2020八年级上册数学复习提纲
2019-2020学年上海八年级数学上册期末专题复习专题06 几何证明复习(考点讲解)(教师版)

专题06 几何证明【考点剖析】1.命题:判断一件事情的句子;正确的命题叫真命题;错误的命题叫假命题;一个命题是由题设和结论两部分组成.2.公理和定理:从长期的实践中总结出来的真命题叫公理;从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理.3.证明真命题的步骤:①根据题意作出图形,并在图形上标出必要的字母和符号;②根据题设和结论,结合图形写出已知和求证;③经过分析,找出由已知推出结论的途径,写出证明过程.4.平行线的判定与性质平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行;两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.平行线的性质:两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角相等。
5.全等三角形:全等三角形的判定:S.A.S; A.S.A; A.A.S; S.S.S;全等三角形的性质:全等三角形的对应角相等,对应边相等。
6.等腰三角形的判定与性质性质1:等腰三角形的两个底角相等;(简称:等边对等角)性质2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称:等腰三角形的三线合一)判定1:(定义法)有两条边相等的三角形;判定2:如果一个三角形有两个角相等,那么这个三角形是等腰三角形。
(简称:等角对等边)7.证明常见题型证明两直线平行、两直线垂直、两条线段相等、两个角相等、线段或角的和差倍半简单的问题;【典例分析】【考点】证明举例例1 (普陀2017期中5)下列命题中,真命题是()A.两条直线被第三条直线所截,同位角相等;B.两边及其中一边的对角对应相等的两个三角形全等;C.直角三角形的两个锐角互余;D.三角形的一个外角等于两个内角的和. 【答案】C【解析】A 、两条直线被第三条直线所载,同位角不一定相等,因为两直线不一定平行,故A 错;B 、边、边、角不一定能得到两个三角形全等,故B 错;C 、直角三角形的两个锐角互余,正确;D 、三角形的一个外角等于不它不相邻的两个内角和,故D 错。
冀教版八年级上册数学知识点总结(2020年10月整理).pdf

第十二章分式1.分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母对于任意一个分式,分母不能为零,分式有意义对于任意一个分式,分母为零,分式无意义4.分式的值为零含两层意思:分母不等于零;分子等于零。
5.平方差公式 a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积6.完全平方公式a²+2ab+b²= (a+b)²a²-2ab+b²=﹙a-b﹚²两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方7.常见的恒等变形如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3= -(y-x)3.8.约分:把一个分式中相同的因式约去的过程叫做约分9.最简分式:如果一个分式中没有可约的因式,则为最简分式10.通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分11.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.12分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式值不变。
通分的关键:确定几个分式的最简公分母。
通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求最简公分母时,首先要因式分解,将所有的表达式都化成积的形式,然后,再定最简公分母.解分式方程的一般步骤:(1)去分母,方程两边同乘各分母的最简公分母,将分式方程转化为整式方程;( 2)解整式方程;(3)验根:可把整式方程的根分别代入最简公分母,如果使最简公分母为0,那么这个根叫分式方程的增根,必须舍去;如果使最简公分母不为0,那么这个根是原分式方程的根;(4)写出方程的解.15、用分式方程解应用题常见的等量关系一.工程问题1.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率设工作总量为“1”的公式: 1÷单独完成的工作时间=工作效率; 1÷工作效率=单独完成的工作时间。
2020年八年级数学上册第十三章13.4 课题学习 最短路径问题

16
2
详细答案 点击题序
3
详细答案 点击题序
1.如图,∠AOB=30°,点 M、N 分别是射线 OA、 OB 上的动点,OP 在∠AOB 内,且 OP=6,则△ PMN 周长的最小值为 6 .
2.尺规作图(保留作图痕迹):如图,已知直线 l 及 其两侧两点 A、B.
(1)在直线 l 上求一点 Q,使到 A、B 两点距离之和 最短;
(2)在直线 l 上求一点 P,使 PA=PB. 解:(1)如图,连接 AB 与直线 l 的交点 Q 即为所求. (2)作线段 AB 的垂直平分线 MN,直线 MN 与直线 l 的 交点 P 即为所求.
3.(1)如图①,在直线 AB 一侧有 C、D 两点,在 AB 上找一点 P,使 C、D、P 三点组成的三角形的周长 最短; 解:如图所示.
(1)若要使自来水厂到A,B两村的 距离相等,则应选择在哪建厂(要 求:尺规作图,保留作图痕迹, 不必写文字说明)?
分析:(1)欲求到A、B两村的距离相等的厂址,即 作出线段AB的垂直平分线与EF的交点即可; 解:(1)如图,点M即为所求.
