大学物理教案
大学物理全部教案

教学目标:1. 理解并掌握物理学的基本概念、原理和定律;2. 培养学生运用物理知识解决实际问题的能力;3. 培养学生的实验操作技能和科学探究精神。
教学对象:大学一年级物理课程学生教学课时:16课时教学安排:第一课时:绪论1. 介绍物理学的发展历程及其在现代社会中的应用;2. 阐述物理学的基本概念、原理和定律;3. 引导学生了解物理学的研究方法。
第二课时:运动学1. 介绍运动学的基本概念,如位移、速度、加速度等;2. 讲解匀速直线运动、匀变速直线运动的规律;3. 引导学生掌握运动学公式及其应用。
第三课时:动力学1. 介绍牛顿运动定律及其应用;2. 讲解牛顿运动定律的适用条件和局限性;3. 引导学生运用牛顿运动定律解决实际问题。
第四课时:能量守恒定律1. 介绍能量守恒定律的基本概念;2. 讲解能量守恒定律的应用;3. 引导学生运用能量守恒定律解决实际问题。
第五课时:热力学1. 介绍热力学的基本概念,如温度、热力学第一定律等;2. 讲解热力学第一定律的应用;3. 引导学生运用热力学第一定律解决实际问题。
第六课时:波动光学1. 介绍波动光学的基本概念,如光的干涉、衍射等;2. 讲解波动光学的基本原理;3. 引导学生运用波动光学解决实际问题。
第七课时:电磁学1. 介绍电磁学的基本概念,如电荷、电场、磁场等;2. 讲解电磁场的基本原理;3. 引导学生运用电磁学解决实际问题。
第八课时:量子力学1. 介绍量子力学的基本概念,如波粒二象性、不确定性原理等;2. 讲解量子力学的基本原理;3. 引导学生运用量子力学解决实际问题。
第九课时:相对论1. 介绍相对论的基本概念,如狭义相对论、广义相对论等;2. 讲解相对论的基本原理;3. 引导学生运用相对论解决实际问题。
第十课时:现代物理1. 介绍现代物理的基本概念,如量子场论、宇宙学等;2. 讲解现代物理的基本原理;3. 引导学生了解现代物理的发展趋势。
第十一课时:物理实验1. 介绍物理实验的基本原理和方法;2. 讲解实验数据的处理和分析方法;3. 引导学生进行物理实验,培养实验操作技能。
大学物理教案_普通物理学

教学目标:1. 理解波动光学的基本原理,包括光的干涉、衍射和偏振等现象。
2. 掌握使用双缝干涉实验验证光的波动性。
3. 学会使用偏振片测量光的偏振状态。
4. 培养学生实验操作能力、数据分析能力和科学探究精神。
教学重点:1. 双缝干涉实验原理及现象。
2. 偏振实验原理及测量方法。
教学难点:1. 实验误差的来源及减小方法。
2. 实验数据的处理和分析。
教学准备:1. 实验器材:双缝干涉装置、光源、屏幕、偏振片、测量工具等。
2. 教学课件:波动光学基本原理介绍。
3. 教学视频:双缝干涉实验操作演示。
教学过程:一、新课导入1. 通过展示自然界中光的干涉现象(如肥皂泡、油膜等),激发学生学习兴趣。
2. 提问:为什么会产生这些现象?它们与光的波动性有何关系?二、基本原理讲解1. 讲解光的干涉、衍射和偏振等现象的基本原理。
2. 介绍双缝干涉实验和偏振实验的原理。
三、实验操作演示1. 演示双缝干涉实验的操作步骤,包括光源调整、双缝间距测量、屏幕调整等。
2. 演示偏振实验的操作步骤,包括偏振片调整、光强测量等。
四、学生实验1. 学生分组进行双缝干涉实验,观察干涉条纹,测量双缝间距和条纹间距。
2. 学生分组进行偏振实验,观察偏振现象,测量光强变化。
五、数据处理与分析1. 学生对实验数据进行记录和整理。
2. 指导学生使用相关公式计算实验结果,分析误差来源。
六、总结与反思1. 学生总结实验过程中的收获和不足。
2. 教师点评实验结果,指出学生的优点和需要改进的地方。
教学评价:1. 实验操作是否规范。
2. 实验数据记录是否准确。
3. 实验结果分析是否合理。
4. 学生对波动光学原理的理解程度。
