成都中考近十年中考数学圆压轴题

合集下载

2024成都中考数学一轮复习专题 圆的有关位置关系 (含解析)

2024成都中考数学一轮复习专题 圆的有关位置关系 (含解析)

2024成都中考数学一轮复习专题圆的有关位置关系一、单选题A.25︒B.2.(2023·重庆·统考中考真题)BC=,则OC的长度是(3A.3B.3.(2023·重庆·统考中考真题)∠的度数为()则BACA.30︒B.A .23B 5.(2023·四川泸州·统考中考真题)如图,在半圆O 与BC 相切于点E A .4109B .8二、填空题6.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在 BDC上,已知50A ∠=︒,则D ∠的度数是___________.7.(2023·黑龙江·统考中考真题)如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ,连接BC ,若28B ∠=︒,则P ∠=__________︒.8.(2023·湖南·统考中考真题)如图,AD 是O 的直径,AB 是O 的弦,BC 与O 相切于点B ,连接OB ,若65ABC ∠=︒,则BOD ∠的大小为__________.9.(2023·山东滨州上异于点,A B的一点,则10.(2023·浙江宁波·半圆O与BC相切于点AP的长为_____________11.(2023·河南·统考中考真题)OA=,125PA=,则12.(2023·湖北·统考中考真题)如图,在,切于点D,E,连接DE AO13.(2023·湖南·统考中考真题)如图,在半径作圆,当所作的圆与斜边14.(2023·山东烟台在函数(0,ky k x x=>15.(2023·四川·统考中考真题)如图,一点,过点P 向角的两边作垂线,垂足分别为16.(2023·湖南岳阳·统考中考真题)如图,在切点的切线与AB 的延长线交于点(1)若30,A AB ∠=︒=(2)若13CF AF =,则CE AE 17.(2023·上海·统考中考真题)在上,且CD DE =,如果B三、解答题(1)若25EAC ∠=︒,求ACD ∠(2)若2,1OB BD ==,求CE (1)求证:CF 是O 的切线;(2)若直径310,cos 5AD B ==,求FD 的长.20.(2023·江西·统考中考真题)如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长;(2)若76EAD ∠=︒,求证:CB 为O 的切线.21.(2023·江苏连云港·统考中考真题)如图,在ABC 中,AB AC =,以AB 为直径的O 交边AC 于点D ,连接BD ,过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O 的切线,交CE 于点F ;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD BF =.(1)求证:EF 与O 相切;(2)若1sin BF AFE =∠,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求(1)求证:CF 是O 切线;(2)若10AF =,2sin 3F =,求(1)求证:CE 是O 的切线;(2)若6BC =,8AC =,求CE(1)求证:ACD DCB ∽;(2)求证:CD 是O 的切线;(3)若3tan ,105E AC ==,求O 的半径.①过点A 作切线AC ,且4AC =(点C 在A ②连接OC ,交O 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O 的切线;(2)求AE 的长度.(1)尺规作图:如图,过点P 作出O 的两条切线求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点(1)求证:BC 是O 的切线;(2)若5BD =,tan ADB ∠=30.(2023·福建·统考中考真题)如图,已知ABC 内接于,O CO 的延长线交AB 于点D ,交O 于点E ,交O 的切线AF 于点F ,且AF BC ∥.(1)求证:AO BE ∥;(2)求证:AO 平分BAC ∠.31.(2023·湖北荆州·统考中考真题)如图,在菱形ABCD 中,DH AB ⊥于H ,以DH 为直径的O 分别交AD ,BD 于点E ,F ,连接EF .(1)求证:①CD 是O 的切线;②DEF DBA ∽;(2)若5AB =,6DB =,求sin DFE ∠.32.(2023·广西·统考中考真题)如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.33.(2023·湖北黄冈·统考中考真题)如图,ABC 中,以AB 为直径的O 交BC 于点D ,DE 是O 的切线,且DE AC ⊥,垂足为E ,延长CA 交O 于点F .(1)求证:AB AC =;(2)若3,6AE D E ==,求AF 的长.(1)求证:直线CD 是O 的切线;(2)若120ACD ∠=︒,CD =(1)求证:BC 是O 的切线;(2)若2CE =,求图中阴影部分的面积(结果保留(1)求证:直线DE是O的切线;(2)当30F∠=︒时,判断ABM(3)在(2)的条件下,ME= (1)求证:DC是O的切线;(2)若2AE=,1sin3AFD∠=,①求38.(2023·山东枣庄·统考中考真题)如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).39.(2023·山东临沂·统考中考真题)如图,O 是ABC 的外接圆,BD 是O 的直径,,AB AC AE BC =∥,E 为BD 的延长线与AE 的交点.(1)求证:AE 是O 的切线;(2)若75,2ABC BC ∠=︒=,求 CD的长.的切线;(1)求证:ED是O(2)若,65,AC BD AC CD==>,求BC⋅=⋅,求证:BM (3)若DE AM AC AD的切线;(1)求证:AB是O的半径与菱形的边长之比为(2)已知O(1)试判断直线AB与O的位置关系,并说明理由;(2)若3sin,5B O= 的半径为3,求AC(1)求证:直线AE是O是的切线;(2)若2sin3E=,O的半径为344.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.45.(2023·湖北·统考中考真题)如图,等腰ABC 内接于O ,AB AC =,BD 是边AC 上的中线,过点C 作AB 的平行线交BD 的延长线于点E ,BE 交O 于点F ,连接,AE FC .(1)求证:AE 为O 的切线;(2)若O 的半径为5,6BC =,求FC 的长.参考答案一、单选题∵AB 切O 于点B ,∴90∠=︒ABO ,∵BD OA ∥,OCD ∠=∴25CDB ∠=︒,【点拨】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.3.【答案】B 【分析】连接OC ,先根据圆的切线的性质可得90OCD ∠=︒,从而可得40OCA ∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B .【点拨】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.4.【答案】B 【分析】作CF AB ⊥延长线于F 点,连接DE ,根据圆的基本性质以及切线的性质,分别利用勾股定理求解在Rt DEC △和Rt BFC △,最终得到DE ,即可根据正弦函数的定义求解.【详解】解:如图所示,作CF AB ⊥延长线于F 点,连接DE ,∵AD AB ⊥,AB CD ∥,∴90FAD ADC F ∠=∠=∠=∴四边形ADCF 为矩形,AF ∴AB 为D 的切线,∵90C ∠=︒,8AC =,BC ∴2210AB AC BC =+=∵以AD 为直径的半圆O 与二、填空题∵AB ,AC 分别与O 相切于点∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050COB ∠=︒-︒-︒-︒∵ BCBC =,∵PA 切O 于点A ,∴90OAP ∠=︒,∴18034P OAP AOP ∠=︒-∠-∠=︒.故答案为:34.【点拨】此题考查了切线的性质和三角形的外角的性质,三角形内角和定理等知识,解题的关键是熟练掌握以上知识点.8.【答案】50︒【分析】证明90OBC ∠=︒,可得906525OBD ∠=︒-︒=︒,结合OB OA =,证明25A OBA ∠=∠=︒,再利用三角形的外角的性质可得答案.【详解】解:∵BC 与O 相切于点B ,∴90OBC ∠=︒,∵65ABC ∠=︒,∴906525OBD ∠=︒-︒=︒,∵OB OA =,∴25A OBA ∠=∠=︒,∴22550BOD ∠=⨯︒=︒,故答案为:50︒【点拨】本题考查的是圆的切线的性质,等腰三角形的性质,三角形的外角的性质,熟记基本图形的性质是解本题的关键.9.【答案】62︒或118︒【分析】根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形内角和为360︒,得出AOB ∠,然后根据圆周角定理即可求解.【详解】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∵以AE 为直径的半圆O ∴OD BC ⊥,OA OE =∴90ODB ∠=︒设OA OE OD r ===,则=的情况;不存在PD AD综上:AP的长为230或故答案为:230或6.【点拨】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,【点拨】本题主要考查了三角形内切圆,切线长定理,三角形内角和定理,线段垂直平分线的判定,三角形外角的性质,正确作出辅助线是解题的关键.13.【答案】24 5【分析】根据勾股定理,得由90OGC ODC OGH ∠=∠=∠=︒∵45ACB ∠=︒,∴45OHC ∠=︒,∴222OH OG ==,∴222CD DH ==+,同理2PQ PF =,∵2t PE PF =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,同理,t 的最小值为EQ CE CD DE ==-综上,t 的取值范围是22224t ≤≤+故答案为:22224t ≤≤+.【点拨】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得∵点C 为 BD的中点,∴ BCCD =,又∵30A ∠=︒,∴2BOC COD A ∠=∠=∠=∵点C 为 BD的中点,∴ BCCD =,∴OC BD ⊥,∵EC 是O 的切线,B过点A,且7AB=,∴e的半径为7,BE过点D,它的半径为r,且CE CD DE r∴=+=,2,=∠=︒BC C3,9022294∴=+=+,BE BC CE r在边AC上,点E在CA延长线上,D由函数图象可知,当即不等式①的解集为同理可得:不等式②则不等式组的解集为又10210 ,<≤r半径r的取值范围是故答案为:10r<≤三、解答题(2)∵CD 是O 的切线,OC 是 ∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴225CD OD OC =-=.∵90OCD AEC ∠=∠=︒,(2)解:∵3,cos 5B ADC B ∠=∠=,∴3cos 5ADC ∠=,∵在Rt ACD 中,3cos 5CD ADC AD∠==∴3cos 106,5CD AD ADC =⋅∠=⨯=(2)证明:如图所示,连接∵76EAD ∠=︒,40ADE ∠=∴180AED EAD =︒--∠∠∴64ABD AED ==︒∠∠,∴BC 是O 的切线.【点拨】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.21.【答案】(1)见解析(2)见解析【分析】(1)根据尺规作图,过点B 作AB 的垂线,交CE 于点F ,即可求解;(2)根据题意切线的性质以及直径所对的圆周角是直角,证明BDC BFC ∠=∠,根据平行线的性质以及等腰三角形的性质得出BCD BCF =∠,进而证明()AAS BCD BCF ≌ ,即可得证.【详解】(1)解:方法不唯一,如图所示.(2)∵AB AC =,∴A ABC CB =∠∠.又∵CE AB ∥,∴ABC BCF ∠=∠,∴BCF ACB =∠∠.∵点D 在以AB 为直径的圆上,∴90ADB ∠=︒,∴=90BDC ∠︒.又∵BF 为O 的切线,∴90ABF ∠=︒.∵CE AB ∥,∴180BFC ABF ∠+∠=︒,∠∵=BE BE,∴EOB ∵2CAB EAB∠=∠,∴CAB EOB∠=∠,的直径,CD AB,AB为O⊥∴=,BC BDCOB BOD∴∠=∠,∠=∠,BOD DAF2⊥,由(1)得,OC CF,⊥CE AB∴∠=∠=︒,90OCF CEF∵C 为 BD的中点,∴CD BC = ,∴12∠=∠,又∵OA OC =,∴23∠∠=,∵AB 为O 的直径,∴90ADB ∠=︒,∴90∠+∠=︒A ABD ,∵OB OD =,∴ABD ODB ∠=∠,∵AC 是O 的切线,∴OA AC ⊥,∵3OA =,4AC =,∴225OC OA AC =+=,①连接PO,分别以点,P O为圆心,点A,②以点A为圆心,OA为半径画圆,与PE PF即为所求;则直线,上(点(2)如图所示,点D在OPE PF,的半径,∵OA,OD是O=,∴OA OD∠=∠,∴OAD ODA∠,∵AD平分BAC【点拨】本题考查角平分线的定义、平行线的判定与性质、切线的判定、直角三角形的性质、圆周角定理、等边三角形的判定与性质、垂直平分线的判定与性质及扇形的面积公式,熟练掌握相关知识是解题的关键.30.【答案】(1)见解析(2)见解析。