(2)若要使自来水厂到A,B两村的距离之和最短, 应建在什么地方? 分析:(2)作出A点关于直线EF的对称点A′,再连 接A′B,找到A′B与EF的交点即可. (2)如图,点N即为所求.
(2)如图②,在∠AOB 内部有一点 P,在 OA、OB 上 分别存在点 E、F,使得 E、F、P 三点组成的三角 形的周长最短,请找出 E、F 两点. 解:如图所示.
知识要点 最短路径问题
定义
关于“两点的所有连线中, 线段 最短
”“连接直线外一点与直线上各点的所 有线段中, 垂线段最短”等的问题,
2020年八年级数学上册第十二章第十二章 小结与复习

6.如图,在平面直角坐标系中,B(0,3),A(4,1),
点 C 是第一象限内的点,且△ABC 是以 AB 为直角 边的等腰直角三角形,则点 C 的坐标为 (6,5)或
(2,7) .
解析:当∠ABC=90°,AB=BC 时,过点 C 作 CD ⊥y 轴于点 D,过点 A 作 AE⊥y 轴于点 E,如图① 所示.∴∠CDB=∠AEB=90°.∵∠EAB+∠ABE =90°,∠ABE+∠CBD=90°,∴∠EAB=∠CBD. 在△AEB 和△BDC 中, ∠AEB ∠BDC, ∠EAB ∠CBD, AB BC,
快速对答案
1A 2C 3D 4②
7
详细答案 点击题序
8
详细答案 点击题序
9
详细答案 点击题序
10 C
5 70°
11 8
详细答案
6 (6,5)或(2,7) 12 点击题序
提示:点击 进入习题
13
详细答案 点击题序
1.(2019-2020·江汉区期中)已知图中两个三角形全 等,则∠1 等于( A ) A.40° B.50° C.60° D.80°
∴∠ACE=∠BCD.
在△ACE 与△BCD 中, AC BC, ∠ACE ∠BCD, CE CD, ∴△ACE≌△BCD(SAS).
∴AE=BD.
(2)如图②,若 AC=DC,在不添加任何辅助线的情 况下,请直接写出图②中四对全等的直角三角形. (2)解:△ABC≌△DEC,△EMC≌△BNC, △DOM≌△AON,△DOE≌△AOB.
BD CE, ∴△BDO≌△CEO(AAS). ∴OB=OC.
8.(2019·镇江中考改编)如图,四边形 ABCD 中,AD ∥BC,点 E、F 分别在 AD、BC 上,AE=CF,过点 A、C 分别作 EF 的垂线,垂足分别为 G、H. (1)求证:△AGE≌△CHF; (1)证明:∵AG⊥EF,CH⊥EF, ∴∠G=∠H=90°. ∵AD∥BC, ∴∠DEF=∠BFE.
2019-2020人教版八年级数学上册第十二章全等三角形章末复习课件共58张

章末复习
相关题1 如图12-Z-11所示的4×4正方形网格中,∠1+∠2+ ∠3+∠4+∠5+∠6+∠7=__3_15_°.
章末复习
解析 由题图得∠1+∠7=90°,∠2+∠6=90°,∠3+∠5=90°, ∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+ 90°+45°=315°.
章末复习
相关题3-2 如图12-Z-9所示, 已知∠1=∠2, 请你添加一个条件, 证明AB=AC. (1)你添加的条件是________________; (2)请写出证明过程.
章末复习
解:(1)由 AD=AD,∠1=∠2 这两个已知条件,根据 “AAS”
或“ASA”写出第三个条件即可.添加的条件是∠B=∠C 或∠ADB
章末复习
解:答案不唯一,如以①②为题设,④为结论,可写出一个 真命题如下:
已知:如题图,在△ACD 和△ABE 中,点 D 在 AB 上,点 E 在
AC 上,AE=AD,AB=AC. 求证:∠B=∠C.
证明如下:在△ACD 与△ABE 中,
AC=AB,
∠A=∠A, AD=AE,
∴△ACD≌△ABE(SAS),∴∠B=∠C.
全等三角 形的性质
应用
角的平 分线
全等三角形
章末复习
全等三 角形
角的平 分线
全等三角形
边边边(SSS)
一般三 角形
直角三 角形
性质
边角边(SAS) 角边角(ASA) 角角边(AAS)
角的平分线上 的点到角的两 边的距离相等
SSS, SAS, ASA, AAS
HL(只适用于判定两 个直角三角形全等)
章末复习
2020八年级数学上册 第12章 全等三角形复习课教案 (新版)新人教版

习
目
标
知
识
与
技
能
1.进一步了解全等三角形的概念,会在复杂图形中辨别全等三角形的对应边。进一步归纳全等三角形的性质、判定、角平分线的性质和判定,熟练地运用性质和判定进行证明和计算。会做适当的辅助线进行证明。
2.让学生明确本章的知识结构;
3.进一步探究全等三角形的应用.