教学延伸:1. 介绍波动光学的应用领域,如光学仪器、光纤通信等。
2. 讨论波动光学与量子力学的关系。
字数:530字。
大学物理_教案_静电场

课时:2课时教学目标:1. 让学生理解静电场的基本概念,掌握静电场的基本性质。
2. 使学生熟练运用库仑定律、电场叠加原理等基本公式,解决静电场中的实际问题。
3. 培养学生的逻辑思维能力和实验操作能力。
教学重点:1. 静电场的基本概念和性质。
2. 库仑定律、电场叠加原理的应用。
教学难点:1. 静电场中电势的计算。
2. 静电场中的电势能和能量守恒。
教学过程:一、导入新课1. 复习静电荷、电场、电势等基本概念。
2. 引出静电场的基本性质:静电场是保守场,有源场,无旋场。
二、讲授新课1. 静电场的基本概念:静电场是指电荷在静止时所激发的电场。
静电场具有以下基本性质:(1)静电场是保守场:静电场力做功只与始末位置有关,与路径无关。
(2)静电场是有源场:静电场的电场线起于正电荷或无穷远,止于负电荷或无穷远。
(3)静电场是无旋场:静电场中沿任意闭合路径移动电荷,电场力所做的功都为零。
2. 库仑定律:描述两个点电荷之间的相互作用力。
公式为:F = k q1 q2 / r^2,其中,F为作用力,k为静电力常量,q1、q2为两点电荷的电荷量,r为两点电荷中心点连线的距离。
3. 电场叠加原理:多个电荷产生的电场,可以看作是各个电荷单独产生的电场的矢量和。
4. 静电场中的电势:电势是描述电场中某一点的电势能的物理量。
电势的计算公式为:V = W / q,其中,V为电势,W为电场力所做的功,q为电荷量。
5. 静电场中的电势能和能量守恒:静电场中的电势能等于电荷在电场中所具有的势能。
静电场中的能量守恒定律:静电场中的总能量等于静电场中的电势能。
三、课堂练习1. 计算两个点电荷之间的作用力。
2. 求解静电场中的电势。
3. 分析静电场中的电势能和能量守恒。
四、课堂小结1. 回顾静电场的基本概念和性质。
2. 强调库仑定律、电场叠加原理的应用。
3. 总结静电场中的电势能和能量守恒。
五、作业布置1. 复习本节课所学内容,完成课后习题。
大学物理第1课教案及反思

一、教学目标1. 让学生了解大学物理学科的基本概念和研究对象。
2. 培养学生对物理学的兴趣,激发学生的学习热情。
3. 培养学生的科学素养,提高学生的逻辑思维能力。
二、教学重点与难点1. 教学重点:物理学的基本概念、研究对象和研究方法。
2. 教学难点:物理学在各个领域的应用,以及如何将物理知识应用于实际问题。
三、教学过程1. 导入新课通过展示一些有趣的物理现象,如彩虹、磁悬浮等,激发学生的学习兴趣,引出大学物理这门课程。
2. 教学内容(1)物理学的基本概念:运动、力、能量、场等。
(2)物理学的研究对象:自然界和人类社会的各种物理现象。
(3)物理学的研究方法:观察、实验、理论推导等。
3. 课堂活动(1)分组讨论:让学生根据所学内容,分组讨论物理学在各个领域的应用。
(2)案例分析:结合实际案例,引导学生分析物理学的应用。
4. 课堂小结回顾本节课所学内容,强调物理学的基本概念和研究方法。
5. 布置作业(1)预习下一节课内容,了解物理学的发展历程。
(2)收集一些物理学在各个领域的应用案例,下节课分享。
四、教学反思1. 教学效果通过本节课的教学,大部分学生对大学物理学科有了初步的认识,对物理学产生了浓厚的兴趣。
课堂气氛活跃,学生积极参与讨论。
2. 教学方法本节课采用了导入新课、教学内容、课堂活动、课堂小结和布置作业等环节,使得教学过程较为完整。
在课堂活动中,分组讨论和案例分析环节有助于提高学生的思维能力和团队协作能力。
3. 教学不足(1)部分学生对物理学的基本概念理解不够深入,需要加强基础知识的教学。
(2)课堂时间有限,未能充分展示物理学在各个领域的应用,今后需适当调整教学内容。