中考压轴题圆的切线证明与计算(中考真题)

中考压轴题圆的切线证明与计算(中考真题)

中考压轴题圆的切线证明与计算(中考真题)1.(24年湖北中考)Rt ABC 中,90ACB ︒∠=,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .(1)求证:AB 是O 的切线。

(2)连接OB 交O 于点F ,若1AD AE ==,求弧CF 的长.2.(24年成都中考)如图,在Rt ABC ∆中,90C ︒∠=,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于,E F 两点,连接,,BE BF DF .(1)BC DF BF CE ⋅=⋅(2)若,A CBF ∠=∠tan BFC AF ∠==,求CF 的长和O 的直径.3.(24年浙江中考)如图,在圆内接四边形ABCD中,AD<AC,ADC BAD∠<∠,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使AFE ADC∠=∠.(1)若60O∠的度数.∠=,CD为直径,求ABDAFE(2)求证:①EF∥BC ②EF=BD.4.(24年辽宁中考)如图,O是ABC的外接圆,AB是O的直径,点D在BC上,AC BD=,E ∠=∠.在BA的延长线上,CEA CAD(1)如图1,求证:CE是O的切线OA=,求BD的长.(2)如图2,若2CEA DAB∠=∠,85.(24年安徽中考)如图,O 是ABC ∆的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点,.F FA FE =(1)求证:;CD AB ⊥(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.6.(24年新疆中考)如图,在O 中,AB 是O 的直径,弦CD 交AB 于点E,AD BD =.(1)求证:△ACD ∽△ECB.(2)若AC=3,BC=1,求CE 的长.7.(24年江西中考)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线.(2)当3BC =时,求AC 的长.8.(24年呼伦贝尔中考)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=,求扇形OBD 的面积.9.(24年扬州中考)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD ,BD ,CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________【一般化探究】(2)如图2,若60ACB ∠=︒,点C ,D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由【拓展性延伸】(3)若ACB α∠=,直接写出AD ,BD ,CD 满足的数量关系.(用含α的式子表示)10.(24年赤峰中考)如图,ABC中,90ACB∠=︒,AC BC=,O经过B,C两点,与斜边AB交于点E,连接CO并延长交AB于点M,交O于点D,过点E作EF CD∥,交AC于点F.(1)求证:EF是O的切线;(2)若BM=,1tan2BCD∠=,求OM的长.11.(24年绥化中考)如图1,O是正方形ABCD对角线上一点,以O为圆心,OC长为半径的O 与AD相切于点E,与AC相交于点F.(1)求证:AB与O相切.(2)若正方形ABCD1,求O的半径.(3)如图2,在(2)的条件下,若点M是半径OC上的一个动点,过点M作MN OC⊥交CE于点N.当:1:4CM FM=时,求CN的长.12.(24年河北中考)已知O的半径为3,弦MN=ABC中.∠=︒==在平面上,先将ABC和O按图1位置摆放(点B与点N重90,3,ABC AB BC合,点A在O上,点C在O内),随后移动ABC,使点B在弦MN上移动,点A始终在O上=.随之移动,设BN x(1)当点B与点N重合时,求劣弧AN的长.(2)当OA MN∥时,如图2,求点B到OA的距离,并求此时x的值.(3)设点O到BC的距离为d.①当点A在劣弧MN上,且过点A的切线与AC垂直时,求d的值.①直接写出d的最小值.13.(24年滨州中考)【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: 如图,在锐角ABC 中,探究sin a A ,sin b B ,sin c C之间的关系.(提示:分别作AB 和BC 边上的高.)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C ===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A,B,D 三点的圆的半径.14.(24年苏州中考)如图,ABC 中,AB =为AB 中点,BAC BCD ∠=∠cos ADC ∠=. O 是ACD 的外接圆.(1)求BC 的长(2)求O 的半径.15.(24年乐山中考)如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D,点E 为CB 上一点,且AC CE =.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.16.(24年武汉中考)如图,ABC ∆为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.17.(24年甘肃武威中考)如图,AB 是O 的直径,BC BD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.18.(24年深圳中考)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥(2)若AB =5BE =,求O 的半径.19.(24年盐城中考)如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l,过点A 作AD l ⊥,垂足为D,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.20.(24年广西中考)如图,已知O 是ABC ∆的外接圆,AB AC =.点D,E 分别是BC ,AC 的中点,连接DE 并延长至点F,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形(2)求证:AF 与O 相切(3)若3tan 4BAC ∠=,12BC =,求O 的半径. 21.(24年四川广安中考)如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长.22.(24年四川南充中考)如图,在O 中,AB 是直径,AE 是弦,点F 是AE 上一点,AF BE =,,AE BF 交于点C,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==求O 的半径长.23.(24年四川泸州中考)如图,ABC ∆是O 的内接三角形,AB 是O 的直径,过点B 作O 的切线与AC 的延长线交于点D,点E 在O 上,AC CE =,CE 交AB 于点F .(1)求证:CAE D ∠=∠;(2)过点C 作CG AB ⊥于点G,若3OA =,BD =求FG 的长.24.(24年四川德阳中考)已知O 的半径为5,B C 、是O 上两定点,点A 是O 上一动点,且60,BAC BAC ∠=︒∠的平分线交O 于点D .(1)证明:点D 为BC 上一定点;(2)过点D 作BC 的平行线交AB 的延长线于点F .①判断DF 与O 的位置关系,并说明理由;①若ABC 为锐角三角形,求DF 的取值范围.25.(24年四川宜宾中考)如图,ABC 内接于O ,10AB AC ==,过点A 作AE BC ∥,交O 的直径BD 的延长线于点E,连接CD .(1)求证:AE 是O 的切线;(2)若1tan 2ABE ∠=,求CD 和DE 的长.26.(24年内蒙古通辽中考)如图,ABC 中,90ACB ∠=︒,点O 为AC 边上一点,以点O 为圆心,OC 为半径作圆与AB 相切于点D ,连接CD .(1)求证:2ABC ACD ∠=∠;(2)若8AC =,6BC =,求O 的半径.27.(24年四川达州中考)如图,BD 是O 的直径.四边形ABCD 内接于O .连接AC ,且AB AC =,以AD 为边作DAF ACD ∠=∠交BD 的延长线于点F .(1)求证:AF 是O 的切线;(2)过点A 作AE BD ⊥交BD 于点E .若3CD DE =,求cos ABC ∠的值.28.(24年四川遂宁中考)如图,AB 是O 的直径,AC 是一条弦,点D 是AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM .①求证:AM 是O 的切线;①若6DG =,5DF =,求O 的半径.29.(24年包头中考)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =求O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)30.(24年四川自贡中考)在Rt ABC △中,90C ∠=︒,O 是ABC 的内切圆,切点分别为D,E,F .(1)图1中三组相等的线段分别是CE CF =,AF =________,BD =________;若3AC =,4BC =,则O 半径长为________;(2)如图2,延长AC 到点M,使AM AB =,过点M 作MN AB ⊥于点N .求证:MN 是O 的切线.31.(24年山东枣庄中考)如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===. 以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线(2)求图中阴影部分面积.(结果保留π)32.(24年青海中考) 如图,直线AB经过点C,且OA OB=.=,CA CB(1)求证:直线AB是O的切线;(2)若圆的半径为4,30∠=︒,求阴影部分的面积.B中考压轴题圆的切线证明与计算答案1.(24年湖北中考)【答案】(1)略 (2)弧CF 的长为3π2.(24年成都中考)【答案】(1)略(2)CF =;O 的直径为3.(24年浙江中考)【答案】(1)30o (2)证明略4.(24年辽宁中考)【答案】(1)见详解 (2)2π5.(24年安徽中考)【答案】(1)略 (2).6.(24年新疆中考)【答案】(1) 略 (2)CE =.7.(24年江西中考)【答案】(1)见解析 (2)2π8.(24年呼伦贝尔中考)【答案】(1)略 (2)43π 9.(24年扬州中考)【答案】(1)AD BD CD -=.(2)AD BD CD -=(3)当D 在BC 上时,2sin 2CD AD BD α⋅=-.当D 在AB 上时,2sin 2CD AD BD α⋅=+10.(24年赤峰中考)【答案】(1)略 (2)OM =11.(24年绥化中考)【答案】(1)证明略 (2)12.(24年河北中考)【答案】(1)π (2)点B 到OA 的距离为2;3 (3)①3d =2313.(24年滨州中考)【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:6R =.14.(24年苏州中考)【答案】(1)4BC = (2)O 的半径为715.(24年乐山中考)【答案】(1)略 (2)3π-16.(24年武汉中考)【答案】(1)略 (2)4517.(24年甘肃武威中考)【答案】(1)略 (2)tan 3AEB ∠=18.(24年深圳中考)【答案】(1)略 (2)19.(24年盐城中考)【答案】(1)略 (2)25620.(24年广西中考)【答案】(1)略 (2)略 (3)1021.(24年四川广安中考)【答案】(1)略 (2)1422.(24年四川南充中考)【答案】(1)略 (2)23.(24年四川泸州中考)【答案】(1)证明略 (2)45 24.(24年四川德阳中考)【答案】(1)证明略(2)①DF 与O 相切,理由见解析;①DF 的取值范围为2DF <<25.(24年四川宜宾中考)【答案】(1)略 (2)CD =DE =. 26.(24年内蒙古通辽中考)【答案】(1)证明略 (2)327.(24年四川达州中考)【答案】(1)证明略 28.(24年四川遂宁中考)【答案】(1)证明略 (2)①证明略,①O 的半径为203. 29.(24年包头中考)【答案】(1)3 (2)略30.(24年四川自贡中考)【答案】(1)AD ;BE ;1 (2)略31.(24年山东枣庄中考)【答案】(1)略 3π32.(24年青海中考) 【答案】(1)详见解析 (2) 83S π=阴影。

