大学物理II练习册答案16
大学物理(二)练习册答案

1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
最新北京林业大学《大学物理2》试卷及答案(共八套)名师精编资料

北京林业大学物理学Ⅱ试卷 (一)姓名 班级 学号 成绩一、填空(每空2分,共60分)1. 两列简谐振动的振动方向相同,其振动运动学方程分别为m t x )4/2cos(050.01ππ+=和m t x )4/32cos(010.02ππ-=。
则合振动的振幅为 m ,初相为 。
2.麦克思韦关于电磁场理论的两个基本假设是 和 。
3.波速为10.2-⋅s m 的平面简谐波,其波源振动方程为m t y )2/cos(60.0π=,则波长为 m ,距波源m 0.6处质点的振动方程为 ,与波源的相位差为 。
4.气体内的输运过程包括 、 、 三种现象。
5.在夫琅和费单缝衍射中,狭缝宽λ5=a ,透镜焦距cm f 40=,则中间明纹的宽度为 cm 。
6.用波长nm 580=λ的单色光垂直照射放置在空气中的薄玻璃板劈尖。
测得相邻暗条纹的间距为mm l 00.5=,则两玻璃板之间夹角为 rad 。
(玻璃的折射率50.1=n )。
7. 一平面简谐波,沿x 轴负方向传播.圆频率为ω,波速为u .设4/T t =时刻的波形如图所示,则该波的表达式为________________________。
8. C o20时直径为mm 00.2的水银液滴变形(C o 20时水银的表面张力系数为2470.0-⋅=mJ α), 使表面积增加了3倍,则需作功 J 。
9.dv v f N v v )(21⎰的物理意义是 。
(其中)(v f 是麦克斯韦速率分布函数)。
10.强度为o I 的自然光透过偏振化方向(或称偏振轴)互相垂直的两块偏振片。
现将第三块偏振片插入两偏振片之间, 并令其偏振化方向与第一块偏振片的偏振化方向夹角为o30。
则透射光的强度为 o I 。
11. 质量为g 20的物体沿x 轴做简谐振动,振幅m A 10.0=,周期s T 0.4=,0=t 时该物体位移m x o 050.0-=且朝x 轴负方向运动。
则初相为 ; 运动方程为 ; s t 0.1=时该物体位移为 m ; 此时物体所受力为 ; 0=t 之后,物体第一次到达m x 050.0=处所需时间为s ; 第二次和第一次经过m x 050.0=处的时间间隔为 s 。
大学物理II练习册答案

大学物理练习 十五一.选择题:1.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2 ,n 2>n 3,1λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的位相差为 [ C ](A) )/(2112λπn e n (B) πλπ+)/(4121n e n (C) πλπ+)/(4112n e n (D) )/(4112λπn e n解: n 1<n 2 ,n 2>n 3 有半波损失.2.在双缝干涉实验中,屏幕E 上的P 点处是明条纹。
若将缝S 2盖住,并在S 1S 2连线的垂直平分面处放一反射镜M ,如图所示,则此时 (A) P 点处仍为明条纹。
(B) P 点处为暗条纹。
(C) 不能确定P 点处是明条纹还是暗条纹。
(D) 无干涉条纹。
[B ]解: 反射镜M 有半波损失. (屏幕E 上的P 点处原是明条纹。
)3.如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢地向上移动时(只遮住S 2),屏C 上的干涉条纹 (A) 间隔变大,向下移动。
(B) 间隔变小,向上移动。
(C) 间隔不变,向下移动。
(D) 间隔不变,向上移动.。
[C ]解:当劈尖b 缓慢地向上移动时,改n 13λ1S屏λ4.如图,用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹 [B ](A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动. (E) 向左平移.解: 当平凸透镜垂直向上缓慢平移,薄膜厚增加. 环状干涉条纹向中心收缩.5. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ D ] (A) 2λ (B) ()n 2λ (C) n λ (D) )1(2-n λ解: λ=-=-=∆d n d nd )1(2226.如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
大物2练习册答案22页PPT

•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
大学物理2课后习题答案.docx

解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。
为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。
大学物理(二)答案