4. 改进措施(1)针对学生对基本概念理解不够深入的问题,加强基础知识的教学,通过课堂讲解、习题练习等方式帮助学生巩固知识。
(2)适当调整教学内容,增加物理学在各个领域的应用案例,提高学生对物理学的兴趣和认识。
(3)关注学生的学习反馈,及时调整教学方法和策略,以提高教学质量。
大学物理_教案

教案标题:大学物理导论教学目标:1. 了解大学物理的基本概念、学科范畴和研究方法。
2. 掌握物理学的基本分支和重要研究领域。
3. 理解物理学的应用价值和它在现代科技发展中的地位。
教学内容:1. 大学物理的概念与学科范畴2. 物理学的基本分支3. 物理学的研究方法4. 物理学的应用价值与现代科技发展教学准备:1. 教材或教学资源:《大学物理导论》等相关教材或教学资源。
2. 教学设施:投影仪、白板、粉笔等。
教学过程:一、导入(5分钟)1. 引导学生思考:什么是物理?物理学研究什么?2. 学生分享自己的理解和观点。
二、大学物理的概念与学科范畴(15分钟)1. 介绍大学物理的基本概念:物理量的定义、单位制等。
2. 讲解大学物理的学科范畴:经典物理和现代物理。
3. 讨论物理学与其他学科的关系。
三、物理学的基本分支(20分钟)1. 力学:牛顿定律、动量守恒、能量守恒等。
2. 热学:热力学定律、热传导、热能转换等。
3. 电磁学:库仑定律、法拉第电磁感应定律、麦克斯韦方程组等。
4. 光学:光的传播、折射、干涉、衍射等。
5. 原子物理学:原子的结构、能级、光谱等。
6. 量子力学:波粒二象性、不确定性原理、薛定谔方程等。
7. 凝聚态物理学:晶体结构、半导体、超导体等。
四、物理学的研究方法(15分钟)1. 实验方法:实验设计、数据采集、误差分析等。
2. 理论方法:数学模型、物理定律、计算方法等。
3. 科学思维方法:逻辑推理、批判性思维、创新意识等。
五、物理学的应用价值与现代科技发展(15分钟)1. 讨论物理学在现代科技中的应用:电子技术、能源技术、航空航天等。
2. 分析物理学在解决实际问题中的作用:环境保护、疾病诊断、灾害预测等。
3. 探讨物理学在未来的发展趋势和挑战。
六、总结与反思(5分钟)1. 学生总结本节课的收获和认识。
2. 教师强调物理学的重要性和学习方法。
教学评价:1. 课堂参与度:学生发言、提问等。
2. 作业完成情况:课后练习、思考题等。
大学物理全套教案人教版

一、课程概述本课程为大学物理全套课程,主要内容包括力学、热学、波动光学、电磁学、量子力学等。
通过本课程的学习,使学生掌握物理学的基本理论、方法和实验技能,提高学生的科学素养和创新能力。
二、教学目标1. 知识目标:(1)掌握力学、热学、波动光学、电磁学、量子力学的基本理论;(2)了解物理学的发展历程和前沿领域;(3)熟悉物理学的基本实验方法和技能。
2. 能力目标:(1)培养学生运用物理知识分析和解决实际问题的能力;(2)提高学生的科学思维和创新能力;(3)培养学生的团队协作和交流能力。
3. 素质目标:(1)培养学生严谨求实、勇于探索的科学精神;(2)提高学生的社会责任感和人文素养;(3)培养学生的综合素质,为未来的发展奠定基础。
三、教学内容1. 力学(1)牛顿运动定律(2)功和能(3)动量守恒定律(4)角动量守恒定律(5)刚体转动(6)流体力学2. 热学(1)热力学第一定律(2)热力学第二定律(3)热力学势(4)理想气体状态方程(5)热力学过程(6)热力学平衡3. 波动光学(1)光的干涉(2)光的衍射(3)光的偏振(4)光的全反射(5)光的折射(6)光学仪器4. 电磁学(1)库仑定律(2)电场和电势(3)磁场和磁感应强度(4)电磁感应(5)麦克斯韦方程组(6)电磁波5. 量子力学(1)量子力学的基本原理(2)薛定谔方程(3)氢原子能级(4)多电子原子(5)量子力学在固体物理中的应用(6)量子力学在核物理中的应用四、教学方法1. 讲授法:系统讲解物理学的基本理论、方法和实验技能。