中考数学《圆》真题压轴题总汇【附解析】

中考数学《圆》真题压轴题总汇【附解析】

中考数学《圆》真题压轴题总汇【附解析】1.(2019•阿坝州)如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.2.(2019•德阳)如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F,且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=,求EG的长.3.(2019•雅安)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.4.(2019•内江)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB=5,OB 与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.5.(2019•广元)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求PA的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.6.(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.7.(2019•资阳)如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.8.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.9.(2019•乐山)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C 是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.10.(2019•泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.11.(2019•乐山)已知关于x的一元二次方程x2﹣(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC的内切圆半径.12.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.13.(2019•巴中)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.14.(2019•广安)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD 交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.15.(2019•达州)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.16.(2019•凉山州)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.17.(2019•遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF =2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.18.(2019•宜宾)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.19.(2019•南充)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.20.(2019•自贡)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.参考答案1.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴DH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.2.(1)证明:如图,连结OC,∵OE⊥BC,∴∠OHB=90°,∴∠OBH+∠BOD=90°,∵OB=OC,∴∠OBH=∠OCB,∵∠BOD=∠BCD,∴∠BCD+∠OCB=90°,∴OC⊥CD,∵点C为⊙O上一点,∴DF为⊙O的切线;(2)解:∵∠OCD=90°,∴∠ECG+∠OCE=90°,∵OC=OE,∴∠OCE=∠OEC,∴∠ECG+∠OEC=90°,∵∠OEC+∠HCE=90°,∴∠ECG=∠HCE,在△CHE和△CGE中,,∴△CHE≌△CGE(AAS);(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵DF为⊙O的切线,∴∠OCA+∠FCA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠FCA=∠ABC,∴sin∠ABC=sin∠FCA=,设AC=a,则AB=3a,∴BC===a,∵∠FCA=∠ABC,∠AFC=∠CFB,∴△ACF∽△CFB,∴===,∵AF=1,∴CF=,∴BF==2,∴BF﹣AF=AB=1,∴OC=,BC=,∵OE⊥BC,∴CH=BC=,∴OH===,∴HE=OE﹣OH=﹣,∵△CHE≌△CGE,∴EG=HE=﹣.3.(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.4.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l,∴∠BCA+∠BPC=90°,∵OA=OP,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.。

