圆柱体积计算(六年级下册)
六年级下册数学圆柱的体积

六年级下册数学讲义圆柱的体积☆☆知识讲解:知识点一:圆柱体积的意义和计算公式1.圆柱体积的意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。
2.圆柱体积公式的推导:圆柱的体积=长方体的体积=长方体的底面积×长方体的高=圆柱的底面积×圆柱的高如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,可以得到圆柱的体积计算公式为:h r Sh V 2π==知识点二:圆柱的体积计算公式的应用知识应用1:已知圆柱的底面积和高,求圆柱的体积。
点击例题:一根圆柱形钢材,底面积是402cm ,高是2.1m ,它的体积是多少?知识应用2:已知圆柱的底面半径和高,求圆柱的体积。
点击例题:一个圆柱形罐头盒的底面半径是5cm ,高是18cm 。
体积是多少?知识应用3:已知圆柱的底面直径和高,求圆柱的体积。
点击例题:一个圆柱形水桶,从里面量底面直径是4分米,高是5分米,这个水桶的容积是多少?(得数保留整立方分米)可装水多少千克?(1立方分米水重1千克)知识应用4:已知圆柱的底面周长和高,求圆柱的体积。
点击例题:一个圆柱形水泥柱,底面周长是1.884米,高是3米,这根水泥柱的体积是多少立方米?知识应用5:已知圆柱的体积和高(或底面积),也可以求出圆柱的底面积(或高)。
点击例题:在地面挖一个圆柱形水池,底面周长62.8米,要使池内存水1570立方米,水池至少要挖多深?过关精练:一个圆柱形容器的底面直径为4分米,现在往容器里倒入25.12升的水,水深多少分米?☆☆思维拓展:点拨方法1:如果把一个正方体的木料加工成一个最大的圆柱体,这个圆柱体的高就等于正方体的棱长,这个圆柱体的底面直径也就等于正方体的棱长。
点击例题:有一块正方体的木料,它的棱长是3分米,把这块木料加工成一个最大的圆柱体(如图),这个圆柱体的体积是多少?过关精练:点拨方法2:将物体浸没在容器里,物体的体积等于升高的那部分液体的体积;如果物体没有完全浸没在液体中,则浸没在液体中的那部分体积等于升高的液体的体积。
六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期圆柱的体积知识概要1、圆柱的体积将圆柱切割拼成一个近似长方体:长方体的长:圆柱底面圆周长的一半πr长方体的宽:圆柱的底面半径r长方体的高:圆柱的高hV=πr·r·h =πr2hV=底面积×高2、体积单位及换算体积单位:立方米、立方分米、立方厘米相邻两个体积单位间的进率是10001立方米=1000立方分米1立方分米=1000立方厘米精讲精练例1、(1)圆柱的半径扩大为原来的3倍,高不变,体积扩大为原来的____倍。
如果高变成2倍,半径不变,体积变为原来的_____倍。
(2)判断:①圆柱的半径扩大为原来的2倍,表面积扩大为原来的4倍。
()②圆柱的半径扩大为原来的2倍,体积扩大为原来的6倍。
()演练1、(1)圆柱的半径缩小为原来的二分之一,高不变,体积缩小为原来的_____。
(2)判断:圆柱的半径扩大为原来的2倍,高不变,体积扩大为原来的4倍。
()例2、(1)已知圆柱体的底面半径3厘米,高10厘米。
那么这个圆柱体的体积是_____立方厘米.(2)如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.问这个物体的体积是多少平方米?(圆周率取3)1110.511.5演练2、(1)一个圆柱底面积是1⒉56平方分米,高是2分米,则圆柱的体积是多少立方分米?(2)一个双层的圆柱形蛋糕,两层都高15厘米,第一层和第二层蛋糕的半径分别为10厘米和5厘米。
求这个蛋糕的体积。
例3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?演练3、有一个圆柱体的零件,高6厘米,底面直径是8厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?例4、(1)圆柱体的侧面展开,放平,是长宽分别为18厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。
小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。
那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。
小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。
第一单元 圆柱的体积(课件)六年级下册数学北师大版

ห้องสมุดไป่ตู้
2、 一根方钢长50厘米,底面是边长 12厘米的正方形。如果把它锻造成底 面面积是90平方厘米的圆柱形钢材, 这根钢材长多少厘米?
