人教版八下数学19.1.1变量与函数 课时1 常量与变量教案+学案
人教版初二数学下册《19.1.1 第1课时 常量与变量》教案

(1)v=;19.1函数19.1.1变量与函数第1课时常量与变量1.了解常量、变量的概念;2.掌握在简单的过程中辨别常量和变量的方法,感受在一个过程中常量和变量是相对存在的.(重点)一、情境导入大千世界处在不停的运动变化之中,如何来研究这些运动变化并寻找规律呢?数学上常用常量与变量来刻画各种运动变化.二、合作探究探究点一:常量与变量【类型一】指出关系式中的常量与变量设路程为s km,速度为v km/h,时间为t h,指出下列各式中的常量与变量:s8(2)s=45t-2t2;(3)v t=100.解析:根据变量和常量的定义即可解答.解:(1)常量是8,变量是v,s;(2)常量是45,2,变量是s,t;(3)常量是100,变量是v,t.方法总结:常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.【类型二】几何图形中动点问题中的常量与变量=x cm.∵∠BAC=45°,∴S阴影·AM·h=AM2=x2,则y=x2,0≤x≤10.其中的常量为,22222=gt2(其中g取9.8m/s2);(3)h=gt2(其中g取9.8m/s2),常量是g,变量是h,t;如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.解析:根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA的长度可得出y与x的关系.再根据变量和常量的定义得出常量与变量.解:由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM11111=变量为重叠部分的面积y cm2与MA的长度x cm.方法总结:通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.探究点二:确定两个变量之间的关系【类型一】区分实际问题中的常量与变量分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;(2)以固定的速度v米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t-4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h12(4)已知橙子每千克的售价是1.8元,则购买数量x千克与所付款W元之间的关系式是W=1.8x.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.解:(1)S=4πR2,常量是4π,变量是S,R;(2)h=vt-4.9t2,常量是v,4.9,变量是h,t;1122(4)W=1.8x,常量是1.8,变量是x,W.方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.【类型二】探索规律性问题中的常量与变量按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系式吗?解析:由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x-1)=4x+2.解:(1)有2个变量;(2)能,关系式为y=4x+2.方法总结:解答本题关键是依据图形得出变量x的变化规律.三、板书设计1.常量与变量数值发生变化的量称为变量,数值始终不变的量为常量.2.常量与变量的区分整个教学过程中,作为教学主导的老师需特别注重对学生感受知识与处理问题的能力与结果的即兴评价.应引导学生在学习中多举例,多类比,多思考,多体味,以此激发和培养学生的学习兴趣,理解和接受常量与变量的概念,改变对概念下程式化的定义,切实提高学生的学习兴趣,降低函数学习入门的难度.。
人教版八年级下册数学19.1.1 第1课时 常量与变量导学案

第十九章 函数青海一中 李清19.1 函数19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: . 二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 .3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ;(2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.____________________________________________________________ ____________________________________________________________探究点1:常量与变量问题1:一辆汽车以60千米/时的速度匀速行驶,行驶里程为s 千米.行驶时间为t 小时.(1)请同学们根据题意填写下表:(2)试用含t 的式子表示s,则s= ;(3)在以上这个过程中,变化的量有 ,不变化的量有__________. 问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出31张,三场电影的票房收入各多少元?设一场电影售票x 张,t/小时 1 2 3 4 5 S/千米课堂探究教学备注配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片7-16)票房收入y元.(1)请同学们根据题意填写:早场电影的票房收入为元;日场电影的票房收入为元;晚场电影的票房收入为元;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.(3)试用含x的式子表示y,则y= ;这个问题反映了票房收入____随售票张数_____的变化过程.