中考数学成都中考数学二诊专题汇编A卷:圆(含答案)压轴题

中考数学成都中考数学二诊专题汇编A卷:圆(含答案)压轴题

中考数学专题:圆一.解答题1.如图,在⊙O中,直径AB=10,tan A=.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以cm/s的速度从B点出发沿BC方向运动,设运动时间为t(0<t<),连接PQ.当t为何值时,△BPQ为Rt△?2.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.3.如图1,AB是⊙O的直径,C是⊙O上一点,CD⊥AB于D,E是BA延长线上一点,连接CE,∠ACE =∠ACD,K是线段AO上一点,连接CK并延长交⊙O于点F.(1)求证:CE是⊙O的切线;(2)若AD=DK,求证:AK•AO=KB•AE;(3)如图2,若AE=AK,=,点G是BC的中点,AG与CF交于点P,连接BP.请猜想P A,PB,PF的数量关系,并证明.4.如图,四边形ABCD内接于⊙O,对角线AC、BD相交于点F,AC是⊙O的直径,延长CB到点E,连接AE,∠BAE=∠ADB,AN⊥BD,CM⊥BD,垂足分别为点N、M.(1)证明:AE是⊙O的切线;(2)试探究DM与BN的数量关系并证明;(3)若BD=BC,MN=2DM,当AE=时,求OF的长.5.如图,四边形ABCD内接于⊙O,直径AC与弦BD的交点为E,OB∥CD,BH⊥AC,垂足为H,且∠BF A=∠DBC.(1)求证:BF是⊙O的切线;(2)若BH=3,求AD的长度;(3)若sin∠DAC=,求△OBH的面积与四边形OBCD的面积之比.6.如图,△ABC内接于⊙O,AB为⊙O的直径,D为的中点,过D作DF⊥AB于点E,交⊙O于点F,交弦BC于点G,连接CD,BF.(1)求证:△BFG≌△DCG;(2)若AC=10,BE=8,求BF的长;(3)在(2)的条件下,P为⊙O上一点,连接BP,CP,弦CP交直径AB于点H,若△BPH与△CPB 相似,求CP的长.7.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥OC于F,交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.8.AB为⊙O的直径,点C、D为⊙O上的两个点,AD交BC于点F,点E在AB上,DE交BC于点G,且∠DGF=∠CAB.(1)如图1.求证:DE⊥AB.(2)如图2.若AD平分∠CAB.求证:BC=2DE.(3)如图3.在(2)的条件下,连接OF,若∠AFO=45°,AC=8,求OF的长.9.如图,在△ABC中,AB=AC=10,tan∠A=,点O是线段AC上一动点(不与点A,点C重合),以OC为半径的⊙O与线段BC的另一个交点为D,作DE⊥AB于E.(1)求证:DE是⊙O的切线;(2)当⊙O与AB相切于点F时,求⊙O的半径;(3)在(2)的条件下,连接OB交DE于点M,点G在线段EF上,连接GO.若∠GOM=45°,求DM和FG的长.10.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)求证:BC2=4CF•AC;(3)若⊙O的半径为2,∠CDF=15°,求阴影部分的面积.11.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)若AC=6,BC=8,求线段PD的长.12.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O是AB边上一点,以点O为圆心,OA长为半径的圆经过点D,作DE⊥AB于点E,延长DE交⊙O于点F,连接FO并延长交⊙O于点G,已知DE=3,tan∠CDA=2.(1)求证:BC是⊙O的切线;(2)求证:OA2=OB•OE;(3)求线段EG的长.13.如图,在△ABC中,∠ACB=90°,AO平分∠BAC,交BC于点O.以O为圆心,OC为半径作⊙O,分别交AO,BC于点E,F.(1)求证:AB是⊙O的切线;(2)延长AO交⊙O于点D,连接CD,若AD=2AC,求tan D的值;(3)在(2)的条件下,设⊙O的半径为3,求BC的长.14.如图,在△ABC中,AB=AC,以边AB为直径的⊙O交边BC于点D,交边AC于点E.过D点作DF ⊥AC于点F.(1)求证:DF是⊙O的切线;(2)求证:CF=EF;(3)延长FD交边AB的延长线于点G,若EF=3,BG=9时,求⊙O的半径及CD的长.15.四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连接AC、BD.点H是线段BD上的一点,连接AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.16.如图,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.点O在边BC上,以O为圆心,OB为半径的弧经过点A.P是弧AB上的一个动点.(1)求半径OB的长;(2)如果点P是弧AB的中点,联结PC,求∠PCB的正切值;(3)如果BA平分∠PBC,延长BP、CA交于点D,求线段DP的长.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P是AB延长线上一点,连接PC交DB的延长线于点F,且∠PFB=3∠CAB.(1)求证:PC是⊙O的切线;(2)延长AC,DF相交于点G,连接PG,请探究∠CPG和∠CAB的数量关系,并说明理由;(3)若tan∠CAB=,CF=5,求⊙O的半径.18.如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.(1)求证:△FED∽△AEB;(2)若=,AC=2,连接CE,求AE的长;(3)在点E运动过程中,若BG=CG,求tan∠CBF的值.31.如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=8,求BE的长.。

