二次函数单元检测题.doc

合集下载

二次函数 单元检测试卷(含答案)

二次函数 单元检测试卷(含答案)

二次函数单元检测试卷(含答案)二次函数复套卷时间:120分钟满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.下列各式中,y是x的二次函数的是()A。

y = 1/2xB。

y = 2x + 1C。

y = x^2 + x - 2D。

y^2 = x^2 + 3x / x2.抛物线y = 2x^2 + 1的顶点坐标是()A。

(2.1)B。

(0.1)C。

(1.0)D。

(1.2)3.二次函数y = ax^2 + bx - 1 (a ≠ 0)的图像经过点(1.1),则a +b + 1的值是()A。

-3B。

-1C。

2D。

34.抛物线y = x^2 - 2x - 3与x轴的交点个数是()A。

0个B。

1个C。

2个D。

3个5.下列函数中,当x。

0时,y随x值的增大而先增大后减小的是()A。

y = x^2 + 1B。

y = x^2 - 1C。

y = (x + 1)^2D。

y = -(x - 1)^26.二次函数y = ax^2 + bx + c的部分对应值如下表:x。

y2.51.-31.-42.-33.…二次函数图像的对称轴是()A。

直线x = 1B。

y轴C。

直线x = -1D。

直线x = -27.如图,二次函数y = ax^2 + bx + c的图像与x轴相交于(-2.0)和(4.0)两点,当函数值y。

0时,自变量x的取值范围是()A。

x < -2B。

-2 < x < 4C。

x。

0D。

x。

48.二次函数y = ax^2 + bx + c的图像如图所示,那么一次函数y = ax + b的图像大致是()9.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件。

在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A。

九年级上册数学《二次函数》单元检测题(附答案)

九年级上册数学《二次函数》单元检测题(附答案)