2. 讨论法:引导学生积极参与课堂讨论,提高学生的思维能力和创新能力。
3. 案例分析法:通过分析实际问题,使学生更好地理解物理学的应用。
4. 实验法:培养学生的实验操作技能和科学探究能力。
五、教学评价1. 课堂表现:考察学生的出勤、课堂参与度和学习态度。
2. 作业与练习:检查学生对课程内容的掌握程度。
3. 期中、期末考试:综合评价学生对物理学的理解和应用能力。
大学物理教案

教案标题:大学物理导论教学目标:1. 了解大学物理的基本概念、研究领域和应用范围;2. 掌握物理学的基本原理和方法;3. 培养学生的科学思维和创新能力。
教学内容:1. 大学物理的基本概念;2. 物理学的基本原理;3. 物理学的研究领域;4. 物理学在实际应用中的例子;5. 科学方法在物理学中的应用。
教学过程:一、引入(10分钟)1. 通过简单的日常生活中的例子,引出物理学的概念,如力、能量、速度等;2. 提问学生对物理学的了解和认识,激发学生的兴趣和好奇心。
二、大学物理的基本概念(20分钟)1. 介绍大学物理的基本概念,如质量、长度、时间、温度等;2. 讲解物理学的基本单位,如国际单位制(SI)等;3. 强调物理学的基本原理,如牛顿三定律、能量守恒定律等。
三、物理学的基本原理(20分钟)1. 讲解物理学的基本原理,如牛顿三定律、动量守恒定律、能量守恒定律等;2. 通过示例和问题,引导学生理解和掌握这些原理;3. 强调科学方法在物理学中的应用,如实验、观察、推理等。
四、物理学的研究领域(20分钟)1. 介绍物理学的研究领域,如力学、热学、电磁学、光学、量子力学等;2. 讲解各个领域的研究内容和重要发现;3. 引导学生了解物理学的前沿问题和挑战。
五、物理学在实际应用中的例子(20分钟)1. 通过具体的例子,讲解物理学在日常生活和技术中的应用,如手机、空调、电动机等;2. 引导学生认识到物理学对现代社会的重要性;3. 激发学生对物理学的兴趣和热情。
六、总结和展望(10分钟)1. 总结本节课的重点内容,强调学生需要掌握的基本概念和原理;2. 展望物理学的发展前景,鼓励学生积极学习和探索;3. 回答学生的疑问和反馈。
教学评价:1. 课堂讲解的清晰度和连贯性;2. 学生的参与度和积极性;3. 学生对基本概念和原理的理解和掌握程度;4. 学生对物理学应用的认识和兴趣。
教学资源:1. 教学PPT或黑板;2. 教材或参考书籍;3. 日常生活中的例子和实例;4. 网络资源和相关视频。
大学物理word教案

课程名称:大学物理授课对象:大学本科生课时安排:2课时教学目标:1. 理解并掌握牛顿运动定律的基本内容,能够运用牛顿运动定律解决简单的力学问题。
2. 了解功和能的概念,掌握动能定理和机械能守恒定律,能够运用这些定理解决实际问题。
3. 理解并掌握力的分解和合成方法,能够解决涉及多力平衡的问题。
4. 培养学生的逻辑思维能力、分析问题和解决问题的能力。
教学内容:一、牛顿运动定律1. 牛顿第一定律:惯性定律2. 牛顿第二定律:加速度定律3. 牛顿第三定律:作用与反作用定律二、功和能1. 功的定义和计算2. 能的定义和分类3. 动能定理4. 机械能守恒定律三、力的分解和合成1. 力的分解方法2. 力的合成方法3. 多力平衡问题教学过程:第一课时一、导入1. 回顾初中物理中关于力的基本概念。
2. 引入牛顿运动定律,提出本节课的学习目标。
二、新课讲解1. 牛顿第一定律:讲解惯性定律,通过实验和实例让学生理解惯性的概念。
2. 牛顿第二定律:讲解加速度定律,通过公式推导和实例讲解加速度与力、质量的关系。
3. 牛顿第三定律:讲解作用与反作用定律,通过实例让学生理解作用力与反作用力的关系。
三、课堂练习1. 给出几个简单的力学问题,让学生运用牛顿运动定律进行解答。