2024年中考数学高频压轴题训练——圆的综合题含参考答案

2024年中考数学高频压轴题训练——圆的综合题含参考答案

2024年中考数学高频压轴题训练——圆的综合题1.如图,在ABC 中,AB AC =,以AB 为直径的O 分别与,BC AC 交于点,D E ,过点D 作DF AC ⊥,垂足为点F .(1)求证:直线DF 是O 的切线;(2)求证:24BC CF AC =⋅;(3)若O 的半径为4,15CDF ∠=︒,求阴影部分的面积.2.如图,AB 为⊙O 的直径,点C 是⊙O 上一点,CD 与⊙O 相切于点C ,过点A 作AD ⊥DC ,连接AC ,BC.(1)求证:AC 是∠DAB 的角平分线;(2)若AD =2,AB =3,求AC 的长.3.如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,DE AC ⊥交BA 的延长线于点E ,交AC 于点F .(1)求证:DE 是O 的切线;(2)若364AC tanE ==,,求AF 的长.4.如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F ,(1)求证:△CDE 是等腰三角形;(2)若AB=4,)21AE =,求证:△OBC ≌△DCE .5.已知锐角△ABC 内接于圆O ,D 为弧AC 上一点,分别连接AD 、BD 、CD ,且∠ACB =90°﹣12∠BAD .(1)如图1,求证:AB =AD ;(2)如图2,在CD 延长线上取点E ,连接AE ,使AE =AD ,过E 作EF 垂直BD 的延长线于点F ,过C 作CG ⊥EC 交EF 延长线于点G ,设圆O 半径为r ,求证:EG =2r ;(3)如图3,在(2)的条件下,连接DG ,若AC =BC ,DE =4CD ,当△ACD 的面积为10时,求DG 的长度.6.如图,已知AB 是O 的直径,AC 是O 的弦,点E 在O 外,连接CE ,ACB ∠的平分线交O 于点D .(1)若BCE BAC ∠=∠,求证:CE 是O 的切线;(2)若4AD =,3BC =,求弦AC 的长.7.如图,在Rt △ABC 中,∠ABC =90o ,以BC 为直径的半圆⊙O 交AC 于点D ,点E 是AB 的中点,连接DE 并延长,交CB 延长线于点F .(1)判断直线DF 与⊙O 的位置关系,并说明理由;(2)若CF =8,DF =4,求⊙O 的半径和AC 的长.8.在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”.(1)已知⊙O 的半径为1.①在点E (1,1),F (22,-22),M(-2,-2)中,⊙O 的“梦之点”为;②若点P 位于⊙O 内部,且为双曲线y =k x (k≠0)的“梦之点”,求k 的取值范围.(2)已知点C 的坐标为(1,t ),⊙C 的半径为,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11A x y ,,()22B x y ,,且122x x -=,求二次函数图象的顶点坐标.9.如图,点A 是⊙O 直径BD 延长线上的一点,AC 是⊙O 的切线,C 为切点.AD =CD ,(1)求证:AC =BC ;(2)若⊙O 的半径为1,求△ABC 的面积.10.如图,△ABC 中,∠ACB =90°,BO 为△ABC 的角平分线,以点O 为圆心,OC 为半径作⊙O 与线段AC 交于点D.(1)求证:AB 为⊙O 的切线;(2)若tanA =34,AD =2,求BO 的长.11.如图①,A 是O 外一点,AB 与O 相切于点B ,AO 的延长线交O 于点C ,过点B 作//BD AC ,交O 于点D ,连接DO ,并延长DO 交O 于点E ,连接AE .已知2BD =,O 的半径为3.(1)求证:AE 是O 的切线;(2)求AE 的长;(3)如图②,若点M 是O 上一点,且3BM =,过A 作//AN BM ,交弧ME 于点N ,连接ME ,交AN 于点G ,连接OG ,则OG 的长度是.12.我们把三角形三边上的高产生的三个垂足组成的三角形称为该三角形的垂足三角形.(1)如图1,△ABC 中,AB =AC =8,BC =6,△DEF 是△ABC 的垂足三角形,求DE 的长.(2)如图2,圆内接三角形ABC 中,AB =AC =x ,BC =6,△ABC 的垂足三角形DEF 的周长为y .①求y 与x 的关系式;②若△DEF 的周长为19225时,求⊙O 的半径.13.如图,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,D 为圆上一点,且B ,D 两点位于AC 异侧,连接BD ,交AC 于E ,点F 为BD 延长线上一点,连接AF ,使得∠DAF =∠ABD.(1)求证:AF 为⊙O 的切线;(2)当点D 为EF 的中点时,求证:AD 2=AO•AE ;(3)在(2)的条件下,若sin ∠BAC =13,AF =2,求BF 的长.14.如图,△ABC 内接于⊙O ,直径BD 交AC 于E ,过O 作FG ⊥AB ,交AC 于F ,交AB 于H ,交⊙O 于G .(1)求证:OF•DE=2OE•OH ;(2)若⊙O 的半径为12,且OE :OF :OD=2:3:6,求阴影部分的面积.(结果保留根号)15.如图,点P 是圆O 直径CA 延长线上的一点,PB 切圆O 于点B ,点D 是圆上的一点,连接AB ,AD ,BD ,CD ,∠P=30°.(1)求证:PB=BC ;(2)若AD=6,tan∠DCA=34,求BD的长.16.在矩形ABCD中,AB=6,BC=8,BE⊥AC于点E,点O是线段AC上的一点,以AO为半径作圆O 交线段AC于点G,设AO=m.(1)直接写出AE的长:AE=;(2)取BC中点P,连接PE O与△BPE一边所在的直线相切时,求出m的长;(3)设圆O交BE于点F,连接AF并延长交BC于点H.①连接GH,当BF=BH时,求△BFH的面积;②连接DG,当tan∠HFB=3时,直接写出DG的长,DG.17.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O 经过点B.(1)求⊙O的半径;(2)点P为 AB中点,作PQ⊥AC,垂足为Q,求OQ的长;(3)在(2)的条件下,连接PC ,求tan ∠PCA 的值.18.О 直径12AB cm AM =,和BN 是О 的切线,DC 切О 于点E 且交AM 于点D ,交BN 于点C ,设AD x BC y ==,.(1)求y 与x 之间的关系式;(2)x y ,是关于t 的一元二次方程22300t t m -+=的两个根,求x y ,的值;(3)在(2)的条件下,求COD ∆的面积.19.(1)问题发现:如图1,ABC 内接于半径为4的O ,若60C ∠=︒,则AB =;(2)问题探究:如图2,四边形ABCD 内接于半径为6的O ,若120B ∠=︒,求四边形ABCD 的面积最大值;(3)解决问题:如图3,一块空地由三条直路(线段AD 、AB 、BC )和一条弧形道路CD 围成,点M 是AB 道路上的一个地铁站口,已知AD BM =1=千米,2AM BC ==千米,60A B ∠=∠=︒,CD 的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M 处,另外三个入口分别在点C 、D 、P 处,其中点P 在CD 上,并在公园中修四条慢跑道,即图中的线段DM 、MC 、CP 、PD ,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.20.在平面直角坐标系xOy 中,给定圆C 和点P ,若过点P 最多可以作出k 条不同的直线,且这些直线被圆C 所截得的线段长度为正整数,则称点P 关于圆C 的特征值为.k 已知圆O 的半径为2,(1)若点M 的坐标为()11,,则经过点M 的直线被圆O 截得的弦长的最小值为,点M 关于圆O 的特征值为;(2)直线y x b =+分别与x ,y 轴交于点A ,B ,若线段AB 上总存在关于圆O 的特征值为4的点,求b 的取值范围;(3)点T 是x 轴正半轴上一点,圆T 的半径为1,点R ,S 分别在圆O 与圆T 上,点R 关于圆T 的特征值记为r ,点S 关于圆O 的特征值记为.s 当点T 在x 轴正轴上运动时,若存在点R ,S ,使得3r s +=,直接写出点T 的横坐标t 的取值范围.21.如图,AB 是⊙O 的直径,DO ⊥AB 于点O ,连接DA 交⊙O 于点C ,过点C 作⊙O 的切线交DO 于点E ,连接BC 交DO 于点F .(1)求证:CE=EF ;(2)连接AF 并延长,交⊙O 于点G .填空:①当∠D 的度数为时,四边形ECFG 为菱形;②当∠D 的度数为时,四边形ECOG 为正方形.22.如图,四边形ABCD 内接于O ,O 的半径为4,90ADC AB BC ∠=︒=,,对角线AC 、BD 相交于点P.过点P 分别作PE AD ⊥于点E ,PF CD ⊥于点F.(1)求证:四边形DEPF 为正方形;(2)若 2AD CD =,求正方形DEPF 的边长;(3)设PC的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y的最大值.答案解析部分1.【答案】(1)证明:如图所示,连接OD ,∵AB AC =,∴ABC C ∠=∠,而OB OD =,∴ODB ABC C ∠=∠=∠,∵DF AC ⊥,∴90CDF C ∠+∠=︒,∴90CDF ODB ∠+∠=︒,∴90ODF ∠=︒,∴直线DF 是O 的切线(2)证明:连接AD ,则AD BC ⊥,则AB AC =,则12DB DC BC ==,∵90CDF C ∠+∠=︒,90C DAC ∠+∠=︒,∴CDF DCA ∠=∠,而90DFC ADC ∠=∠=︒,∴CFD CDA ∽,∴2CD CF AC =⋅,即24BC CF AC=⋅(3)解:连接OE ,∵15,75CDF C ∠=︒∠=︒,∴30OAE OEA ∠=︒=∠,∴120AOE ∠=︒,11sin 2cos sin 422OAE S AE OE OEA OE OEA OE OEA =⨯∠=⨯⨯∠⨯∠= ,21201643603OAE S OAE S S ππ︒︒=-=⨯-- 阴影部分扇形2.【答案】(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴AD ACAC AB,∴AC2=AD•AB=2×3=6,∴AC=3.