大学物理(二)练习册 参考解答第12章 真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ; (7). -2³103V ; (8).⎪⎪⎭⎫ ⎝⎛-πb a r r q q 11400ε(9). 0,pE sin α ; (10). ()()j y x i xy40122482+-+-- (SI) ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i R E +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i R E +π=034ελ由场强叠加原理,O 点合场强为: ()j i RE E E E +π=++=03214ελBA∞O BA∞∞2. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85³10-12 C 2²N -1²m -2)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E²S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴() E E h1201-=ερ=4.43³10-13C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理⎰⎰E²S d =∑i1qε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9³10-10C/m 33. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RRE y 000208d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E y x008ελ-=+=(2)2(1)4. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E它沿x 、y 轴上的二个分量为: d E x =-d E cos φ =φφεσd s co 220π-d E y =-d E sin φ =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =2εσ0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==5. 一半径为R 的带电球体,其电荷体密度分布为4πRqr =ρ (r ≤R ) (q 为一正的常量)ρ = 0 (r >R )试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r Rq V Q rV===⎰⎰34d /4d ρ(2) 在球内作一半径为r 1的高斯球面,按高斯定理有4041241211d 414Rqr r r Rqr E r r εε=π⋅π=π⎰得402114R qr E επ=(r 1≤R),1E方向沿半径向外.在球体外作半径为r 2的高斯球面,按高斯定理有 0222/4εq E r =π得22024r q E επ=(r 2 >R ),2E方向沿半径向外.(3) 球内电势⎰⎰∞⋅+⋅=RR r r E r E U d d 2111⎰⎰∞π+π=RRr r rq r Rqrd 4d 4204021εε40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R qε ()R r ≤1 球外电势 2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεk S b x d x kSSE E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ='圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR xE E E 220212+=+=εσ该点电势为 ()220222d 2xR R xR x x U x+-=+=⎰εσεσ8.一真空二极管,其主要构件是一个半径R 1=5³10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-= 得到()120/ln 2R R UUAB-=πελ, 所以 ()rR R UUE AB1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U e R eE F A B ⋅-===4.37³10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 241rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
《大学物理》习题册题目及答案第16单元 机械波

第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。
若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。
(B) 它的势能转换成动能。
(C) 它从相邻的一段质元获得能量其能量逐渐增大。
(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。
二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。
1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。
智慧树答案大学物理II知到课后答案章节测试2022年