人教版数学九年级上学期《二次函数》单元测试[考试时间:90分钟分数:100分]一.选择题(每题3分,共30分)1.抛物线y=(x+1)2+(m2+1)(m为常数)的顶点在()A .第一象限B .第二象限C .第三象限D .第四象限2.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A .图象与y轴的交点坐标为(0,13)B .图象的对称轴在y轴的右侧C .当x>0时,y的值随x值的增大而增大D .当x=2时,函数有最小值为53.将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A .y=2(x﹣6)2B .y=2(x﹣6)2+4C .y=2x2D .y=2x2+44.设函数y=A (x﹣h)2+k(A ,h,k是实数,A ≠0),当x=1时,y=1;当x=8时,y=8,()A .若h=4,则A <0B .若h=5,则A >0C .若h=6,则A <0D .若h=7,则A >05.已知抛物线y=A x2+B x+C (A <0)经过点(﹣1,0),且满足4A +2B +C >0,有下列结论:①A +B >0;②﹣A +B +C >0;③B 2﹣2A C >5A 2.其中,正确结论的个数是()A .0B .1C .2D .36.二次函数y=A x2+B x+C ,自变量x与函数y的对应值如表:x﹣3 ﹣2 ﹣1y﹣2 ﹣2 0下面四个说法正确的有()①抛物线的开口向上②当x>﹣3时,y随x的增大而增大③二次函数的最小值是﹣2 ④﹣4是方程A x2+B x+C =0的一个根.A .1个B .2个C .3个D .4个7.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若A B =4,D E=3,则杯子的高C E为()A .14B .11C .6D .38.二次函数y=x2﹣2x﹣2与x轴的交点个数是()A .0个B .1个C .2个D .3个9.在同一平面直角坐标系中,函数y=A x2+B x(A ≠0)与y=B x+A (B ≠0)的图象可能是()A .B .C .D .10.对于二次函数y=A x2﹣(2A ﹣1)x+A ﹣1(A ≠0),有下列结论:①其图象与x轴一定相交;②若A <0,函数在x>1时,y随x的增大而减小;③无论A 取何值,抛物线的顶点始终在同一条直线上;④无论A 取何值,函数图象都经过同一个点.其中所有正确的结论是()A .①②③B .①③④C .①②④D .①②③④二.填空题(每题4分,共20分)11.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.12.抛物线y=x2+B x+C 经过点A (0,3),B (2,3),抛物线所对应的函数表达式为.13.已知非负实数x,y,z满足x+y+z=1,则t=2xy+yz+2zx的最大值为.14.如图是二次函数y=A x2+B x+C (A ≠0)的图象的一部分,对称轴为直线x=,抛物线与x轴的交点分别为A 、B ,则A 、B 两点间的距离是.15.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A 、B 、C 三点,D 为顶点,连结AC ,B C .点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交B C 于点E,连结A P交B C 于点F,则的最大值为.三.解答题(每题10分,共50分)16.如图,抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点,与y轴交于点C .(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△PA O =2S△PC O,求出P点的坐标;(3)连接B C ,点E是x轴一动点,点F是抛物线上一动点,若以B 、C 、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.17.某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?18.如图①,已知抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3),直线l经过B 、C 两点.抛物线的顶点为D .(1)求抛物线和直线l的解析式;(2)判断△B C D 的形状并说明理由.(3)如图②,若点E是线段B C 上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF 交线段B C 于点G,当△EC G是直角三角形时,求点E的坐标.19.春节前夕,万果园超市从厂家购进某种礼盒,已知该礼盒每个成本价为32元.经市场调查发现,该礼盒每天的销售量y(个)与销售单价x(元)之间满足一次函数关系.当该款礼盒每个售价为50元时,每天可卖出200个;当该款礼盒每个售价为60元时,每天可卖出100个.(1)求y与x之间的函数解析式(不要求写出x的取值范围);(2)若该超市想达到每天不低于240个的销售量,则该礼盒每个售价定为多少元时,每天的销售利润最大,最大利润是多少元?20.如图,抛物线y=﹣x2+B x+C 与x轴交于点A ,B ,与y轴交于点C ,其中点B 的坐标为(3,0),点C 的坐标为(0,3),直线l经过B ,C 两点.(1)求抛物线的解析式;(2)过点C 作C D ∥x轴交抛物线于点D ,过线段C D 上方的抛物线上一动点E作EF ⊥C D 交线段B C 于点F,求四边形EC FD 的面积的最大值及此时点E的坐标;(3)点P是在直线l上方的抛物线上一动点,点M是坐标平面内一动点,是否存在动点P,M,使得以C ,B ,P,M为顶点的四边形是矩形?若存在,请直线写出点P的横坐标;若不存在,请说明理由.答案与解析一.选择题1. B .2. C .3. C .4. C .5. D .6. B .7. B .8. C .9. C .10. B .二.填空11. 2.12. y=x2﹣2x+3.13..14. 3.15..三.解答题16.解:(1)∵抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点, ∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C ,∴点C (0,3)∴OA =OC =3,设点P(x,﹣x2﹣2x+3)∵S△PA O =2S△PC O,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若B C 为边,且四边形B C FE是平行四边形,∴C F∥B E,∴点F与点C 纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若B C 为边,且四边形B C EF是平行四边形,∴B E与C F互相平分,∵B E中点纵坐标为0,且点C 纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若B C 为对角线,则四边形B EC F是平行四边形,∴B C 与EF互相平分,∵B C 中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).17.解:(1)根据题意得,y=x•(60﹣x)=﹣x2+15x,自变量的取值范围为:0<x≤40;(2)∵y=﹣x2+15x=﹣(x﹣30)2+225,∴当x=30时,三间饲养室占地总面积最大,最大为225(m2).18.解:(1)∵抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3), ∴y=﹣x2+B x+3,将点B (3,0)代入y=﹣x2+B x+3,得0=﹣9+3B +3,∴B =2,∴抛物线的解析式为y=﹣x2+2x+3;∵直线l经过B (3,0),C (0,3),∴可设直线l的解析式为y=kx+3,将点B (3,0)代入,得0=3k+3,∴k=﹣1,∴直线l的解析式为y=﹣x+3;(2)△B C D 是直角三角形,理由如下:如图1,过点D 作D H ⊥y 轴于点H ,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D (1,4),∵C (0,3),B (3,0),∴HD =HC =1,OC =OB =3,∴△D HC 和△OC B 是等腰直角三角形,∴∠HC D =∠OC B =45°,∴∠D C B =180°﹣∠HC D ﹣∠OC B =90°,∴△B C D 是直角三角形;(3)∵EF ⊥x 轴,∠OB C =45°,∴∠FGB =90°﹣∠OB C =45°,∴∠EGC =45°,∴若△EC G 是直角三角形,只可能存在∠C EG =90°或∠EC G =90°,①如图2﹣1,当∠C EG =90°时,∵EF ⊥x 轴,∴EF ∥y 轴,∴∠EC O =∠C OF =∠C EF =90°,∴四边形OFEC 为矩形,∴y E =y C =3,在y =﹣x 2+2x +3中,当y =3时,x 1=0,x 2=2,∴E (2,3);②如图2﹣2,当∠EC G =90°时,由(2)知,∠D C B =90°,∴此时点E 与点D 重合,∵D (1,4),∴E (1,4),综上所述,当△EC G 是直角三角形时,点E 的坐标为(2,3)或(1,4).19.解:(1)设y与x之间的函数解析式为y=kx+B ,由题意得,,解得:,∴y与x之间的函数解析式为y=﹣10x+700;(2)设每天的销售利润为W元,由如图得,W=(x﹣32)(﹣10x+700)=﹣10x2+1020x﹣22400=﹣10(x﹣51)2+3610, ∵﹣10x+700≥240,解得:x ≤46,∴32<x ≤46,∵A =﹣10<0,∴当x <51时,W 随x 的增大而增大,∴当x =46时,W 有最大值,最大利润是﹣10×(46﹣51)2+3610=3360,答:该礼盒每个售价定为46元时,每天的销售利润最大,最大利润是3360元.20.解:(1)将点B (3,0),点C (0,3)代入y =﹣x 2+B x +C 中, 则有, ∴, ∴y =﹣x 2+2x +3;(2)∵y =﹣x 2+2x +3,∴对称轴为x =1,∵C D ∥x 轴,∴D (2,3),∴C D =2,∵点B (3,0),点C (0,3),∴B C 的直线解析式为y =﹣x +3,设E (m ,﹣m 2+2m +3),∵EF ⊥C D 交线段B C 于点F ,∴F (m ,﹣m +3),∴S 四边形EC FD =S △C D E +S △C D F =×2×(﹣m 2+2m )+×2×m =﹣m 2+3m , 当m =时,四边形EC FD 的面积最大,最大值为;此时E (,);(3)设P (n ,﹣n 2+2n +3),①当C P ⊥PB 时,设B C 的中点为J (,),则有PJ = B C =,∴(n ﹣)2+(﹣n 2+2n +3﹣)2=()2,解得整理得到n(n﹣3)(n2﹣n﹣1)=0, ∴n=0或3或,∵P在第一象限,∴P点横坐标为;②当C P⊥C B 时,P(1,4).∴P点横坐标为1;综上所述:P点横坐标为或1.。