2. 通过小组讨论,培养学生的合作意识和解决问题的能力。
第二课时一、复习1. 回顾上一节课的内容,提问学生牛顿运动定律的基本概念。
2. 提醒学生注意牛顿运动定律在实际问题中的应用。
二、新课讲解1. 功和能:讲解功的定义和计算,通过实例讲解功与能量的关系。
2. 动能定理:讲解动能定理,通过公式推导和实例讲解动能定理的应用。
3. 机械能守恒定律:讲解机械能守恒定律,通过实例讲解机械能守恒定律的应用。
三、力的分解和合成1. 力的分解方法:讲解力的分解方法,通过实例讲解如何将一个力分解为两个分力。
2. 力的合成方法:讲解力的合成方法,通过实例讲解如何将两个分力合成为一个力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章质点运动学物理学是研究物质最普遍、最基本的运动形式的基本规律的一门学科,这些运动形式包括机械运动、分子热运动、电磁运动、原子和原子核运动以及其它微观粒子运动等。
机械运动是这些运动中最简单、最常见的运动形式,其基本形式有平动和转动。
在平动过程中,若物体内各点的位置没有相对变化,那么各点所移动的路径完全相同,可用物体上任一点的运动来代表整个物体的运动,从而可研究物体的位置随时间而改变的情况。
在力学中,这部分内容称为质点运动学。
1.1参考系时间和空间的测量1.参考系坐标系一、参考系在自然界中所有的物体都在不停地运动,绝对静止不动的物体是没有的。
在观察一个物体的位置及位置的变化时,总要选取其他物体作为标准,选取的标准物不同,对物体运动情况的描述也就不同,这就是运动描述的相对性。
为描述物体的运动而选的标准物叫做参考系。
不同的参考系对同一物体运动情况的描述是不同的。
因此,在讲述物体的运动情况时,必须指明是对什么参考系而言的。
参考系的选择是任意的。
在讨论地面上物体的运动时,通常选地球作为参考系。
二、坐标系:建立在参照系上的计算系统确定好参照系后,只能定性地描述物体的运动情况,为了定量地描述运动规律,即为了能给出物体运动的数学表达式,则需在参照系中建立坐标系。
常用的坐标系是直角坐标系,另外还有极坐标系、球面坐标系和柱面坐标系。
1.1.2时间和空间1、时间:时间反映物理事件的先后顺序和持续性。
2、空间反映物体位置的变化和物体的大小。
1.1.3长度的测量质点运动的矢量描述1.2.1质点物体都有大小和形状,运动方式又都各不相同。
例如,太阳系中,行星除绕自身的轴线自转外, 还绕太阳公转;从枪口射出的子弹,它在空中向前飞行的同时,还绕自身的轴转动;有些双原子分子,除了分子的平动、转动外,分子内各个原子还在振动。
这些事实都说明,物体的运动情况是十分复杂的。
物体的大小、形状、质量也都是千差万别的。
如果我们研究某一物体的运动,可以忽略其大小和形状,或者可以只考虑其平动,那么, 我们就可把物体当作是一个有一定质量的点,这样的点通常叫做质点。
质点是经过科学抽象而形成的物理模型。
把物体当作质点是有条件的、相对的,而不是无条件的、绝对的,因而对具体情况要作具体分析。
例如研究地球绕太阳公转时,由于地球至太阳的平均距离约为地球半径的 104 倍, 故地球上各点相对于太阳的运动可以看作是相同的,所以在研究地球公转时可以把地球当作质点。
但是,在研究地球上物体的运动情况时,就不能再把地球当作质点处理了。
应当指出, 把物体视为质点这种抽象的研究方法,在实践上和理论上都有重要意义的。
当我们所研究的运动物体不能视为质点时,可把整个物体看成是由许多质点组成的,弄清这些质点的运动,可以弄清楚整个物体的运动。
所以,研究质点的运动是研究物体运动的基础。
1.2.2 位置矢量 运动方程和轨迹方程一.位置矢量r描述质点在空间所处位置的矢量称为位置矢量,一般为坐标系的原点指向质点所在位置的矢量,位置矢量也称为位矢或矢径。