过程与方法
经过自学、交流和教师指导让学生明晰本章的知识结构;通过基础训练、概念辨析方式进行查缺补漏;通过变式开放、灵活运用的活动对本章拓展延伸。
知
识
分
析
本节课是全等三角形的全章复习课,首先帮助 学生理清全等三角形全章知识脉络,进一步了全等三角形的概念,理解性质、判定和运算;其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸训练,提高学生综合运用全等三角形解决问题的能力,在加强练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯。
∴点Q在∠AOB的平分线上
(4与5的图如下)
(2)本章知识结构图可以绘成:
【教师活动】
1、板书课题
2、出示自学内容要 求
3、指导学生反思回顾,完成学案。
4、组织交流,总结要点
5、板 书教师总结知识结构图
【学生活动】
1、自学,完成学案 。
2、绘制出自己总结的知识结构图
3、交流展示自己总结的知识结构图
4、完成只 是梳理
学
情
分
析
在知识上,学生经历全等三角形全章的学习,对全等三角形和角平分线的概念、性质、判定以及应用基本掌握,但仍然显得零散,缺乏整体认识,还没有形成较为完整的全等三角形认知体系,特别是对全等三角形和角平分线的性质、判定还没有进行系统的总结归纳,对全等三角形是学习初中几何的基础和工具的认识不够,综合运用的能力不强,对各部分知识之间的联系认识不足,对用全等三角形知识解决生活中的实际问题还不熟练。对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高。
2020年秋人教版八年级数学上册期末复习专题《三角形》(含答案)
期末专题《三角形》一、选择题1.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10B.8C.6D.42.如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?()A.16B.24C.36D.543.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A,B1,C1,使A1B=AB,B1C=BC,1C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,那么△A2B2C2的面积是()A.7B.14C.49D.504.已知a,b,c是△ABC的三条边,对应高分别为h,h b,h c,且a:b:c=4:5:6,则么h a:h b:h c等于a()A.4:5:6B.6:5:4C.15:12:10D.10:12:155.如图,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,则△ABC的面积为()A.300B.315C.279D.3426.已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为( ).A. 2B. 3C. 5D. 13二、填空题7.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是8.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF= .9.如图,A,B,C分别是线段AB,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积1_______.10.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S,△CEF1的面积为S2,若S△ABC=6,则S1-S2的值为.三、解答题11.已知等腰三角形一腰上的中线把这个三角形的周长分成 9cm和 15cm两部分,求这个三角形的腰长。
考点 等腰旋转模型-2020-2021学年八年级数学上册期末考点专项复习之全等三角形辅助线解题方法
(1)①∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE,
②∵△ABD≌△ACE,
∴∠ABD=∠ACE,BD=CE,
∴∠ABD+∠ACB=∠ACE+∠ACB=∠DCE=90°,
;
(2)过点A作AF⊥DE于点F.
∵AD=AE,
∴点F是DE的中点,
∵∠DAE=90°,
(2)取BE中点N,连MN,将△CDE绕点C旋转,直接写出旋转过程中线段MN的取值范围是_____.
参考答案
1.
【详解】
(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°﹣2×50°=80°,
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,
(3)如图3,若点D在BC的延长线上,以AD为边作等腰Rt△ADE,∠DAE=90°,连结BE,若BE=10,BC=6,则AE的长为______.
3.在 中, , 是直线 上一点(不与点 、 重合),以 为一边在 的右侧作 , , ,连接 .
(1)如图,当 在线段 上时,求证: .
(2)如图,若点 在线段 的延长线上, , .则 、 之间有怎样的数量关系?写出你的理由.
(1)求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;
(3)拓展提升:如图3,∠E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.