九年级上册数学《二次函数》单元检测题(含答案)

九年级上册数学《二次函数》单元检测题(含答案)
九年级上册数学《二次函数》单元测试卷
【考试时间:90分钟分数:120分】
一、选择题(共10小题,每小题3分,共30分)、
1.下列函数1个B.2个C.3个D.4个
2.已知二次函数 图象如图所示,给出以下结论:① ;② ;③ ;④ ,其中结论正确有()个.
A.2个B.3个C.4个D.5个
C.10D.无法确定
【答案】C
【解析】
【分析】
根据抛物线 自变量的取值范围问题,可得出二次函数的最值,再求和即可.
【详解】∵函数y=2(x−3)2−4的对称轴为x=3,
当x=3时,函数有最小值−4,
∵1≤x≤6,
∴当x=6时,函数的最大值为14,
∴最大值与最小值的和为−4+14=10.
故答案选C.
【点睛】本题考查了二次函数的最值,解题的关键是根据抛物线与取值范围求出最值.
17.若抛物线y=2x2-px+4p+1中不管p取何值时都通过定点,则定点坐标为_________.
18.如图,利用一面墙(墙的长度不超过 ),用 长的篱笆围一个矩形场地,当 ________ 时,矩形场地的面积最大.
19.将一条长为20 cm 铁丝剪成两段并用每一段铁丝刚好围成一个正方形,则这两个正方形面积之和的最小值是____________.
14.已知二次函数 的图象如图所示,对称轴是直线 ,下列结论:① ;② ;③ ;④ .正确的是________.
15.如图所示,有一根长 的铁丝,用它围成一个矩形,写出矩形面积 与它的一边长 之间的函数关系式________.
16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为______.