问题3:你见过水中涟漪吗?如图所示,形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面积S分别为多少?(1)填空:当圆的半径为10cm时,圆的面积为 cm2;当圆的半径为20cm时,圆的面积为 cm2;当圆的半径为30c时,圆的面积为 cm2;当圆的半径为r时,圆的面积S= ;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.要点归纳:在一个变化过程中,数值发生变化的量为,数值始终不变的量为 .例1 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5/千克,买a千橘子的总价为m元,其中常量是________,变量是________;(2)周长C与圆的半径r之间的关系式是C=r2π,其中常量是________,变量是________;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式52 y h =中,其中常量是________,变量是________. 变式题阅读并完成下面一段叙述:(1)某人持续以a 米/分的速度用t 分钟时间跑了s 米,其中常量是________,变量是________.(2)s 米的路程不同的人以不同的速度a 米/分各需跑的时间为t 分,其中常量是________,变量是________.(3)根据上面的叙述,写出一句关于常量与变量的结论:_________________________.方法总结:区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.探究点2:确定两个变量之间的关系例2.弹簧的长度与所挂重物有关.如果弹簧原长为10cm ,每1kg 重物使弹簧伸长0.5cm ,试填下表: 怎样用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)?变式题:如果弹簧原长为12cm ,每1kg 重物使弹簧压缩0.5cm ,则用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)为________. . 写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分钟,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.二、课堂小结 常量与变量的概念常量 在一个变化过程中,数值________的量为变量变量在一个变化过程中,数值________的量为变量 易错提醒 在不同的条件下,常量与变量是相对的1.若球体体积为V ,半径为R ,则343V R π=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a (元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行使时间t (小时)的关系是________,其中的常量是________,变量是________.4.表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳高度y (单位:m )与下落高的关系,据表可以写出的一个关系式是 .50 80 100 15025405075当堂检测教学备注 配套PPT 讲授5.当堂检测 (见幻灯片19-21)5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式.完成上表,并写出瓶子总数y 与层数x 之间的关系式.1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。
八年级数学下册 19.1.1 变量与函数(第1课时)教案 新人教版(2021学年)

广东省肇庆市高要区金利镇八年级数学下册19.1.1变量与函数(第1课时)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省肇庆市高要区金利镇八年级数学下册19.1.1 变量与函数(第1课时)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省肇庆市高要区金利镇八年级数学下册19.1.1变量与函数(第1课时)教案(新版)新人教版的全部内容。
变量与函数教学内容人教版八年级下册(课题)变量与函数教学目标(一)知识与技能:掌握常量和变量、自变量和因变量(函数)基本概念(二)数学思考:通过实际问题,引导学生直观感知,领悟函数基本概念的意义(三)问题解决:了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系(四)情感态度:引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.教学重点:常量和变量、自变量和因变量(函数)基本概念教学难点:函数关系的三种方法:解析法、列表法、图象法教具准备:多媒体课件教学时数:2课时教学过程:第 1 课时一、基本训练激趣导入创设情境在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题1如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、提出目标指导自学探究归纳问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取"的存款方式规定的年利率:观察上表,说说随着存期x 的增长,相应的年利率y 是如何变化的.解 随着存期x 的增长,相应的年利率y 也随着增长.三、合作学习 引导发现问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察上表回答:(1)波长l和频率f 数值之间有什么关系?(2)波长l 越大,频率f 就________.解 (1) l 与 f 的乘积是一个定值,即l f=300 000,或者说ﻩﻩ l300000 f . (2)波长l 越大,频率f 就 越小 .问题4 圆的面积随着半径的增大而增大.如果用r 表示圆的半径,S 表示圆的面积则S 与r 之间满足下列关系:S =_________.利用这个关系式,试求出半径为1 cm 、1.5 cm 、2 cm 、2。