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
练一练: 计算下面圆柱的体积。
8dm 4cm
2
长方体的体积=底面积×高 圆柱体的体积= 底面积 ×高
试一试
金箍棒底面周长12.56cm,长200cm, 这根金箍棒的体积是多少立方厘米?
(1)思考:求金箍棒的体积,要先求什 么?由周长可以求出什么? (2)独立尝试列式,并小组交流,说说 你的想法,再汇报。
两个圆柱的高相等,底面积的比是 1:4,体积之和是25立方厘米,求 这两个圆柱的体积。
把一个圆柱的侧面沿高展开,得到一个正方 形。已知正方形边长是12.56分米,求圆柱的 表面积及体积。
讨论
(1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
一个圆柱形柴油罐,底面周长是 12.56 米,高 10 米。如果 每立方米柴油重 0.8 吨,这个油罐可装柴油多少吨?
底面半径:12.56÷3.14÷2=2(米) 3.14×22×10×0.8=100.48(吨)
答:可装柴油 100.48 吨。
7.下面的长方体和圆柱哪个体积大?说说你的比较方法。
2、把一个棱长为6分米的正方体削成一个 最大的圆柱体,这个圆柱体的体积是多少 ?
6 dm
6 dm
6 dm
变式:把一个棱长为 20 厘米的正方体木头,削成一个最大 的圆柱体(如图),要削去多少立方厘米的边角料?
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,
《圆柱的体积(1)》(课件)-六年级下册数学人教版

(3) 把一个棱长为10分米的正方体木块削成一个最大的圆柱,
这个圆柱的体积是( B )立方分米。
A.100
B.785
C.78.5
D.314
(4) 圆柱的底面半径和高都扩大到原来的2倍,它的体积扩大
到原来的( C )倍。
A.2
B.4
C.8
D.6
2 挖一口圆柱形水井,地面以下的井深为10m,底面直径 为1m。挖出的土有多少立方米?(教材P24第2题)
V=75×90=6750(cm3) 答:它的体积是6750cm3。
3 一个圆柱形的水池,从里面量底面半径是5m,深是3.2m。 这个水池能蓄水多少吨?(1m3的水重1t。) (教材P25第2题)
V=3.14×52×3.2=251.2(m3)=251.2(t)
答:这个水池能蓄水251.2t。
当堂练习 及时反馈
2 下图中的圆柱与长方体的体积相等。这个圆柱的高是多 少?(单位:dm)
15.7
12
3
V=15.7×6×3=282.6(dm3) h=282.6÷[3.14×(12÷2)2]=2.5(dm) 答:这个圆柱的高是2.5dm。
3 如图,一根长6m的圆木,如果把它截成三段,表面积就 增加942cm2。原来这根原木的体积是多少立方米?
7 cm 6 cm
一个圆柱所占空间的大小, 叫作这个圆柱的体积。
怎样计算圆柱的体积呢?
合作交流 探索新知
探究圆柱的体积计算公式
想一想:圆的面积公 式是怎样推导的呢?
34 56
2
7
1
8
16
9
15
10
1413 12 11
12345678 9 10 11 12 13 14 15 16
人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

第三单元第3课时圆柱的体积(1)教学设计情境导入—引“探究”教师谈话导入:什么是物体的体积?你会计算哪些物体的体积?长方体和正方体的体积计算公式?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?V长=长×宽×高V正=棱长×棱长×棱长V=底面积×高字母表示:V=Sh思考:圆柱的体积怎样计算呢?前面的学习中我们遇到过这样的问题吗?知识链接—构“联系”回忆一下圆面积的计算公式是如何推导出来的?(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的长方形。
长方形的长相当于圆周长的一半,长方形的宽就当于圆的半径,用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式。
圆柱的体积该怎么计算呢?今天我们就一起来研究这个问题。
(板书课题:圆柱的体积)学习任务一:圆柱体积公式的推导【设计意图:由复习圆面积公式的推导过程入手,实现知识的迁移,从而调动学生学习的积极性,激发学生探求新知的欲望,在教学中充分运用课件中的动画直观演示的同时,广泛让学生动手、动脑、动口,在操作中感知,在猜想中验证,在观察中理解,在比较中归纳。
让学生在自主探究、合作交流中发现和解决问题,培养学生乐学、积极探究的学习态度,获得成功的体验。