【答案】(1)证明:如下图,连接OD,∵AB AC =,OB OD =,∴B C ∠=∠,B ODB ∠=∠,∴ODB C ∠=∠,∴//OD AC ,∴ODE CFD ∠∠=,又∵DE AC ⊥,∴90CFD ∠= ,∴90ODE ∠= ,∴DE 是O 的切线.(2)解:∵AC=6,∴11322OD OB AB AC ====,在Rt ODE 中,34OD tanE ED ==,∴4ED =,5OE ==,∴532AE OE OB =-=-=,又∵90AEF OED AFE ODE ∠∠∠∠=== ,,∴AFE ODE ~ ,∴AE AF OE OD =,即2=53AF ,∴65AF =.4.【答案】(1)证明:∵AB 为直径,∴∠ACB=90°,又∠ABC=30°,∴∠BAC=60°,又∵OA=OC ,∴△AOC 是正三角形,又∵CD 是⊙O 的切线,∴∠OCD=90°,∴∠DCE=180°﹣60°﹣90°=30°,又∵ED ⊥AB 于F ,∴∠DEC=90°﹣∠BAC=30°,∴∠DCE=∠DEC ,故△CDE 为等腰三角形(2)证明:在Rt △ABC 中,∵AB=4,AC=AO=2,∴BC ==,而)212CE =+-=,∴BC=CE ,又∵∠OBC=∠OCB=∠DCE=∠DEC=30°,∴△OBC ≌△DCE (ASA )5.【答案】(1)证明:如图1中,∵∠ADB =∠ACB ,∠ACB =90°﹣12∠BAD ,∴∠ADB =90°﹣12BAD ,∵∠ABD =180°﹣∠BAD ﹣(90°﹣12∠BAD )=90°﹣12∠BAD ,∴∠ABD =∠ADB ,∴AB =AD (2)证明:如图2中,连接BE 交AC 于L ,连接AO ,延长AO 交BD 于J ,交BE 于T ,连接CO ,延长CO 交⊙O 于K ,连接BK .∵AE =AD ,∴∠ADE =∠AED ,∵∠ADE+∠ADC =180°,∠ADC+∠ABC =180°,∴∠ADE =∠ABC =∠AED ,∵AB =AD ,∴ AB AD ,∴∠ACB =∠ACE ,AJ ⊥BD ,∵AC =AC ,∴△ACB ≌△ACE (AAS ),∴CB =CE ,∵AB =AE ,∴AC ⊥BE ,∴∠ALB =∠AJB =90°,∵∠ATL =∠BTJ ,∴∠TAL =∠TBJ ,∵AB =AD =AE ,∴∠BED =12∠BAD =∠BAJ ,∵∠EDF =∠DBE+∠DEB ,∴∠EDF =∠BAC ,∵∠K =∠BAC ,∴∠K =∠EDF ,∵CG ⊥CE .EG ⊥BF ,∴∠DFE =∠GCG =90°,∵∠DEF+∠EDF =90°,∠DEF+∠G =90°,∴∠G =∠EDF =∠K ,∵∠CBK =∠GCE =90°,∴△CBK ≌△ECG (AAS ),∴EG =CK =2r(3)解:如图3中,在图2的基础上作AH ⊥DE 于H .∵DE =4CD ,∴可以假设CD =k ,DE =4k ,则CE =CB =CA =5k ,∵AE =AD ,AH ⊥DE ,∴DH =EH =2k ,CH =CD+DH =3k ,∴AH =4k =,AD ==∵S △ACD =12•CD•AH =12•k•4k =10,∴k =(负根舍弃),∴CD =,AC =BC =EC =5,AD =AB =10,设CK 交AB 于J ,OA =OC =r ,则BJ =AJ =5,CJ =10==在Rt △AOJ 中,则有r 2=52+(10﹣r )2,解得r =254,∴EG =2r =252,∴CG =552==∴DG =2=6.【答案】(1)证明:连接OC ,∵AB 是O 的直径,∴∠ACB=90︒,∵OA=OC ,∴∠OAC=∠OCA ,∵∠BCE=∠BAC ,∴∠BCE=∠BAC=∠OCA ,∵∠OCA+∠OCB=90︒,∴∠BCE +∠OCB=90︒,∴∠OCE=90︒,∴CE 是⊙O 的切线;(2)解:连接DB ,∵AB 是⊙O 的直径,∴∠ADB=90︒,∵CD 平分∠ACB ,∴ AD DB=,∴AD DB =,∴△ADB 为等腰直角三角形,∴AB ==,∵AB 是⊙O 的直径,∴∠ACB=90︒,∴AC ==.7.【答案】(1)解:相切证明:连接OD ,OE∵点E 是AB 中点,点O 是BC 中点∴OE 是△ABC 的中位线,∴OE ∥AC∴∠1=∠4,∠2=∠3∵OC =OD ,∴∠3=∠4,∴∠1=∠2∵OB =OD ,OE =OE ,∴△OBE ≌△ODE∴∠ODE =∠OBE =90o∴OD ⊥DE ,∴直线DF 与⊙O 相切.(2)解:设⊙O 半径为x ,则OD =x ,OF =8-x在Rt △FOD 中,222OD FD OF +=,∴2224(8)x x +=-,∴x =3∴⊙O 半径为3∵∠FBE =∠FDO =90°,∠F =∠F ,∴△FBE ∽△FDO ,∴BF BE DF OD =,∵BF =FC -BC =2,OD =3,DF =4,∴BE =32,∵点E 是AB 中点,∴AB =2BE =3在Rt △ABC 中,AC ==8.【答案】(1)F 解:∵⊙O 的半径为1.∴⊙O 的“梦之点”坐标为2222⎛⎫-- ⎪ ⎪⎝⎭和2222⎛ ⎝⎭,.又∵双曲线k y x=(k≠0)与直线y=x 的交点均为圆的“梦之点”,∴将2222⎛⎫-- ⎪ ⎪⎝⎭代入双曲线表达式中,得,1=2k xy =,∵点P 位于⊙O 内部.∴102k <<(2)解:-1≤t≤3(3)解:由“梦之点”定义可得:()11A x x ,,()22B x x ,.则21x ax ax =-+.整理得,()2110ax a x -++=,解得,11x =,21x a=.把两个根代入122x x -=中,即112a -=,解得,11a =-,213a =.当1a =-时,21y x x =-++,其顶点坐标为1524⎛⎫ ⎪⎝⎭,,当13a =时,211133y x x =-+,其顶点坐标为111.212⎛⎫ ⎪⎝⎭,9.【答案】(1)证明:连接OC ,∵AC 为切线,C 为切点,∴∠ACO =90°,即∠DCO+∠2=90°,又∵BD 是直径,∴∠BCD =90°,即∠DCO+∠1=90°,∴∠1=∠2,∵AD =CD ,OB =OC ,∴∠A =∠2,∠B =∠1,∴∠A =∠B ,∴AC =BC ;(2)解:由题意可得△DCO 是等腰三角形,∵∠CDO =∠A+∠2,∠DOC =∠B+∠1,∴∠CDO =∠DOC ,即△DCO 是等边三角形,∴∠A =∠B =∠1=∠2=30°,CD =AD =1,∴BC ===,在Rt △BCD 中,作CE ⊥AB 于点E ,在Rt △BEC 中,∠B =30°,∴CE =1BC 2=,BE =32,∴S △ABC =1AB CE 2⋅=1324⨯=.10.【答案】(1)证明:过O 作OH ⊥AB 于H ,∵∠ACB =90°,∴OC ⊥BC ,∵BO 为△ABC 的角平分线,OH ⊥AB ,∴OH =OC ,即OH 为⊙O 的半径,∵OH ⊥AB ,∴AB 为⊙O 的切线;(2)解:设⊙O 的半径为3x ,则OH =OD =OC =3x ,在Rt △AOH 中,∵tanA =34,∴OH AH =34,∴3x AH =34,∴AH =4x ,∴AO =22OH AH +=22(3)(4)x x +=5x ,∵AD =2,∴AO =OD+AD =3x+2,∴3x+2=5x ,∴x =1,∴OA =3x+2=5,OH =OD =OC =3x =3,∴AC =OA+OC =5+3=8,在Rt △ABC 中,∵tanA =BC AC ,∴BC =AC•tanA =8×34=6,∴OB =22OC BC +=2236+=35.11.【答案】(1)证明:连接OB∵AB 与O 相切于点B ,∴OB AB ⊥,∴90OBA ∠=︒∵//BD AC ,∴AOE D ∠=∠,AOB OBD ∠=∠∵OB OD =,∴D OBD ∠=∠,∴AOE AOB ∠=∠,∵OE OB =,OA OA =,∴()SAS AOE AOB ≌∴90OEA OBA ∠=∠=︒∴OE AE⊥又∵点E 在圆上,∴AE 是O 的切线.(2)解:过点O 作OH BD ⊥交BD 于点H .∵OH BD ⊥,O 为圆心,∴112DH BD ==,90OHD ∠=︒在Rt OHD 中,OH ==∵OHD AEO ∠=∠,D AOE ∠=∠,∴AOE ODH∽∴AE OH OE DH=∴2231OH OE AE DH ⨯===(3)12.【答案】(1)解:∵AB =AC ,AD ⊥BC ,∴D 是BC 的中点,又∠BEC 是直角,∴DE =12BC =3.(2)解:①如图,连接CE ,同理(1)可得DE =BD =DF =3,∴∠B =∠BED =∠ACB ,∴△BDE ∽△BAC ,∴36BE x =,∴BE =18x ,∴AE =x ﹣18x ,同理可得:AF =x ﹣18x,∴AE =AF ,∵AB =AC ,∴△AEF ∽△ABC ,∴EF AE BC AB =,∴EF =6﹣2108x ,∴y =12﹣2108x ;②当y =19225时,x =5,如图,连接AD ,∵AB =AC ,∴△ABC 的外心O 在线段AD 上,连接BO ,设⊙O 的半径为r ,则32+(4﹣r )2=r 2,∴r =258,即⊙O 的半径为258.13.【答案】(1)证明:连接CD .AC 是直径,90ADC ∴∠=︒,90DAC ACD ∴∠+∠=︒,ABD ACD ∠=∠ ,DAF ABC ∠=∠,DAF ACD ∴∠=∠,90DAF DAC ∴∠+∠=︒,90FAC ∴∠=︒,AF ∴为O 的切线(2)证明:90FAE ∠=︒ ,DF DE =,AD DE DF ∴==,DAE AED ∴∠=∠,OA OD = ,DAO ADO ∴∠=∠,ADO AED ∴∠=∠,OAD DAE ∠=∠ ,ADO AED ∴ ∽,∴AD AO AE AD=,2AD AO AE∴=⋅(3)解:如图,过点B 作BJ EC ⊥于J .AC 是直径,90ABC ∴∠=︒,1sin 3BC BAC AC ∴∠==,∴可以假设BC a =,3AC a =,BJ AC ⊥ ,90AJB ∴∠=︒,90BAC ABJ ∴∠+∠=︒,90ABJ CBJ ∠+∠=︒,CBJ BAC ∴∠=∠,1sin sin 3CJ CBJ BAC BC ∴∠=∠==,13CJ a ∴=,223BJ ∴==,DA DE = ,DAE AED CEB ∴∠=∠=∠,DAE CBE ∠=∠ ,CEB CBE ∴∠=∠,CE CB a ∴==,1233EJ EC CJ a a a ∴=-=-=,2AE AC EC a =-=,//AF BJ ,∴AF AE BJ EJ=,∴222233a a =,a ∴=,AE ∴=,3EJ =,3BJ =,6EF ∴==,2BE ==,628BF EF BE ∴=+=+=14.