人教版八年级下册第十九章19.1.1变量与函数(第1课时)教案设计

第十九章19.1.1变量与函数(第1课时)教学内容:初中数学人教版八年级下册第十九章一次函数P70-P72。
一、教学目标:(一)、知识与技能目标1、理解变量、常量的概念及其相互关系;2、会识别一个变化过程中,哪些量是变量,哪些量是常量;3、学会用含一个变量的代数式表示另一个变量。
(二)、过程与方法目标1、通过探索变化过程中的数量关系和变化规律来了解常量、变量的意义;2、逐步感知变量间的关系。
(三)、情感、态度与价值观目标1、以生活为支点,以实事求是的态度培养独立思考的习惯。
二、教学重点、难点重点:认识变量、常量。
难点:用含有一个变量的式子表示另一个变量.三、教学过程:(一)、创设情境,引出问题情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时。
1.请同学们分析题意、认真思考后填写下表:2.在以上这个过程中,有几个量?变化的量是什么?没有变化的量是什么?3.试用含t的式子表示s。
下面我们来共同探究和解决这些问题。
(二)、新课导入学生分组探究后,通过学生的回答,总结:从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60 千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s(千米)与时间t(小时)之间有关系:s=60t.其中里程s 与时间t是变化的量,速度60•千米/小时是没有变化的量。
这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化而变化过程。
现实生活中有很多类似的问题,都是反映不同事物的变化过程的,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时。
(三)、例题例1、每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元,y的值随x的值的变换而变化吗?怎样用含x的式子表示y?例2、画出一个半径r为10cm的圆,该圆的面积s是多少?r分别是20cm、30cm时,s分别是多少?s的值随r的值的变换而变化吗?怎样用含r的式子表示s?引导学生通过合理、正确的思维方法探索出变化规律,启发学生经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论解:1、早场电影票房收入:150×10=1500(元);日场电影票房收入:205×10=2050(元);晚场电影票房收入:310×10=3100(元);y的值会随x的值的变换而变化;关系式:y=10x。
人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。
学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。
本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。
但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。
因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。
三. 教学目标1.理解变量的概念,掌握常量与变量的区别。
2.理解函数的定义,掌握函数的表示方法。
3.能够运用变量和函数的知识解决实际问题。
四. 教学重难点1.重点:变量、函数的概念及其表示方法。
2.难点:函数概念的理解,函数表示方法的应用。
五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。
2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。
3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。
2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。
通过观察、讨论,让学生初步理解变量概念。
2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。
接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。
3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。
最新人教版八年级数学下册精品教案19.1.1 第1课时 常量与变量