这样进行教学,不仅有利于学生理解公式的推导过程,而且在公式的推导过程中,充分让学生感受和体验“转化”这一解决数学问题重要的思想方法。
】新知探究—习“方法”结合教材的内容,探究圆柱体积公式的推导。
1.提问:什么是圆柱的体积?圆柱的体积怎么求?(说一说、想一想、猜一猜)让学生自由发言。
(1)学生猜想可以把圆柱转化成什么图形?(借助于圆面积公式的推导进行知识迁移学习)出示推导示意图,建立直观,巩固旧知(2)阅读教材内容,利用手中的学具进行探索,小组交流。
2.圆柱体积公式的推导(1)多媒体课件演示圆柱体等分转化为长方体。
(让学生观察)通过课件的演示、观察、思考:(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?(4) 你认为圆柱的体积可以怎样计算?3.交流展示,小组讨论,交流汇报。
1.3《圆柱的体积》(教案)2023-2024学年数学六年级下册

1.3《圆柱的体积》(教案)20232024学年数学六年级下册在上一节课,我们已经学习了圆柱的表面积的计算方法。
这节课,我们将继续深入研究,探讨圆柱的体积的计算方法。
一、教学内容我们使用的教材是《数学六年级下册》,本节课的教学内容是第1.3节——圆柱的体积。
我们将通过引入实践情景,讲解例题,并设计随堂练习,让学生掌握圆柱体积的计算方法。
二、教学目标通过本节课的学习,我希望学生们能够理解圆柱体积的概念,掌握圆柱体积的计算方法,并能应用于实际问题中。
三、教学难点与重点本节课的重点是圆柱体积的计算方法,难点是理解圆柱体积的概念和计算公式的推导过程。
四、教具与学具准备为了帮助学生们更好地理解圆柱体积的概念,我将准备一些实际的圆柱形状的物体,如圆柱形的饮料瓶、圆柱形的笔筒等。
同时,我还会准备一些图纸,让学生们在课堂上画出圆柱的横截面和立体图。
五、教学过程2. 讲解圆柱体积的概念:我会用语言和教具相结合的方式,讲解圆柱体积的概念,让学生明白圆柱体积的定义和计算方法。
3. 讲解例题:我会选择一些典型的例题,讲解解题思路和计算方法,让学生通过例题理解圆柱体积的计算方法。
4. 随堂练习:在讲解完例题后,我会设计一些随堂练习题,让学生们自己动手计算,巩固所学知识。
5. 板书设计:在课堂上,我会将圆柱体积的计算公式和步骤板书在黑板上,方便学生们理解和记忆。
六、作业设计作业题目:计算下面圆柱的体积。
一个底面半径为5cm,高为10cm的圆柱。
答案:圆柱的体积= π × r² × h= 3.14 × 5² × 10= 3.14 × 25 × 10= 785(cm³)七、课后反思及拓展延伸本节课结束后,我会反思教学效果,看学生们是否掌握了圆柱体积的计算方法,并对一些学有余力的学生进行拓展延伸,引导他们思考圆柱体积在实际生活中的应用。
这就是我对于《圆柱的体积》这一节课的教学设计和安排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱体积计算(六年级下册)
浦口实验小学陈静
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积公式的推导过程。
教学准备:课件、圆柱体插拼教学具。
教学程序:
一、创设情境提出问题
课件出示:长6厘米,宽2厘米的长方形小旗
分别以长和宽为轴旋转360º,得到的圆柱体与原来的长方形有着怎样的关系?怎样计算它们的表面积?只列式不计算。
长方形扫过的空间大小是什么?
(板书课题:圆柱的体积计算)
二、动手实验探索公式
课件出示例4图:某玩具厂新近开发了一种积木玩具,这三个积木的底面积和高都相等,要想比较一下这三个积木的体积的大小,有什么方法?
1.观察、比较,建立猜想
引导生观察例4中的三个几何体,提问:
(1)长方体、正方体的体积相等吗?为什么?
(板书:长方体的体积=底面积×高)
(2)圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?圆柱的体积可能是怎样计算呢?
(板书:圆柱的体积=底面积×高?)
2.实验操作,验证猜想
让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。
学生可能想到用倒水的方法等。
教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的?课件演示圆转化成长方形的过程。
可以模仿这样的方法来转化。
(1)小组合作研究怎样将圆柱体转化成一个长方体
(2)小组代表汇报,全班交流
(3)演示操作
①、请一名学生演示用切插拼的方法把圆柱体转化成长方体。
其他学生模仿操作。
②、思考:这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?