人教版九上数学第二十二章 二次函数单元检测卷

人教版九上数学第二十二章 二次函数单元检测卷

第二十二章 二次函数单元检测卷一、单选题(共30分,每小题3分) 1.下列函数中,属于二次函数的是( ) A .3y x =-B .22(1)y x x =-+C .(1)1y x x =--D .21y x =2.抛物线y =3(x ﹣1)2+1的顶点坐标是( ) A .(1,1)B .(﹣1,1)C .(﹣1,﹣1)D .(1,﹣1)3.将二次函数2=2+3y x x -配方为()2y x h k =-+的形式为( ) A .()211y x =-+B .()212y x =-+C .()223y x =--D .()221y x =--4.由二次函数2231y x +=(﹣),可知( ) A .其图象的开口向下 B .其图象的对称轴为直线x =﹣3 C .其最小值为1D .当x <3时,y 随x 的增大而增大5.把抛物线2y x =-向左平移1个单位,再向上平移3个单位,平移后的解析式为( ) A .2(1)3y x =--+ B .2(1)3y x =-++ C .2(1)3y x =---D .2(1)3y x =-+-6.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( ) A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小(第6题图) (第7题图)7.二次函数2y x bx c =-++的图象如图所示:若点()11,A x y ,()22,B x y 在此函数图象上,121x x <<,1y 与2y 的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 28.当0ab >时,2y ax =与y ax b =+的图象大致是( )A.B.C.D.9.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,①4ac<b2,①2a+b=0,①a-b+c>2,其中正确的结论的个数是()A.1B.2C.3D.410.如图,在正方形ABCD中,4→→向终点C运动,连接DP,AB=,点P从点A出发沿路径A B C作DP的垂直平分线MN与正方形ABCD的边交于M,N两点,设点P的运动路程为x,PMN的面积为y,则下列图象能大致反映y与x函数关系的是()A .B .C .D .二、填空题(共24分,每小题3分)11.抛物线 23y x =- 向上平移 4 个单位长度,得到抛物线____;再向____平移____个单位长度得到抛物线 231y x =--.12.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.13.已知二次函数22y x x m ++=-的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 _____.(第13题图) (第14题图)14.如图,已知抛物线y =ax 2+bx +c 与直线y =k +m 交于A (﹣3,﹣1)、B (0,3)两点,则关于x 的不等式ax 2+bx +c >kx +m 的解集是______.15.某单位商品的利润y(元)与变化的单价x 之间的关系为:y =-5x 2+10x ,当0.5≤x≤2时,最大利润是_____元.16.如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.(第16题图) (第17题图)17.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当1020x ≤≤时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).18.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.三、解答题(共66分)19.写出下列抛物线的开口方向,对称轴及顶点坐标.(共8分) (1)()21513y x =--; (2)()2421y x =-++.20.如图,已知二次函数2y ax bx c =++的图象过A (2,0),B (0,-1)和C (4,5)三点.(共8分) (1)求二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线1y x =+,并写出当在什么范围内时,一次函数的值大于二次函数的值.21.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为5m3,当水平距离为3m时,实心球行进至最高点3m处.(共6分)(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.22.如图,在①ABC中,①B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向点B以2mm/s 的速度移动,动点Q从点B开始沿边BC向点C以4mm/s的速度移动.如果P,Q两点分别从A,B两点同时出发,请求出①PBQ的面积S与出发时间t的函数解析式及t的取值范围.(共6分)23.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m),设花圃的宽AB为xm,面积为S2m.(共9分)(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为452m的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?(结果保留两位小数)24.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓。