第一章1.如图所示,两个同心均匀带电球面,内球面半径为R1、带电量Q1,外球面半径为R2,带电量Q2,则在外球面外面、距离球心为r处的P点的场强大小E为:()答案:2.如图所示,两个同心的均匀带电球面,内球面半径为R1,带电量Q1,外球面半径为R2,带电量Q2。
设无穷远处为电势零点,则在两个球面之间,距离球心为r处的P的点电势为:()答案:3.空间某区域静电场的电场线分布如图、所示,现将电量为-q的点电荷由a点经任意路径移到b点,则在下列说法中,正确的是()答案:电势能Wa<Wb,电场力作负功4.如图所示,A、B两点与O点分别相距5cm和20cm,场源电荷位于O点且Q=10-9C。
若选无限远处为电势零点,则B点的电势VB为()答案:45V5.在点电荷+q的电场中,若取图中P点处电势为零点,则M点的电势为()答案:6.边长为a的正六边形每个顶点处有一个点电荷,取无限远处作为参考点,则O点电势和场强为()答案:电势为零,场强为零7.两个均匀带电的同心球面,半径分别为R1、R2(R1<R2),小球带电Q,大球带电-Q,下列各图中哪一个正确表示了电场的分布:()答案:8.真空中静电场的高斯定理告诉我们答案:穿过高斯面的电场强度通量,仅与面内自然电荷有关9.静电场的环路定理表明静电场是:答案:保守场10.下列几个说法中哪一个是正确的答案:E=1/4πε0•Q/r2er适用于点电荷及非点电荷电场第二章1.如图所示,一个不带电的空腔导体球壳,内半径为R,在腔内离球心的距离为d处(d<R),固定一电量为+q的点电荷,用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O处的电势为:()答案:2.一导体外充满相对电容率为εr的均匀介质,若测得导体表面附近的电场强度为E,则导体表面上的自由电荷密度为σ为()答案:3.一片二氧化钛晶片(εr=173),其面积为1.0 cm2,厚度为0.10 mm。
把平行平板电容器的两极板紧贴在晶片两侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理练习 十六
一、选择题
1.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则
BC 的长度为 [
A ]
(A) λ (B)λ/2
(C) 3λ/2 (D) 2λ
解: P 是中央亮纹一侧第一个暗纹所在的位置,λθk a C B ==sin (k=1)
2.单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝
上,对应于衍射角为300的方向,单缝处波阵面可分成的半波带数目为 (A) 2个 (B) 4个 (C) 6个 (D) 8个 [
B ]
解: 0
304sin ===θλλθa k a 可得k=2, 可分成的半波带数目为4个. 3.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A ) 振动振幅之和。
(B )光强之和。
(B ) 振动振幅之和的平方。
(D )振动的相干叠加。
[
D ]
解: 所有面积元发出的子波各自传到P 点的振动的相干叠加.
4.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小。
若使单缝宽度a 变为原来的
2
3
,同时使入射的单色光的波长λ变为原来的3/4,则
屏幕C 上单缝衍射条纹中央明纹的宽度x ∆将变为原来的 (A) 3/4倍。
(B) 2/3倍。
(C) 9/8倍。
(D) 1/2倍。
(E )2倍。
[ D ]
解:a
f
x λ
2=∆
C
屏
f
D L
A
B
λ
5.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变宽,同时使单缝沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 [ C ]
(A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动;
(D) 变宽,同时向上移; (E) 变宽,不移动。
解:
↑a ↓
∆x
6.某元素的特征光谱中含有波长分别为λ1=450nm 和λ2=750nm (1nm=10-9m )的光谱线。
在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 [D ]
(A) 2,3,4,5……… (B) 2,5,8,11…….. (C) 2,4,6,8……… (D) 3,6,9,12……..
解:
2211sin λλθk k d ==
6,103
,52121====k k k k 当.....)3,2,1( 32==n n k
7.设星光的有效波长为55000
A ,用一台物镜直径为1.20m 的望远镜观察双星时,能分辨的双星的最小角间隔δθ是 [ D ]
(A) rad 3102.3-⨯ (B) rad 5104.5-⨯ (C) rad 5108.1-⨯ (D) rad 7106.5-⨯
解:
8.孔径相同的微波望远镜和光学望远镜相比较,前者的分辨本领较小的原因是 (A) 星体发出的微波能量比可见光能量小。
[D ]
(B) 微波更易被大气所吸收。
(C) 大气对微波的折射率较小。
(D) 微波波长比可见光波长大。
解:
分辨本领
9.X 射线射到晶体上,对于间隔为d 的平行点阵平面,能产生衍射主极大的最大波长为 [D ]
(A) d/4 (B) d/2 (C) d. (D) 2d.
解:
λθk d =sin 2
二、填空题:
1.在单缝夫琅和费衍射示意图中,所画出的各条正入射光线间距相等,那么光线1与3在屏幕上P 点相遇时的位相
差为 ,P 点应为 点(填“亮”或“暗”)。
解:
π4
(λ2=∆); 暗
(可分成的半波带数目为4个.)
2.若光栅的光栅常数d 、缝宽a 和入射光波长λ都保持不变,而使其缝数N 增加,则光栅光谱的同级光谱线将变得 。
解:
更窄更亮.
3.在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央 明条纹边缘对应的衍射角θ=______________________。
6
/π_
4.一束平行单色光垂直入射在光栅上,若光栅的透明缝宽度a 与不透明部分宽 度b 相等,则可能看到的衍射光谱的级次为 。
解:
,...5,3,1,0±±± (因为b a =)
5.汽车两盏前灯相距l ,与观察者相距S = 10 km .夜间人眼瞳孔直径d = 5.0 mm .人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射, 则人眼可分辨出汽车两前灯的最小间距l = __________________m .
解
: 最小间距 m s l 34.11034.110104
3=⨯⨯⨯==-θ
δ 三、计算题:
1.(1)在单缝夫琅和费衍射实验中,垂直入射的光有两种波长,0
14000A =λ,
27600A =λ。
已知单缝宽度为cm a 2100.1-⨯=,透镜焦距f=50cm 。
求两种光第一级衍射明纹中心之间的距离。
(2)若用光栅常数cm d 3100.1-⨯=的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离。
解: 1112
3
)12(21sin λλϕ=+=k a (2)111sin λλϕ==k d 222sin λλϕ==k d
2.波长0
6000A =λ的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为300,且第三级是缺级。
(1)光栅常数d 等于多少? (2)透光缝的宽度a 等于多少?
(3)在选定了上述d 和a 之后,求在屏幕上可能呈现的全部主极大的级次。
解:
(1)由光栅方程得:
(2
(3)由光栅方程知可能看到的最大级次为:
4max =≤
λ
d
k ;又由缺级条件知k=3,6,…缺级,
所以实际呈现2,1,0±±=k 级明纹
(4±=k
在2π
±处看不到)。
3.用波长为546.1 nm(1 nm =10-9 m)的平行单色光垂直照射在一透射光栅上,在分光计上测得第一级光谱线的衍射角为φ=30°.则该光栅每一毫米上有几条刻痕.
解: 由题目得第一级光谱线对应
30,1k θ==代入 光栅方程λθk d =sin ,得光栅常数
9
6
546.110 1.092210sin sin 301/2
k d m λλθ--⨯====⨯光栅每一毫米的刻痕数
4. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光()589nm =λ的光谱线。
(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少? (2)当光线以300的入射角(入射线与光栅平面的法线的夹角)斜入射到光
栅上时,能看到的光谱线的最高级数k’m 是多少?(1nm=10-9m)
解:
光栅常数:m cm cm d 6
41021025000
1--⨯=⨯== (1) 由λϕk d =sin 得: (2)由λϕθk d =+)sin (sin 得:。