③、电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份),学生闭眼独立联想。
3.观察比较,推导公式
①、圆柱体转化成长方体后,什么变了,什么没有变?
说明:体积没变,形状变了,表面积变大,增加两个侧面,侧面合起来面积是:直径×高(课件演示)
②、根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积 = 底面积×高
③、你的猜想正确吗?圆柱体的体积计算公式我们是怎样推导出来的?
④、小结:要想求出一个圆柱的体积,需要知道什么条件?
⑤、学生自学第25页例4上面的一段话:用字母表示公式。
学生反馈自学情况,师板书公式:V=Sh
三、巩固练习拓展应用
1.完成课本“练习八”第1题。
使学生明确应用体积公式求圆柱的体积一般需要两个条件,即底面积和高。
2.出示第26页试一试,学生理解题意,独立完成。
说一说每一步列式的根据是什么?强调:计算圆柱体的体积要先算出底面积。
3.完成第26页的“练一练”的第1题。
看图说说每个圆柱中的已知条件,再各自计算,计算后,说一说计算的过程。
4.完成第26页的“练一练”的第2题。
强调为什么电饭煲要从里面量底面直径和高,再列式解答。
5.长6厘米,宽2厘米的长方形分别以长和宽为轴,旋转得到的圆柱体积相等吗?为什么?谁的的体积大一些呢?
想办法证明自己的猜测。
学生交流。
说明:不一定要计算结果,可以根据圆柱体积计算方法列出算式:
22Л×6=24Л和62Л×2=72Л比较。
想一想:为什么以宽为轴旋转得到的圆柱体体积会大一些?
四、总结回顾评价反思
这节课你学会了什么?我们是怎样得到圆柱体积计算公式
的?
教学点评:
一、经历过程、构建新知。
教学既要关注学生数学学习的结果,更要关注他们在学习过程中的体验、变化与发展,要让学生经历知识形成与获取的全过程,在探索的过程中获得新的体验与感悟,丰富自己的经历与经验,从而形成“知识传承、能力发展、态度与价值观形成的统一”。
本节课教学设计从生活情境入手,通过组织猜测、操作、交流等数学活动,使学生经历“做数学”的过程,鼓励学生独立思考,引导学生自主探索、合作交流,让学生根据已有的知识经验创造性地建构圆柱体积计算公式,鼓励解决问题策略的多样化,让学生的思维得到发展,创新精神、实践能力得到提高。
二、关注细节,加强反思。
新授环节,经历了问题引入、猜测验证、对比推导三个教学过程,环环相扣,步步深入。
通过对圆柱和分插拼成的长方体的对比,推导出了圆柱和长方体有着相同的体积计算公式,然后要求学生回顾一下我们是怎样得到“圆柱体的体积=底面积×高”这个结论的,公式的推导、运用过程,让学生体验了数学问题的探索性和挑战性,感受到数学思考过程的条理性和数学结论的确定性。
三、借助课件,丰富课堂。
课堂上教师将讲解、启发、自主探究与合作交流等多种教学方式相结合,借助于多媒体课件化静为动,把教师说不清道不明,学生不易掌握和理解的圆柱分插拼成长方体的转化过程一目了然地展现在学
生面前。
教学设计充分体现了“以学生为中心”的思想,真正方便了学生学习。
做到根据教学内容的实际需要,充分发挥多媒体技术的优势,突出教学重点,突破教学难点,丰富了教学内容,精彩了课堂,激发了学生的学习兴趣。
四、精选习题,练中提高。
学生在数学课堂上建立起新概念、习得规律之后,必须完成一定数量的数学练习题,才能巩固所学知识,正确理解概念、定理、公式等,逐步形成技能、技巧,不断提高观察、比较等思维能力。
本节课,教师充分挖掘习题的价值,在巩固中拓展,让学生的思维不停留于某一固定的模式中,而能灵活应变,变有限为无限,让不同层次学生的思维水平在原有水平基础上都得以提升。
五组练习题逐层推进,有知识技能掌握情况的及时反馈和巩固,有运用知识技能解决生活问题,也有数学推理证明。
巧妙地习题设计,充分调动了学生的情感因素,促进学生出色地完成学习任务。