19.1 函 数19.1.1 变量与函数 第1课时 常量与变量1.了解常量、变量的概念;2.掌握在简单的过程中辨别常量和变量的方法,感受在一个过程中常量和变量是相对存在的.(重点)一、情境导入大千世界处在不停的运动变化之中,如何来研究这些运动变化并寻找规律呢?数学上常用常量与变量来刻画各种运动变化.二、合作探究探究点一:常量与变量【类型一】 指出关系式中的常量与变量设路程为s km ,速度为v km/h ,时间为t h ,指出下列各式中的常量与变量:(1)v =s 8;(2)s =45t -2t 2; (3)v t =100.解析:根据变量和常量的定义即可解答. 解:(1)常量是8,变量是v ,s ; (2)常量是45,2,变量是s ,t ; (3)常量是100,变量是v ,t .方法总结:常量就是在变化过程中不变的量,变量就是可以取到不同数值的量. 【类型二】 几何图形中动点问题中的常量与变量如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.解析:根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系.再根据变量和常量的定义得出常量与变量.解:由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.方法总结:通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.探究点二:确定两个变量之间的关系【类型一】区分实际问题中的常量与变量分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;(2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t-4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=12gt2(其中g取9.8m/s2);(4)已知橙子每千克的售价是1.8元,则购买数量x千克与所付款W元之间的关系式是W=1.8x.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.解:(1)S=4πR2,常量是4π,变量是S,R;(2)h=v0t-4.9t2,常量是v0,4.9,变量是h,t;(3)h=12gt2(其中g取9.8m/s2),常量是12g,变量是h,t;(4)W=1.8x,常量是1.8,变量是x,W.方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.【类型二】探索规律性问题中的常量与变量按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系式吗?解析:由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x-1)=4x+2.解:(1)有2个变量;(2)能,关系式为y=4x+2.方法总结:解答本题关键是依据图形得出变量x的变化规律.三、板书设计1.常量与变量数值发生变化的量称为变量,数值始终不变的量为常量.2.常量与变量的区分整个教学过程中,作为教学主导的老师需特别注重对学生感受知识与处理问题的能力与结果的即兴评价.应引导学生在学习中多举例,多类比,多思考,多体味,以此激发和培养学生的学习兴趣,理解和接受常量与变量的概念,改变对概念下程式化的定义,切实提高学生的学习兴趣,降低函数学习入门的难度.。
人教版数学八年级下册19.1.1第1课时《 变量》教学设计

人教版数学八年级下册19.1.1第1课时《变量》教学设计一. 教材分析人教版数学八年级下册19.1.1第1课时《变量》是初中数学中一个重要的概念。
这部分内容主要介绍了变量的概念、分类及表示方法。
通过这部分的学习,学生能够理解变量在数学中的地位和作用,掌握变量的表示方法,为今后的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本课时,已具备了一定的数学基础,如代数式的知识。
但变量作为一个抽象的概念,对学生来说较为陌生,需要通过具体的生活实例来引导学生理解和掌握。
同时,学生对于新知识的学习兴趣和积极性较高,但部分学生可能在学习过程中存在一定的困难。
三. 教学目标1.知识与技能:让学生理解变量的概念,掌握变量的表示方法,能运用变量表示实际问题。
2.过程与方法:通过生活实例,培养学生从实际问题中抽象出变量的能力,发展学生的数学思维。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生积极思考、合作交流的良好学习习惯。
四. 教学重难点1.重点:变量概念的理解,变量表示方法的掌握。
2.难点:从实际问题中抽象出变量,理解变量在数学中的地位和作用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解变量概念,感受变量在实际问题中的应用。
2.合作学习法:分组讨论,让学生在合作交流中巩固变量知识,提高解题能力。
3.问题驱动法:设置问题,引导学生思考,激发学生学习兴趣,突破教学难点。
六. 教学准备1.准备相关的生活实例,如身高、体重、温度等,用于引导学生理解变量。
2.准备课件,展示变量概念、表示方法及应用。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如身高、体重、温度等,引导学生思考:这些量是否发生变化?它们有什么共同特点?从而引出变量概念。
2.呈现(10分钟)通过课件,展示变量的概念、表示方法及应用。
让学生初步理解变量,并学会用变量表示实际问题。
3.操练(10分钟)分组讨论,让学生从实际问题中抽象出变量,并用变量表示。
人教版八年级下册19.1.1变量与函数(教案)

1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是指数值可变的量,而函数则是一种特殊的关系,描述了一个变量随另一个变量变化而变化的规律。它是数学模型中的重要组成部分,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在描述物体运动中的应用,以及如何帮助我们解决问题。
举例:在解析式y = f(x)中,x为自变量,y为因变量,自变量是独立变量,而因变量随自变量变化。
