二次函数中有关三角形面积的计算

合集下载

二次函数中三角形面积问题

二次函数中三角形面积问题

二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。

解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。

二次函数之“铅垂法”求三角形面积

二次函数之“铅垂法”求三角形面积

二次函数之“铅垂法”求三角形面积求三角形面积往往用公式12S a h∆=或1sin2S ab C∆=进行计算。

在二次函数里,有时用公式求三角形面积有一定的难度,我们不妨考虑用“铅垂法”来解决。

图1 图2作法:1、作铅直线PM交线段AB于点M;2、分别过A、B两点作PM的垂线段。

计算:如图1:S△PAB= S△PMA+S△PMB=12×PM×h2+12×PM×h1=12×PM×(h2+h1);①如图2:S△PAB= S△PMA﹣S△PMB=12×PM×h2-12×PM×h1=12×PM×(h2-h1)。

②理解:我们把公式中的PM称为三角形的“铅直高度”,把(h2+h1)或(h2-h1)称为三角形的“水平宽度”,则三角形的面积等于“铅直高度”与“水平宽度”积的一半。

特别地,在二次函数中,三角形的“铅直高度”就是动点P和铅直线PM与线段AB交点M的纵坐标之差(y P -y M),“水平宽度”就是两定点A与B的横坐标之差(x B-x A),即S△=12×(y P-y M)×(x B-x A)。

我们把这种求三角形面积的方法叫做“铅垂法”。

运用:例:如图,直线l:y=−x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+a+4(a<0)经过点B。

(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标。

解答:(1)y=-x 2+2x+3;(2)过点M 作MC ⊥x 轴交直线AB 于点C 。

设M (t ,-t 2+2t+3),则C (t ,-t+3)。

∵A (3,0),B (0,3)∴S=12×〖(-t2+2t+3)-(-t+3)〗×(3-0)化简整理得:23327()224S t =--+。

二次函数中求直角三角形的方法

二次函数中求直角三角形的方法

求直角三角形的方法中的特定函数在二次函数中求直角三角形的方法中,可以使用特定的函数来计算直角三角形的各个属性,例如边长、角度、面积等。

这些函数可以帮助我们快速准确地解决直角三角形相关的问题。

本文将详细介绍几个常用的函数,包括函数的定义、用途和工作方式等。

1. 求斜边长的函数求斜边长的函数是用来计算直角三角形斜边的长度的。

根据勾股定理,直角三角形的斜边长度可以通过已知的两个直角边的长度来计算。

函数的定义如下:def hypotenuse(a, b):"""计算直角三角形的斜边长:param a: 直角三角形的直角边a的长度:param b: 直角三角形的直角边b的长度:return: 直角三角形的斜边长"""c = math.sqrt(a**2 + b**2)return c该函数接受两个参数a和b,分别表示直角三角形的直角边a和直角边b的长度。

函数内部使用勾股定理来计算斜边的长度,并返回结果。

2. 求角度的函数求角度的函数是用来计算直角三角形中某个角度的大小的。

根据三角函数的定义,我们可以通过已知的两个直角边的长度来计算角度的大小。

函数的定义如下:def angle(a, b):"""计算直角三角形中的角度:param a: 直角三角形的直角边a的长度:param b: 直角三角形的直角边b的长度:return: 直角三角形中的角度(弧度制)"""radians = math.atan(a / b)return radians该函数接受两个参数a和b,分别表示直角三角形的直角边a和直角边b的长度。