【答案】(1)证明:∵BD 是直径,∴∠DAB=90°.∵FG ⊥AB ,∴DA ∥FO .∴△FOE ∽△ADE .∴FO OE AD DE=,即OF•DE=OE•AD ∵O 是BD 的中点,DA ∥OH ,∴AD=2OH∴OF•DE=OE•2OH(2)解:∵⊙O 的半径为12,且OE :OF :OD=2:3:6,∴OE=4,ED=8,OF=6代入(1)中OF•DE=OE•AD ,得AD=12.∴OH=12AD=6.在Rt △OHB 中,OB=2OH ,∴∠OBH=30°,∴∠BOH=60°.∴BH=BO•sin60°=122⨯=2OHB GOB 60121=S S =6183602S ππ⨯⨯∴--⨯⨯- 阴影扇形15.【答案】(1)证明:连接OB ,∵PB 是圆O 的切线∴∠OBP=90°∵∠BOP=90°-∠P=90°-30°=60°∵OC=OB∴∠OBC=∠OCB∵∠POB=∠OBC+∠OCB=2∠OCB=60°∴∠OCB=30°=∠P∴PB=BC(2)解:过点A作AE⊥BD于点E ,∴∠AED=∠AEB=90°,∵AC是直径,∴∠ADC=90°在Rt△ADC中,tan∠DCA=634ADDC DC==,解之DC=8∴10 =在Rt△ABC中,∠ACB=30°,∴AB=1110522AC=⨯=在Rt△ADE中,∠ADE=∠ACB=30°∴DE=6×cos30°=AEB=∠ADC,∠ABE=∠ACD∴△ABE∽△CAD∴AB BEAC DC=,即5108BE=解之:BE=4∴DB=DE+BE=16.【答案】(1)AE=18 5(2)解:当圆O与△BPE的BE边相切时,点E和点G重合,则AE⊥BE∴AE是圆O的直径∴m=111892255AE=⨯=;当圆O与△BPE的BP边相切时,切点为F,连接OF∴∠OFC=∠BEC=90°∵∠OCF=∠BCE∴△OFC∽△BCE∴OF OC BE BC=在Rt△ABC中,BE⊥AC∴AB·BC=AC·BE即6×8=10BE解之:BE=245∴102485m m-=解之:m=154;当圆O与△BPE的PE边相切时,交PE的延长线于点F,切点为F,连接OF∴∠OFE=∠BEC=90°∵∠OEF=∠CEP∵点P是Rt△BEC斜边上的中线∴CP=PE∴∠ECP=∠CEP∴∠OEF=∠ECP∴△OFC∽△CBE∴OF OEBE BC=∵圆O的半径为m∴OE=185-m,OF=m∴1852485mm-=解之:m=2720;答:当圆O与△BPE一边所在的直线相切时,95m=,154m=,2720m=(3)过点F作FM⊥AB,过点F作FN⊥BC于点N易证四边形BMFN是矩形∴FN=BM,∵BH=BF∴∠1=∠2,∵∠1=∠5,∠5+∠3=90°,∠2+∠4=90°∴∠3=∠4∴AF平分∠CAB,FE⊥AC,FM⊥AB∴EF=FM在Rt△AEF和Rt△AMF中A=AA=A∴Rt△AEF≌Rt△AMF(HL)∴AE=AM=3.6∴BM=AB-AM=6-3.6=2.4即FN=2.4,∵FM∥BH∴△AFM∽△ABH∴MF AMBH AB=∴3.6365MFBH==,设MF=3x,则BH=BF=5x,在Rt△BMF 中,4x=4x=2.4解之:x=0.6∴BH=5×0.6=3∴S△BFH=11121832255BH FN⋅=⨯⨯=;;1255 17.【答案】(1)解:连接OB,如图,∵OA=OB,∴∠ABO=∠A=30°,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∴∠OBC=30°,在Rt△OBC中,cosBC OBCOB∠=,即1 cos30OB︒=,解得233 OB=,即⊙O 的半径为23 3(2)解:连接OP,设AB与QP交于点M,∵点P为 AB的中点,∴OP⊥AB,∴∠QPO+∠PMB=90°,∵PQ⊥AC,∴∠A+∠AMQ=90°,又∵∠AMQ=∠PMB,∴∠QPO=∠A=30°,在Rt△OPQ中,sinOQ QPOOP∠=,即sin30233︒=,∴2313323 OQ==(3)解:在Rt△OBC中,∵3OB =,∠OBC=30°,∠ACB=90°∴3sin 30°=3OC OB =⨯,∴233CQ CO OQ =+=,∴tan 2PQ PCA CQ ∠==18.【答案】(1)解:如图,作DF BN ⊥交BC 于F ;AM BN 、与O 切于点A B、AB AM AB BN ∴⊥⊥,.又DF BN ⊥ ,∴BAD ABC BFD ∠=∠=∠=︒,∴四边形ABFD 是矩形,12BF AD x DF AB ∴====,,BC y = ,FC BC BF y x ∴=-=-;DE 切O 于E ,DE DA x CE CB y ∴====,,则DC DE CE x y =+=+,在Rt DFC ∆中,222CD FC DF =+,即222()()12x y y x +=-+,整理为:36y x =,y ∴与x 的函数关系式是36y x=.(2)解:由(1)知36xy =,∵x y ,是方程22300t t m -+=的两个根,∴根据韦达定理知,2m xy =,即72m =;∴原方程为215360t t -+=,解得:12123t t ==,.即=3=12或123x y =⎧⎨=⎩.(3)解:如图,连接OD OE OC ,,,AD BC CD ,,是O 的切线,OE CD AD DE BC CE ∴⊥==,,,AOD ODE OBC COE S S S S ∆∆∆∆∴==,,111==(312)1245222COD COE ODE ABCD S S S S ∆∆∆∴=+⨯⨯+⨯=梯形19.【答案】(1)(2)解:∵∠ABC=120︒,四边形ABCD 内接于O ,∴∠ADC=60︒,∵O 的半径为6,∴由(1)得AC=,如图,连接AC ,作DH ⊥AC,BM ⊥AC,∴四边形ABCD 的面积=111()222AC DH AC BM AC DH BM ⋅⋅+⋅⋅=⋅+,当DH+BM 最大时,四边形ABCD 的面积最大,连接BD ,则BD 是O 的直径,∴BD=2OA=12,BD ⊥AC ,∴四边形ABCD 的面积=111222AC BD ⋅⋅=⨯=.∴四边形ABCD 的面积最大值是(3)解:存在;∵AD BM =1=千米,2AM BC ==千米,60A B ∠=∠=︒,∴△ADM ≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180︒-∠B=120︒,∴∠AMD+∠BMC=120︒,∴∠DMC=60︒,∴△CDM 是等边三角形,∴C 、D 、M 三点共圆,∵点P 在弧CD 上,∴C 、D 、M 、P 四点共圆,∴∠DPC=180︒-∠DMC=120︒,∵CD 弧的半径为1千米,∠DMC=60︒,∴CD=,∵2()0PD PC -≥,∴2()4PD PC PD PC +≥⋅,∴PD PC +≥,∴当PD=PC 时,PD+PC 最大,此时点P 在弧CD 的中点,交DC 于H ,在Rt △DPH 中,∠DHP=90︒,∠DPH=60︒,DH=12DC=32,∴1sin 60DH DP == ,∴四边形DMCP的周长最大值=DM+CM+DP+CP=2+.20.【答案】(1);3的特征值为4的点,(2)解:设点G是O∴经过一点G且弦长为4(最长弦)的直线有1条,弦长为3的直线有2条,弦长为2的直线有且只有1条, 经过点G的直线被O截得的弦长的最小值为2,=,∴关于O的特征值为4的所有点都在以O为半径的圆周上,=+分别与x,y轴交于点A、B,直线y x b()0,,B b∴-,,()A b∴==,OA OB bOBH∴∠=︒,45b>时,线段AB与以O为半径的圆相切时,点G特征值为4,当0设切点为为H,连接OH,则OH=,∴==OB,∴=b,设以O为半径的圆与y轴正半轴的交点记为1B,OB=,则1当线段AB 与以O 1B 时,可得b =,b ≤≤同理可求当0b <时,b ≤≤,综上,b b b ≤≤-≤(3)当372122t -≤≤+时,存在点R ,S ,使得3r s +=21.【答案】(1)证明:连接OC ,如图,.∵CE 为切线,∴OC ⊥CE ,∴∠OCE=90°,即∠1+∠4=90°∵DO ⊥AB ,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC ,∴∠4=∠B ,∴∠1=∠2,∴CE=FE(2)30°;22.5°22.【答案】(1)证明:∵PE AD ⊥,PF DC ⊥,∴90PED PFD ∠∠==︒,∴90ADC PED PFD ∠∠∠===︒,∴四边形DEPF 是矩形,∵90ADC ∠=︒,∴AC 是圆O 的直径,∴90ABC ∠=︒,∵AB BC =,∴45ACB BCA ∠=∠=︒, AB BC=,∴45ADB CDB ∠=∠=︒,∴45DPE ADB ∠∠==︒,∴PE DE =.∴四边形CEPF 是正方形;(2)解:∵ 2AD CD=,AC 是圆O 的直径,∴ AD 的度数为120︒, AD 的度数为60︒,∴30DAC ∠=︒,60DCA ∠=︒,∴12PE sin DAC AP ∠==,3602PF sin DCA sin PC ∠=︒==,∴2AP PE =,233PC PF =,∵2428AC AP PC r =+==⨯=,正方形DEPF 中,PE PF =,∴23283PF PF +=,∴2PF =.(3)解:在ED 上取点G ,使EG CF =,连接PG ,由(1)得:PE PF =,90GEP PFC ∠∠==︒,∴GPE CPF ≌,∴PG PC x ==,GPE FPC ∠∠=,CEP PFC S S = ,∴阴影部分的面积等于APG ABC S S + ,∵90EPF ∠=︒,∴90APE CPF ∠∠+=︒,∴90GPE APE ∠∠+=︒,即90APG ∠=︒,∵8AC =,∴8AP x =-,∴()11822APG S AP PG x x =⋅=- ,∵ABC 是等腰直角三角形,8AC =,∴AB BC ==,∴2111622ABC S AB ==⨯= ,即阴影部分的面积()()21181642422y x x x =-+=--+,∴当4x =时,y 有最大值,最大值为24.。