(2)掌握函数的定义:使学生掌握函数的定义,了解函数的三种表示方法(列表法、解析式法、图象法)。
举例:给出一个具体函数,如y = 2x + 1,让学生学会用列表法、解析式法和图象法表示。
(3)学会绘制函数图像:培养学生通过描点、连线等方式绘制函数图像的能力。
2.教学难点
(1)函数抽象思维的培养:学生在从具体问题中抽象出函数关系时,可能存在一定的困难。
突破方法:通过生活中的实例,如气温随时间变化、物品价格与数量的关系等,引导学生理解函数的抽象概念。
(2)函数性质的判断:如何判断函数的单调性、奇偶性等性质,是学生学习的难点。
突破方法:通过具体函数的图象和解析式,引导学生观察、分析、归纳函数的性质,如奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
5.提高学生的数学运算能力:在学习函数相关知识的过程中,加强学生的运算训练,提高运算速度和准确性。
本节课将紧紧围绕核心素养目标,结合课本内容,注重培养学生的综合运用能力,为学生的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)理解变量的概念:强调自变量与因变量的区别,使学生能够准确判断变量之间的关系。
五、教学反思
在今天的教学中,我发现同学们对变量与函数的概念有了初步的认识,但仍然存在一些理解和应用上的困难。首先,对于变量的概念,尽管我通过生活中的实例进行了讲解,但部分同学在区分自变量和因变量时仍然感到困惑。在今后的教学中,我需要进一步强化变量的定义,并通过更多的实例来帮助同学们理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学第19章一次函数19.1函数 19.1.1 变量与函数课时1 常量与变量教案【教学目标】知识与技能目标1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.过程与方法目标经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.情感、态度与价值观目标引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.【教学重点】能够区分同一个问题中的常量与变量,会用式子表示变量间的关系.【教学难点】用含有一个变量的式子表示另一个变量.【教学过程设计】一、情境导入大千世界处在不停的运动变化之中,如何来研究这些运动变化并寻找规律呢?数学上常用常量与变量来刻画各种运动变化.二、合作探究知识点一:常量与变量【类型一】指出关系式中的常量与变量例1 设路程为s km,速度为v km/h,时间为t h,指出下列各式中的常量与变量:(1)v=s 8;(2)s=45t-2t2;(3)v t=100.解析:根据变量和常量的定义即可解答.解:(1)常量是8,变量是v,s;(2)常量是45,2,变量是s,t;(3)常量是100,变量是v,t.方法总结:常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.【类型二】几何图形中动点问题中的常量与变量例2如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.解析:根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA的长度可得出y与x的关系.再根据变量和常量的定义得出常量与变量.解:由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM=x cm.∵∠BAC=45°,∴S阴影=12·AM·h=12AM2=12x2,则y=12x2,0≤x≤10.其中的常量为12,变量为重叠部分的面积y cm2与MA的长度x cm.方法总结:通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.知识点二:确定两个变量之间的关系【类型一】区分实际问题中的常量与变量例3分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;(2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t-4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=12gt2(其中g取9.8m/s2);(4)已知橙子每千克的售价是1.8元,则购买数量x千克与所付款W元之间的关系式是W=1.8x.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.解:(1)S=4πR2,常量是4π,变量是S,R;(2)h=v0t-4.9t2,常量是v0,4.9,变量是h,t;(3)h=12gt2(其中g取9.8m/s2),常量是12g,变量是h,t;(4)W=1.8x,常量是1.8,变量是x,W.方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.【类型二】探索规律性问题中的常量与变量例4按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系式吗?解析:由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x-1)=4x+2.解:(1)有2个变量;(2)能,关系式为y=4x+2.方法总结:解答本题关键是依据图形得出变量x的变化规律.三、教学总结本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要的意义.1.确定事物变化中的变量与常量.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系式.