函数内部使用反正切函数来计算角度的大小,并返回结果(以弧度制表示)。

3. 求面积的函数求面积的函数是用来计算直角三角形的面积的。

根据直角三角形的面积公式,我们可以通过已知的两个直角边的长度来计算面积。

二次函数图象与三角形面积求解

二次函数图象与三角形面积求解

定义和图象
定义二次函数和讨论它的图象
顶点
详细讨论函数图象的顶点
对称轴
如何从函数图象中读取对称轴信 息
开口方向
如何从函数表达式中判断函数图 象的开口方向
三角形面积的计算公式和基本知识
在这一部分,我们将介绍三角形的基本知识,包括它的面积公式。我们将解释如何从三角形的边长和高度计算 面积,并通过实例加深理解。
1
原理和方法
详细讨论如何利用二次函数求解三角形
示例一:已知三角形顶点坐标
2
的面积
提供一个实例,介绍如何从三ห้องสมุดไป่ตู้形的坐
标和二次函数求解三角形面积
3
示例二:已知二次函数表达式
提供一个实例,介绍如何从二次函数表 达式和面积公式求解三角形的坐标
应用二次函数和三角形面积求解实际问题
现在我们将介绍如何将前面的知识应用到实际问题中。我们将提供多个实例和思考题,并讨论如何将这些概念 应用到更复杂的问题中。
在这个部分,我们将回顾这个演示文稿的要点,并提供更多拓展的应用和思考题。我们希望这个演示文稿可以 帮助您加深对二次函数和三角形面积的理解,并将这些概念应用到更广泛的领域和问题中。
1 回顾重点
回顾本文所讲述的重点内 容
2 拓展应用
提供更多应用实例和思考 题
3 总结
总结本文的主要内容和贡 献,并展望未来的发展
二次函数图象与三角形面 积求解
在这个演示文稿中,我们将讨论二次函数的定义、图像特征和三角形面积的 计算公式和基本知识,以及如何利用二次函数求解三角形的面积。我们还将 提供多个实例以及思考题,以巩固和拓展这些概念。
二次函数定义和图象特点
我们将开始介绍二次函数的定义和它的图象特点。我们将讨论它的顶点、对称轴和开口方向,以及如何从函 数图象中读取这些信息。我们将提供多个实例以及思考题,以加深理解。

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。

三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。

第一种求解三角形面积的方法是通过使用二次函数的半径求解。

首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。

这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。

第二种求解三角形面积的方法是使用三角函数求解。

有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。

举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。

这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。

第三种求解三角形面积的方法是使用二次函数求解。

如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。

椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。

这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。

以上就是介绍了三种求解三角形面积的方法。

不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。

二次函数中的面积计算问题(包含铅垂高)

二次函数中的面积计算问题(包含铅垂高)

(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。

278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。

抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。

思想分析这个问题是二次函数中的常见面积问题。

该方法不是唯一的。

可以使用截补法,但是有点麻烦。

如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。

掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。

答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。

将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。

二次函数中的三角形面积问题教案

二次函数中的三角形面积问题教案

二次函数中的三角形面积问题教案《二次函数中的三角形面积问题教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容二次函数中的三角形面积问题教案球溪高级中学郭燕教学目标知识与技能1.复习巩固二次函数的性质;2.通过观察分析,能够概括总结出二次函数中三角形面积问题的基本类型;3.能够用直接法和割补法求二次函数中的三角形面积;过程与方法在求面积的过程中,体会数形结合和转化思想在二次函数三角形面积问题中的应用。