成都市中考核心考点 -第五讲压轴题-圆(20题)(A卷)

成都市中考核心考点 -第五讲压轴题-圆(20题)(A卷)

成都中考核心考点(成都版)简介--只要抓住核心考点,就能拿到卷子上80%的分数在历年的成都中考数学试题中,核心考点虽然只占总考点的20%,却占总分值的80%。

掌握了核心考点,相当于用20%的时间来把握80%的分数,在最短的时间内实现快速提分。

本文共分两轮复习:第一轮过关核心考点聚焦常考考点,五年真题回顾,三年诊断精选。

本文分13讲,由成都市中考数学A卷和B卷难度区分度较大,A卷1-19题较基础,大部分学生都容易掌握,选题主要以中考题和诊断题为主,20题-28题有一定综合性,选题除了中考题和诊断题外,还选择了大量的模拟题和改编题。

第一讲:考点1-考点6,第二讲:考点7-考点10,第三讲:考点11-考点14,第四讲:考点15-考点19,第五讲:考点20,第六讲:考点21,………第十三讲:考点28.(从考点20开始,每个考点一讲)。

第二轮过关B卷攻略专攻B卷重难,五年考点扫描,专题考向攻略。

暂定:B填空7-8讲,应用题1讲,几何综合3讲,抛物线综合5讲考点20:圆的综合命题方向:A 卷20题,2015年以前主要考察三角形和四边形,2015年开始考圆,也就是将20题和27题交换了位置,这意味着加大了三角形和四边形的考察难度,适当降低了圆的考察难度。

主要考察知识点:圆的基本性质定理,结合三角形的全等、相似等,以及平面几何的基本性质(16年考察过角平分线课外补充的性质:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例)。

五年真题1. (18成都)如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长;(3)若8BE =,5sin 13B =,求DG 的长.2. (17成都) 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值;(3)若1EA EF ==,求圆O 的半径.3.(16成都)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接BD ,BE . (1)求证:△ABD ∽△AEB ;(2)当43AB BC =时,求tanE ;(3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F .若AF =2,求⊙C 的半径。

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1.(2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A.3B.4C.5D.6第1题图2.(2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A.20°B.40°C.50°D.80°3.(2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A.56°B.33°C.28°D.23°第3题图4.(2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A.40°B.50°C.60°D.70°5.(2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°第5题图6.(2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD,则∠CBD的度数是()第6题图A.25°B.30°C.35°D.40°7.[新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A.674寸 B.25寸C.24寸D.7寸第7题图8.(2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A.23°B.24°C.25°D.26°9.(2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为()第9题图A.20mB.28mC.35mD.40m10.(2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A.1B.2C.23D.4第10题图11.如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A.12B.10C.8D.612.如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13.(2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14.(2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°第14题图15.如图,正方形ABCD内接于⊙O,点E为弧AB的中点,连接DE与AB交于点F.若AB=1,记△ADF的面积为S1,△AEF的面积为S2,则S1S2的值为________.第15题图16.如图,以原点O为圆心的圆交x轴于A,B两点,交y轴的正半轴于点C,且点A的坐标为(-2,0),D为第一象限内⊙O上的一点,若∠OCD=75°,则AD的长为________.第16题图参考答案与解析1.D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2.B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵ AC = AC ,∴∠D =∠B =40°.3.C【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°.4.B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5.D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°.6.A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13∠BOD =50°,∴∠CBD =12∠COD =25°.7.C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72=24(寸).8.D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9.B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10.B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23,∴BE =12BC =3.在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11.B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图12.552;552-5【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12AB =32.由勾股定理,得OC =OB 2-BC 2=552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12=5,∴点D 到AB 的距离的最小值为552-5.第12题解图13.(1)证明:由圆周角定理,得∠ACB =12∠AOB ,∠BAC =12∠BOC .∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE .∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5,∴BE =2,DB =5.在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2=1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52,即⊙O 的半径是52.第13题解图14.D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15.2(2+1)【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12.∵△ADF 与△AEF 等高,∴S 1S 2=S △ADF S △AEF=DF EF =2(2+1).第15题解图16.23【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23.第16题解图。

成都市中考核心考点 - 第十二讲 几何类综合压轴题(27题)(B卷)

成都市中考核心考点 - 第十二讲  几何类综合压轴题(27题)(B卷)

成都中考核心考点(成都版)简介--只要抓住核心考点,就能拿到卷子上80%的分数在历年的成都中考数学试题中,核心考点虽然只占总考点的20%,却占总分值的80%。

掌握了核心考点,相当于用20%的时间来把握80%的分数,在最短的时间内实现快速提分。

本文共分两轮复习:第一轮过关核心考点聚焦常考考点,五年真题回顾,三年诊断精选。

本文分13讲,由成都市中考数学A卷和B卷难度区分度较大,A卷1-19题较基础,大部分学生都容易掌握,选题主要以中考题和诊断题为主,20题-28题有一定综合性,选题除了中考题和诊断题外,还选择了大量的模拟题和改编题。

第一讲:考点1-考点6,第二讲:考点7-考点10,第三讲:考点11-考点14,第四讲:考点15-考点19,第五讲:考点20,第六讲:考点21,………第十三讲:考点28.(从考点20开始,每个考点一讲)。

第二轮过关B卷攻略专攻B卷重难,五年考点扫描,专题考向攻略。

暂定:B填空7-8讲,应用题1讲,几何综合3讲,抛物线综合5讲考点27、几何图形综合(压轴)命题方向:主要以三角形和四边形为基架,从全等过渡到相似,从定点过渡到动点,求线段、比例、探究数量关系; 五年真题1. (18成都)在Rt ABC ∆中,90ABC ∠=︒,7AB =,2AC =,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q . (1)如图1,当P 与A ′重合时,求ACA ∠′的度数;(2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长;(3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.2.(16成都)如图①,△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,点D 在AH 上,且DH =CH ,连接BD . (1)求证:BD=AC ;(2)将△BHD 绕点H 旋转,得到△EHF (点B ,D 分别与点E ,F 对应),连接AE .ⅰ)如图②,当点F 落在AC 上时(F 不与C 重合),若BC =4,tanC =3,求AE 的长;ⅱ)如图③,当△EHF 是由△BHD 绕点H 逆时针旋转30°得到时,设射线CF 与AE 相交于点G ,连接GH ,试探究线段GH 与EF 之间满足的等量关系,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


【2017成都中考】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
的中点,求的值;)若2A为EH(的半径.EA=EF=1,求圆O3()若
【2016成都中考】如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接ED,BE.
(1)求证:△ABD∽△AEB;
;时,求tanE(2)当=
C⊙F点,若AF=2,求BE平,作)的2条件下∠BAC的分线,与交于)在((3 径的
半.
【2015成都中考】如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由;
(3)若AB=1,求HG?HB的
值.
O的垂线AB,过C作成都中考】如图,在⊙AC=2BC的内接△ABC中,∠ACB=90°,2014【⌒ll 是E.设P交⊙O于另一点D,垂足为上异于 A,C的一个动点,射线AP交,连接于点FAC G.【来源:21·世纪·教育·网】PDPD,交AB于点PC与
;)求证:△PAC∽△PDF1(⌒⌒,求PD2()若AB=5,的长; = BPAP AG?x tan?AFD?y,)在点(3P,运动过程中,设BGxxy的取值范围)(不要求写出与之间的函数关系式求.
OOBDABCD25?ACr?于点,四边形内接圆⊙2013【成都中考】如图,⊙,的半径CAPABDPDA???H.
为,延长线上的一点,且
OPD的位置关系,并说明理由:)试判断与⊙(1?3?PAAH??ADB tan BD,(2,求)若的长;34ABCD 的面积)的条件下,求四边形. (3)在(2
【2012成都中考】如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
2KG的位置关系,并说明理由;AC与EF(2)若,试判断=KD·GE
323,求AK=FG的长.23 ()在()的条件下,若sinE= ,5
长为半径作为圆心,OAAC的中点O【2011成都中考】已知:如图,以矩形ABCD的对角线、ACDH 分别与∥D作DHKB,⊥经过OB、D两点,过点B作BK A C,垂足为K。

过⊙O,⊙ H.、、FG、、⊙ABO及CB的延长线相交于点E AE=CK;(1)求证:
1aaa为大于零的常数),,AD=求BK ((2) 如果AB=3的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
CABABCCE??Oe FAB是于成都中考】【2010已知:如图,,为直径,内接于
弦,?BCECGCEAD PADBD、、,的中点,连结并延长交分别交的延长线于点于点,连结Q.ACQ?P 的外心;)求证:是(1
3,CF??8tan?ABCCQ的长;(2)若,求42?FPg?PQ)FGFP(.)求证:( 3
【2009成都中考】如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC 交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.
F CD的位置关系,写出你的结论并证明; (1)判断0G与
D AE=BF;(2)求证E2)??DE?3(2OG的面积。

,求⊙O3()若ABO
【2008成都中考】如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优?AB 弧,D、点EM.连结AC、BC,分别与⊙相交于点B上的一个动点(不与点A、点重合)3.
若AB=2连结DE.AD=x(0<x<3)∠tanABC=y,,那么在点C)如果记(DE2的度数;求∠(1)C()求的长;3DC y. x的运动过程中,试用含的代数式表示。

相关文档
最新文档