[设计意图]通过小结、课堂训练和学生反思,进一步理顺学生的学习思路,加深对变量、常量有关概念的理解.【板书设计】19.1函数19.1.1 变量与函数课时1 常量与变量1.常量与变量数值发生变化的量称为变量,数值始终不变的量为常量.2.常量与变量的区分变量:在一个变化过程中,数值发生变化的量为变量.常量:在一个变化过程中,数值始终不变的量为常量.3.例题讲解:例1例2[学习检测]1.写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(小时)的关系式.解析:先根据实际问题确定所给问题的关系式,再根据变量和常量的概念进行求解.解:(1)C=2πr,2π是常量,r,C是变量.(2)s=60t,60是常量,t,s是变量.2.若球体体积为V,半径为R,则V=πR3.其中变量是、,常量是.解析:根据变量和常量的概念进行求解,解题时注意π是一个常量.答案:V R π3.学校购买某种型号的钢笔作为学生的奖品,钢笔的价格是4元/支,则总金额y(元)与购买支数x(支)的关系式是,其中变量是,常量是.解析:∵钢笔的价格是4元/支,∴总金额y (元)与购买支数x (支)的关系式是y =4x ,∴变量为x ,y ,常量为4.答案:y =4x x ,y 44.在圆的周长公式 C =2πR 中,下列说法正确的是 ( )A .π,R 是变量,2 是常量B . R 是变量,C ,2,π是常量C .C 是变量,2,π,R 是常量D . C ,R 是变量,2,π是常量解析:∵C =2πR ,∴变量为C ,R ,常量为2,π. 故选D .5.要画一个面积为40cm 2的长方形,其长为xcm ,宽为ycm ,在这一变化过程中,常量与变量分别为( )A.常量为40,变量为x ,y;B.常量为40、y ,变量为x;C.常量为40、x ,变量为y;D.常量为x 、y ,变量为40;解析:根据常量与变量的定义即可判断。
由题意得,常量为20,变量为x ,y ,故选A.【点评】解答本题的关键是熟记常量是指不变的量,变量是指变化的量。
6.分别指出下列各关系式中的变量与常量.(1)三角形的一边长为 5 cm,它的面积S (cm 2)与这边上的高h (cm)的关系式是S =h ;(2)若直角三角形中的一个锐角的度数为α(度),则另一个锐角β(度)与α(度)间的关系式是β=90-α.解:(1)∵S =h ,∴变量为S ,h ,常量为.(2)∵β=90-α ,∴变量为β,α,常量为-1,90.7.要画一个面积为10 cm 2的圆,圆的半径应取多少?圆的面积为20 cm 2呢?怎样用含有圆面积S 的式子表示圆半径r ?解:根据圆的面积公式S =πr 2 ,得r =,面积为10 cm 2的圆半径r =≈1.78(cm).面积为20 cm 2的圆半径r =≈2.52(cm).用圆面积S 的式子表示圆半径r 的关系式为r =S .【教学反思】在本节数学课的教学中,作为教学主导的老师需特别注重对学生感受知识与处理问题的能力与结果的即兴评价.应引导学生在学习中多举例,多类比,多思考,多体味,以此激发和培养学生的学习兴趣,理解和接受常量与变量的概念,改变对概念下程式化的定义,切实提高学生的学习兴趣,降低函数学习入门的难度.人教版八年级下册数学第19章 平行四边形19.1函数 19.1.1 变量与函数课时1 常量与变量学案【学习目标】1.了解常量与变量的概念,掌握常量与变量之间的联系与区别;2.学会用含一个变量的代数式表示另一个变量.【教学重点】能够区分同一个问题中的常量与变量.【教学难点】会用式子表示变量间的关系.【自主学习】一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: .二、新知预习1.韩静去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 .3.自主归纳:变量:在一个变化过程中,数值________的量为变量.常量:在一个变化过程中,数值________的量为常量.三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S与宽x之间的关系S=2x;(2)一批香蕉每千克6元,则总金额y(元)与销售量x(千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s(米)与时间t(秒)之间的关系式,并指出其中的变量和常量.四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:常量与变量问题1:一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.(1)请同学们根据题意填写下表:t/小时 1 2 3 4 5S/千米(2)试用含t的式子表示s,则s= ;(3)在以上这个过程中,变化的量有,不变化的量有__________.问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.(1)请同学们根据题意填写:早场电影的票房收入为元;日场电影的票房收入为元;晚场电影的票房收入为元;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.(3)试用含x的式子表示y,则y= ;这个问题反映了票房收入____随售票张数_____的变化过程.问题3:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面积S分别为多少?(1)填空:当圆的半径为10cm时,圆的面积为cm2;当圆的半径为20cm时,圆的面积为cm2;当圆的半径为30cm时,圆的面积为cm2;当圆的半径为r时,圆的面积S= ;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.