在如右图所示的直角坐标系中,在时间t ,质点P 在坐标系里的位置可用位置矢量)(t r 来表示。
位置矢量简称位矢,它是一个有向线段,其始端位于坐标系的原点O ,末端则与质点P 在时刻t 的位置重合。
从图中可以看出,位矢r 在ox 轴、oy 轴和oz 轴上的投影(即质点的坐标)分别为x 、y 和z 。
所以,质点P 在直角坐标系中的位置,既可以用位矢r 来表示,也可以用坐标x 、y 和z 来表示。
那么位矢r 亦可写成k j i r z y x ++=其值为222 z y x ++=r位矢r 的方向余弦由下式确定cos cos cos r r r zr y x ===βα二、运动方程当质点运动时,它相对坐标原点O 的位矢r 是随时间而变化的。
因此,r 是时间的函数,即k j i r r )()()()(t z t y t x t ++==上式叫做质点的运动方程;而)(t x 、)(t y 和)(t z 则是运动方程的分量式,从中消去参数t 便得到了质点运动的轨迹方程, 所以它们也是轨迹的参数方程。
应当指出, 运动学的重要任务之一就是找出各种具体运动所遵循的运动方程。
速度和加速度 一、位移 在如图y -O x 平面直角坐标系中,有一质点沿曲线从时刻1t 的点A 运动到时刻2t 的点B ,质点相对原点O 的位矢由A r 变化到B r 。
显然,在时间间隔12t t t -=∆内,位矢的长度和方向都发生了变化。
我们将由起始点A 指向终点B 的有向线段AB 称为点A 到点B 的位移矢量,简称位移。
位移AB 反映了质点位矢的变化。
如把AB 写作r ∆,则质点从A 点到点B 的位移为A B r r r -=∆亦可写成j i r r r )()(A B A B A B y y x x -+-=-=∆上式表明,当质点在平面上运动时,它的位移等于在x 轴和y 轴上的位移矢量和。
若质点在三维空间运动,则在直角坐标系Oxyz 中其位移为k j i r r r )z -(z y y x x A B A B A B A B +-+-=-=∆)()(应当注意,位移是描述质点位置变化的物理量, 它只表示位置变化的实际效果,并非质点所经历的路程。
如在上图中,曲线所示的路径是质点实际运动的轨迹,轨迹的长度为质点所经历的路程, 而位移则是r ∆。
当质点经一闭合路径回到原来的起始位置时,其位移为零,而路程则不为零。
所以,质点的位移和路程是两个完全不同的概念。
只有在△t 取得很小的极限情况下,位移的大小|r ∆|才可视为与路程 AB 没有区别。
二、速度在力学中,若仅知道质点在某时刻的位矢,而不能同时知道该质点是静还是动,是动又动到什么程度,就不能确定质点的运动状态。
所以,还应引入一物理量来描述位置矢量随时间的变化程度,这就是速度。
1、平均速度和平均速率如图所示,一个质点在平面上沿轨迹CABD 曲线运动。
在时刻t ,它处于点A ,其位矢为)(1t r 。
在时刻t t ∆+,它处于点B ,其位矢为)(2t t ∆+r 。
在t ∆时间内,质点的位移为12r r r -=∆。
在时间间隔y x v v和t ∆内的平均速度v 为t t ∆∆=∆-=rr r v 12平均速度可写成其中 是平均速度v 在Ox 轴和Oy 轴上的分量。
说明:v ϖ与时间间隔)(t t t ∆+-相对应。
平均速率:tsv ∆∆=2、 瞬时速度和瞬时速率当0→∆t 时,平均速度v 的极限值叫做瞬时速度(简称速度),用v 表示,有tt d d lim0r t r v =∆∆=→∆结论:质点的速度等于位矢对时间的一阶导数。
或ji j i t v y x t t v v t yx +=∆∆+∆∆=→→∆0Δ0lim lim其中 t y v t xv y x d d ,d d ==yx v v 和是速度v 在Ox 轴和Oy 轴上的分量,又称为速度分量。