2020-2021年八年级数学上册单元复习一遍过:第三章 分式【知识梳理】(青岛版)
初中上册单元复习一遍过Unit 1 of junior high school精品资源·备战中考第三章《分式》(知识梳理)【思维导图】【知识清单】知识点一:分式的概念一般地,如果,表示两个整式,并且中含有字母,那么式子叫作分式.分式会中叫作A B B A B ABA 分子,叫作分母.B 注意:(1)判断一个式子是否为分式,关键是看分母中是否有字母.(2)分式与整式的根本区别:分式的分母中含有字母,如,是整式,而是分式.122x 2x(3)分式有无意义的条件:①若,则分式有意义;②若,则分式无意义.0B ≠A B 0B =AB (4)分式的值为零的条件:若,则分式的值为零,反之也成立.{0A B =≠A B知识点二:分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示是:,,其中,,是整式.A A MB B M ⋅=⋅()0A A M M B B M÷=≠÷A B M 注意:(1)分式的基本性质可类比分数的基本性质去理解记忆.利用分式的基本性质,可以在不改变分式的值的条件下,对分式作一系列的变形.(2)当分式的分子(或分母)是多项式,运用分式的基本性质时,要先把分式的分子(或分母)用括号括上.再将分子与分母同乘(或除以)相同的整式.知识点三:约分、最简分式及通分的概念1.约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫作分式的约分.说明:约分的关键是准确找出分子与分母的公因式,找公因式的方法:(1)当分子和分母都是单项式时,先找出它们系数的最大公约数,再确定相同字母的最低次幂,它们的乘积就是分子与分母的公因式.(2)当分子、分母是多项式时,先将分子、分母因式分解,把分子、分母化为几个因式的积后,再找出分子、分母的公因式.约分应注意一定要把公因式约尽,还应注意分子、分母的整体都要除以同一个公因式.当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.例如是错误的.2233a x ab x b+=+2.最简分式:分子与分母没有公因式的分式叫作最简分式.判断一个分式是否为最简分式,关键是确定其分子与分母是否有公因式(1除外).分式的约分,一般要约去分子和分母的所有公因式,使所得结果成为最简分式或整式.注意:(1)最简分式与小学学过的最简分数类似.(2)最简分式是对一个独立的分式而言的,最大的特点是只有一条分数线.形如,322x y++的分式都不是最简分式.233ax y++3.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.通分的关键是确定几个分式的最简公分母.4.最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母.注意:确定最简公分母的一般方法:(1)如果各分母都是单项式,确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母,连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的.这样得到的积就是最简公分母.(2)如果各分母都是多项式,就要把它们分解因式,再按照分母是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去求.知识点四:分式的乘除法分式的乘除法与分数的乘除法类似,法则如下:1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示是:.a c a c b d b d⋅⋅=⋅2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示是:.a c a d a d b d b c b c⋅÷=⋅=⋅3.分式的乘方:分式乘方要把分子、分母分别乘方,用式子表示是:(是正整数).nn n a a b b ⎛⎫= ⎪⎝⎭n 注意:(1)法则中的字母,,,所代表的可以是单项式,也可以是多项式.a b c d (2)运算的结果必须是最简分式或整式.知识点五:分式的加减法1.同分母分式加减法的法则与同分母的分数加减法类似,同分母分式相加减,分母不变,把分子相加减.用式子表示是:.a b a bc c c±±=注意:(1)“同分母分式相加减”是把各个分式的“分子的整体”相加减,即当分子是多项式时,应将各分子加括号,括号不能省略,(2)运算结果必须化为最简分式或整式.2.异分母分式加减法的法则与异分母的分数加减法类似,异分母分式相加减,先通分,变为同分母的分式,再加减.用式子表示是:.a c ad bc ad bcb d bd bd bd±±=±=知识点六:分式的混合运算分式的混合运算的顺序是:先乘方,再乘除,最后算加减;遇到括号,先算括号内的;在同级运算中,从左向右依次进行.注意:(1)实数的运算律对分式同样适用,注意灵活运用,提高解题的质量和速度.(2)结果必须化为最简分式或整式.(3)分子或分母的系数是负数时,要把“-”提到分数线的前边.(4)对于分式的乘除混合运算,应先将除法运算转化为乘法运算,分子、分母是多项式时,可先将分子、分母分解因式,再相乘.知识点七:比和比例1、比:选用同一长度单位量得两条线段。
2019-2020学年八年级数学上册《第四章》知识点总结 北师大版
2019-2020学年八年级数学上册《第四章》知识点总结 北师大版一、四边形的相关概念1、四边形:在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n 边形的内角和等于∙-)2(n 180°;多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n ,则多边形的对角线共有2)3(-n n 条。
从n 边形的一个顶点出发能引(n-3)条对角线,将n 边形分成(n-2)个三角形。
二、平行四边形1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S 平行四边形=底边长×高=ah三、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020八年级上册数学复习提纲
第一章勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系实行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。
满足的三个正整数称为勾股数。
第二章实数
1.平方根和算术平方根的概念及其性质:
(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当<0时,无意义;② =;
③ 。
2.立方根的概念及其性质:
(1)概念:若,那么是的立方根,记作:;
(2)性质:① ;② ;③ =
3.实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数相关的概念:在实数范围内,相反数,倒数,绝对值
的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运
算法则和运算律同样成立。
每一个实数都能够用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的
点是一一对应的。
所以,数轴正好能够被实数填满。
5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。
第三章图形的平移与旋转
1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这
样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的
位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个
角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角
称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过
旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋
转中心的距离相等。