要点归纳:在一个变化过程中,数值发生变化的量为,数值始终不变的量为.【典例探究】例1指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a千橘子的总价为m元,其中常量是________,变量是________;(2)周长C与圆的半径r之间的关系式是C=r2π,其中常量是________,变量是________;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式52 y h =中,其中常量是________,变量是________.变式题阅读并完成下面一段叙述:(1)某人持续以a米/分的速度用t分钟时间跑了s米,其中常量是________,变量是________.(2)s米的路程不同的人以不同的速度a米/分各需跑的时间为t分,其中常量是________,变量是________.(3)根据上面的叙述,写出一句关于常量与变量的结论:_________________________. 方法总结:区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.要点归纳:平行四边形的对边____________;平行四边形的对角___________.知识点2:确定两个变量之间的关系例2弹簧的长度与所挂重物有关.如果弹簧原长为10cm,每1kg重物使弹簧伸长0.5cm,试填下表:怎样用含重物质量m(kg)的式子表示受力后的弹簧长度L(cm)?变式题:如果弹簧原长为12cm,每1kg重物使弹簧压缩0.5cm,则用含重物质量m(kg)的式子表示受力后的弹簧长度L(cm)________.【跟踪练习】写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x吨,月应交水费为y元.(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t分钟,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径的比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y本.【学习检测】1.甲、乙两地相距s千米,某人行完全程所用的时间t(小时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中错误的是( )A.s是变量B.t是变量C.v是变量D.s是常量A(解析:某人行完全程,甲、乙两地距离不变,故s是常量,因此A不正确.)2.王丽用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系式是( )A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+50C(解析:单价是8元的笔记本,买这种笔记本x本用了8x元,故Q=50-8x.故选C.)3.若球体体积为V ,半径为R ,则343V R π=,其中变量是________、________,常量是________.4.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a (元)的关系式是________,其中变量是________,常量是________.5.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,那么油箱内剩余油量Q (升)与行驶时间t (小时)的关系式是 ,其中的常量是________,变量是________.Q =40-5t 40,5 Q ,t(解析:根据剩余油量=总油量-已用油量进行求解.)6.长方形相邻两边长分别为x ,y ,面积为30,则用含x 的式子表示y 为 ,则这个问题中, 是常量; 是变量.y =x30; 30; x , y (解析:由长方形的面积=长×宽进行求解.) 7.表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳8.现有笔记本500本,学生x 人,若每人5本,则余下y 本笔记本,用含x 的式子表示y 为y = ,其中常量是 ,y 和x 都是 量.500-5x 500,-5 变(解析:根据剩余笔记本数=总的笔记本数-已发的笔记本数进行求解.)9.夏季高山上温度从山脚起每升高100米降低0.7 ℃,已知山脚下的温度是23 ℃,则温度y (℃)与上升高度x (米)之间的关系式为 .y =23-x10.根据下列题意写出适当的关系式,并指出其中的变量与常量.(1)多边形的内角和W 与边数n 的关系;(2)甲、乙两地相距y 千米,一自行车以每小时10千米的速度从甲地驶向乙地,试用行驶时间t (小时)表示自行车离乙地的距离s (千米).解:(1)W =(n -2)×180°,变量为W ,n ;常量为-2,180°.(2)s=y-10t,变量为s,t;常量为-10,y.11.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.份数/份 1 2 3 4 …价钱/元…x与y之间的关系式是.0.40.81.21.6y=0.4x(解析:根据总金额=单价×数量进行求解.)12.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y与层数x之间的关系式.x12345y完成上表,并写出瓶子总数y 与层数x之间的关系式.13.圆柱形物体如下图(横截面)那样堆放.试确定圆柱形物体的总数y与层数x之间的关系式.解析:要求变量间的关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.解:由题意可知:堆放1层,总数y=1,堆放2层,总数y=1+2,堆放3层,总数y=1+2+3,…,堆放x层,总数y=1+2+3+…+x,即y=x(x+1).。