如以分别表示速度v 在Ox 轴和Oy 上的分速度(注意:它们是分矢显然,量!),那么有 上式亦可以写成速度v 的方向与0→∆∆t 在r 时的极限方向一致。
当0→∆t 时,r ∆趋于和轨道相切,即与点A 的切线重合。
所以当质点作曲线运动时,质点在某一点的速度方向就是沿该点曲线的切线方向。
ji j i r v y x v v ty t xt +=∆∆+∆∆=∆∆=yx v v 和ji v y x v v +=yx v v v +=只有当质点的位矢和速度同时被确定时,其运动状态才被确知。
所以位矢r 和速度v 是描述质点运动状态的两个物理量。
这两个物理量可以从运动方程求出,所以知道了运动方程可以确定质点在任意时刻的运动状态。
因此,概括说来,运动学问题有两类:一是由已知运动方程求解运动状态;另一是由已知运动状态求解运动方程。
瞬时速率:dt ds t s v lim t =∆∆=→∆0例: 设质点的运动方程为j i r )()()(t y t x t +=其中 m 2)s m 1()(1+⋅=-t t x ,m2)s m 41()(22+⋅=-t t y求s 3=t 时的速度。
(2)作出质点的运动轨迹图。
解 这是已知运动方程求运动状态的一类运动学问题,可以通过求导数的方法求出。
(1)由题意可得速度分量分别为 t t y v t x v y x )s m 21(d d , s m 1d d 21--⋅==⋅==故s 3=t 时的速度分量为 11s m 5.1s m 1--⋅=⋅=y x v v 和于是s 3=t 时,质点的速度为ji v )s m 5.1()s m 1(11--⋅+⋅=速度的值为1s m 8.1-⋅=v ,速度v 与x 之间的夹角为o 3.5615.1arctg==θ(2)由已知运动方程2m)s m 41()( ,m 2)s m 1()(22-1+⋅=+⋅=-t t y t t x消去t 可得轨迹方程m3)m 41( 21-+-=x x y 并可作如图所示的质点运动轨迹图三、加速度上面已经指出,作为描述质点状态的一个物理量,速度是一个矢量,所以,无论是速度的数值发生改变,还是其方向发生改变,都表示速度发生了变化。
为衡量速度的变化,我们将从曲线运动出发引出加速度的概念。
1、平均加速度如图所示,设在时刻t ,质点位于点A ,其速度为1v ,在时刻t t ∆+,质点位于点B ,其速度为2v ,则在时间间隔t ∆内,质点的速度增量为12v v v -=∆,它在单位时间内的速度增量即平均加速度为t ∆∆=va2、瞬时加速度当0→∆t 时,平均加速度的极限值叫做瞬时加速度,用a 表示,有t t t d d lim0v v a =∆∆=→∆,a 的方向是0→∆t 时v ∆的极限方向,而a 的数值是 / t ∆∆v 的极限值。
应当注意,加速度a 既反映了速度方向的变化,也反映了速度数值的变化。
所以质点作曲线运动时,任一时刻质点的加速度方向并不与速度方向相同,即加速度方向不沿着曲线的切线方向。
在曲线运动中,加速度的方向指向曲线的凹侧。
加速度公式可以写成)(d dj v i v a y x t +=即yx y x a a a a j i a +=+=其中t v a t v a y y xx d d ,d d ==例 有一个球体在某液体中垂直下落,球体的初速度为j v )s m 10(10-⋅=,它在液体中的加速度为ja v )s 0.1(1--=。
问:(1)任一时刻t 的球体的速度。
(2)时刻t 球体经历的路程有多长解:由题意知,球体作变速直线运动,加速度a 的方向与球体的速度v 的方向相反,由加速度的定义,有v t va )s 0.1(d d 1--==得⎰⎰--=v v t tv v0 10d )s 0.1(d有te v v )s0.1(01--=上式表明,球体的速率v 随时间t 的增长而减小。