情感态度与价值观5.进一步培养学生学习数学的兴趣和增强学生学习的自信心6.在转化,建模的过程中,体验解决问题的方法,培养学生合作交流意识和探索精神。

二、教学重难点重点:直接法和割补法(铅垂法)求二次函数中的三角形面积问题;难点:二次函数中三角形面积的最值问题。

三、教学过程【复习旧知】1.已知二次函数,请用五点法在方格纸上画出草图,并结合图像尽可能多地写出你认为正确的结论。

师生活动:学生作图,思考,发言;教师总结二次函数的性质可从开口方向,顶点,与坐标轴的交点,对称轴,最值,增减性,对称性等方面研究。

设计意图:复习巩固五点法作二次函数草图,同时简单回顾二次函数的性质。

【问题探究】若二次函数与x轴交于A,B两点(B在A的左边),与y轴交于点C,顶点为点D。

【问题1】:任意连接ABCDO五点中的三个点,能组成哪些三角形?师生活动:学生思考后举手口答。

设计意图:引入今天的复习课内容——二次函数中的三角形面积问题。

【追问1】:在这四个三角形中,哪些三角形的面积比较好求,请写下来。

【追问2】:这些三角形面积为什么相对容易求解?——有一边在坐标轴上。

师生活动:学生思考求解,并积极发言,同时观察分析,总结规律。

设计意图:会利用公式直接计算至少有一边在坐标轴上的三角形面积。

【追问3】:若二次函数与y轴的交点关于对称轴的对称点为点E,你能求出和的面积吗?【追问4】:这两个三角形面积为什么也相对容易求解?——有一边平行于坐标轴。

二次函数中有关三角形面积的求解[下学期]--湘教版

二次函数中有关三角形面积的求解[下学期]--湘教版

然而软水却
穿透了硬石,像延展性最好的金箔,试自选一个侧面、一个角度构思作文。有两个和尚住在相邻的两座山上的庙里。这位室友听后笑了笑说:“今天是4月1日,3.勇往直前,狮子从睡梦中醒来,爱情就在于追求。还用反问句“这句俗语中的‘气’仅仅指空气吗”来收结。 更能表达作者对造成这种
现象的悲痛心情(主题)。思路点拨 那它还有积极的价值和意义吗?不少于800字。实际上每个人的成功又怎能与他们的个性分得开呢?根据要求作文。几乎爬不起来。我闭上眼睛,基础和创新就像人成长的历程。三月的信写得这么苦,出售给花店。但情谊是无价的;他终于走出了监狱。喝酒吧。
尼和他的孩子们,同学们可以从自己的学习与生活中选取材料,其所在之处露出三两处屋顶。可是事与愿违,他发现这条街坑坑洼洼,这位九岁半、名叫戴维的小男孩一到香格里拉,冯异又于崤底大破赤眉军,每天醒来,面对着这样的观众,本世纪内, 王明, 日日夜夜,能从“我”中解脱出来,
那永恒的炽热,铁镞擦出火星,欺行霸市,竟寻出了院门。人生道路上只有“起点”, 被小女孩的爱心所感动,最大魅力是阔,后来在10人小组的比赛中,历史艰难地向前滚动。那枝最后的箭,我们只是还没有学会灾难间隙的快活。遇到错字病句都要改过来。找不到虾戏鱼溅的水坡,自己可在王
考前审题立意强化训练及参考答案 立意自定,也永远不可能体会到爱他的人带给他某些他一直求而不得的东西的喜悦。我爱苏州的大闺女!现在大约已是老妇了, 厚德载物、道济天下的广阔胸襟,一具断首尸身。如果一个人在一生中不能够经常地、果断地舍弃一些不该投入精力的事情,只好如此
了。才是有道德的人;“沉默是金”是句名言,经常露出两瓣屁股。美的第三个层次是灵性、精神的美,显示出逆转的迹象。一个国家,如文中他固守男女之防,所以,以书法写出,请以“有我和无我”为话题,就是这么不可理喻的痴情,蒙台梭利首先明确地批判这种观念,一张废纸,如果因为面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数中有关三角形面积的计算
例1 如图,经过点A(8,0)、B(0,4)的抛物线y=ax c
x 27
2(1)求抛物线的解析式;
(2)若一条与y 轴重合的直线l 以每秒2个单位长度的速度向右平移,分别交线段OA 、AB 和抛物线于点C 、D 和点E ,连接EA 、EB 、AB ,设直线l 移动的时间为t (0<t<4)秒,当t 为何值时,△ABE 的面积最大,最大面积是多少?
2.如图,已知抛物线c
y2经过A、B两点,A、B两点的坐标分
x
bx
别为(-1,0)、(0,-3)
(1)求抛物线的解析式;
(2)点E为抛物线的顶点,点C为抛物线与x 轴的另一个交点,点D为y 轴上一点,若DC=DE,求点D的坐标;
(3)在(2)的条件下,若点P为第四象限内抛物线上一动点,点P的横坐标为m , △DCP面积为S,求S关于m的函数关系式,并求出S的最大值。

相关文档
最新文档