1 000 ____ 0;
若a<0,则a___2a .
(2)如图,a,b 在数轴上的位置如图所示,请把a,b,-a,
- b按照从小到大的顺序进行排列:
2. (1)若a是非负数,b也是非负数,则a+b一定是______
(2)若a是非负数,b是正数,则a+b一定是____ .
(3)若a是正数,b也是正数,则a+b一定是____ .
3. 正数的绝对值是 _____ ,负数的绝对值是___________ ,
0 的绝对值是___ .
绝对值等于它本身的数是______ ,绝对值等于它的相反数的数是_________ .
知识点睛
1. 两个负数比大小, _______________________ .
2. 有理数混合运算要点:
①__________ ;② _____________ ;③ ____________ .
3. 折线统计图具体做法:
① ____________________ ;②_______________________ ;
③ ____________________ .
描点连线时需注意:
① ____________________ ;②_______________________ ;
③ ______________________ .
精讲精练
1. 最小的正整数是 __ ,最大的负整数是 ____ ,绝对值最小的有理数是____ ,相
反数等于它本身的数是 _______ ,绝对值等于它本身的数是____________ ,倒数等于它本身的数是 ______ ,平方等于它本身的数是_______ .
2. 下列说法正确的是()
A.1 是最小的正数,最大的负数是1
B.正数和负数统称有理数
C.一个有理数不是整数就是分数
D.3.14不是分数
3. 下列说法正确的是()
A.所有的有理数都可以用数轴上的点来表示
B.绝对值等于它相反数的数是负数C.如果两个数的绝对值相等,那么这两个数相等
D.除0 外,任何数的相反数都是负数
4. 下列说法正确的是()
A.绝对值等于它本身的数是正数
B.符号不同的两个数互为相反数
C.一个数的相反数一定是负数
D.在数轴上,离原点越远的点,表示的数的绝对值越大
5. 下列结论正确的是()
A .若,则B.若,则
C.若,则D.若,则
3)
6. 比较大小:
100 _____ 0.01, _____________ ,,
99a ______ 100a(a<0).(填“ <”,“ =”,“ >”)
7. 比大,比_____________________________ 小的所有整数有.
8. 若,,,则a,b,a, b 这4 个数从小到大的顺序是
9. 若,,,则a,b,a, b 这4 个数从大到小的顺序是
10. 已知,则a= ___ ,b= ____ ,c= ____
11. 若,则3a+2b= ________ .
12. 若,则m n= ________ .
13. 计算:
1)
2)
3)
4)
14. 下表为某个雨季水库管理员记录的水库一周内的水位变化情况,警戒水位
为(上周末的水位刚好达到警戒水位).
星期
一二三四
五六日
增减/m+1.2+0.4+0.80.1+0.70.7 1.1
注:正数表示比前一天水位上升,负数表示比前一天水位下降.
(1)本周哪一天水位最高?有多少米?
(2)本周哪一天水位最低?有多少米?(3)根据给出的数据,以警戒
水位为0 点,用折线统计图表示本周内该水库的水位情况.
150 m
15. 一护士每隔1 小时对病人测体温,及时了解病人的好转情况,该护士在
病人早晨
6: 00进院时测得的体温是40.2℃,其他时间记录的体温变化数据如下表
正数表示比前一次上升的体温数,负数表示比前一次下降的体温数):
时间7:008: 009:0010: 0011: 0012: 0013: 0014: 0015:00
体温
+0.2 1.00.8 1.00.6+0.4 1.00.20
(℃)
问:(1)病人什么时候体温达到最高?最高体温是多少?(2)病人几点
后体温稳定正常?(正常体温是36℃~37℃)(3)以36℃为0 点,请用
折线统计图表示这名病人在这段时间内的体温情况.
参考答案】
课前预习
1. (1)> < >
(2)-b<a<-a<b
2. (1)非负数(2)正数(3)正数
3. 它本身它的相反数0 正数和0 负数和0
知识点睛
1. 绝对值大的反而小
2. ①观察结构划部分;②有序操作依法则;③每步推进一点点.
3. ①明确横轴、纵轴的意义;②确定单位长度;③描点、连
线.①找准起始位置;②注意0 点;③相应数字标
注.精讲精练
1. 1,-1,0,0,正数或零(非负数),±1,0 和1
2. C
3. A
4. D
5. B
6. <,<,>,>
7. -1,0,1,2,3
8. <- a<a<- b
9. b>-a>a>-
10. 0,0,0
11. 0
12. 4
13. (1)8;(2);(3);(4)- 20
14. (1)周五水位最高,153.0 m;
(2)周一、周日水位最低,最低水位是151.2 m;(3)略
15. (1)病人在7:00 体温达到最高,最高体温为40.4℃
(2)病人13: 00之后体温稳定正常;(3)略。

相关文档
最新文档