第二十二章二次函数单元测试 2024—2025学年人教版数学九年级上册

第二十二章二次函数单元测试 2024—2025学年人教版数学九年级上册

第二十二章二次函数单元测试人教版2024—2025学年九年级上册一、选择题(每小题3分共12小题,满分36分)1.下列函数中,属于二次函数的是()A.y=x﹣3 B.y=x2﹣(x+1)2 C.y=x(x﹣1)﹣1D.2.抛物线y=﹣2(x﹣3)2﹣4的顶点坐标()A.(﹣3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(3,4)3.抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=14.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣35.函数y=(x+2)(x﹣1)图象与x轴的交点坐标为()A.(0,﹣2)B.(﹣2,0)、(1,0)C.(2,0)、(1,0)D.(2,0)、(﹣1,0)6.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣257.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5 8.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)9.若抛物线y=x2﹣2x﹣1与x轴的交点坐标为(a,0),则代数式a2﹣2a+2025的值为()A.2027B.2026C.2025D.202410.抛物线y=﹣x2+2x+1与x轴两交点之间的距离是()A.4B.2C.2D.011.二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(1,0)C.(1,﹣4)D.(3,0)12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;①2a+b=0;①方程ax2+bx+c=3有两个不相等的实数根;①抛物线与x轴的另一个交点坐标为(﹣2,0);①若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A.5个B.4个C.3个D.2个二、填空题(每小题3分共6小题,满分18分13.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=.14.二次函数y=﹣x2+2kx+3的对称轴是x=2,则k=.15.已知函数y=﹣(x﹣1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”、“>”或“=”)16.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=.17.如图,各抛物线所对应的函数解析式分别为:①y=ax2;①y=bx2;①y=cx2;①y=dx2.比较a,b,c,d的大小,用“>”连接为.18.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.二次函数单元检测卷答题卡姓名:____座位号:______ 准考证号:_______一、选择题(每小题3分共12小题,满分36分)题号123456789101112答案二、填空题(每小题3分共6小题,满分18分)13、_________ 14、___________ 15、_______________16、_________ 17、___________ 18、_______________三、解答题(满分46分)19.(6分)已知抛物线y=x2+(b﹣2)x+c经过点M(﹣1,﹣2b).(1)求b+c的值.(2)若b=4,求这条抛物线的顶点坐标.20.(6分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.21.(8分)服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件70元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式.(2)求该服装店要想销售这批秋衣日获利750元,售价应定多少元?(3)请销售单价为多少元时,该服装店日获利最大?最大获利是多少元?22.(8分)如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=a(x﹣h)2的顶点为A,且经过点B.(1)求该抛物线对应的函数解析式;(2)若点C(m,﹣)在该抛物线上,求m的值;(3)请在抛物线的对称轴上找一点P,使PO+PB的值最小,求出点P的坐标.23. (9分)小明根据学习函数的经验,对函数y=x 4﹣5x 2+4的图象与性质进行了 探究.下面是小明的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:x …﹣2﹣112…y …4.33.20 ﹣2.2 ﹣1.4 02.83.74 3.7 2.8 0 ﹣1.4 ﹣2.2 m 3.2 4.3 …(1)其中m= ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质 ; (4)进一步探究函数图象发现:①方程x 4﹣5x 2+4=0有 个互不相等的实数根;①有两个点(x 1,y 1)和(x 2,y 2)在此函数图象上,当x 2>x 1>2时,比较y 1和y 2的大小关系为:y 1 y 2(填“>”、“<”或“=”); ①若关于x 的方程x 4﹣5x 2+4=a 有4个互不相等的实数根,则a 的取值范围是 .24.已知直线y=x+2分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求①ABD面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.。

二次函数单元检测题

二次函数单元检测题

二次函数单元检测题(时间:60分钟,满分100分)一、选择题(每小题4分,共40分) 1.下列函数是二次函数的是( ).A .x 2+2x+3=0 B. C .y=3x+42 D .2.二次函数y=(x-l )2+3的图象的顶点坐标是( ). A .(-1, 3) B .(1, 3) C .(-1 ,-3) D .(1, -3) 3.y = x 2 的图象向上平移2个单位,得到新的图象的表达式是( ). A. y = x 2-2 B. y = (x -2)2C. y = x 2+2 D.y = (x+2) 24.把二次函数y = x 2 -2x -1配方成顶点式为( ).A .y= (x-l) 2 B. y= (x-l) 2 -2 C. y= (x+l) 2 +1 D. y = (x+l) 2-25.一批商品在销售中所获得的总利润y (元)与商品单价x (元)之间满足关系式: y=x 2—20x +6100.如果将商品单价定为12元,那么所获得的总利润为( ). A .10元 B .100元 C .16000元 D .6004元 6.二次函数y=x 2-2x+l 与x 轴的公共点个数是( ). A .0 B .l C .2 D .37.若二次函数y =x 2 -1与y= - x 2 +k 的图象顶点重合,则下列结论不正确的是( ). A .这两个函数图象有相同的对称轴 B .这两个函数图象的开口方向相反 C .方程- x 2 +k =0没有实数根D .二次函数y= - x 2+k 的最大值为8.已知二次函数的图象如图,表达式y= ax 2+ bx+c (a ≠0),则下列结论:①a ,b 同号; ②当x=l 和x=3时,函数值相等; ③4a+6=O ; ④当y= -2时,x 值只取0 其中正确的有().A .1个 B .2个 C .3个 D .4个9.已知二次函数y= - 2x 2+ 2kx -3的顶点在x 轴的负半轴上,则k 的值等于( ).A . 6B .-6C .D . 21y xx =+21x 52y =-12月份是( ).A .1月、2月、3月B .2月、3月、4月 C. 1月0月、12月 D .1月、11月、12月 二、填空题(每小题4分,共20分)1l 、函数y= (x —1)2+3,当x 时,函数值y 随x 的增大而增大.12.已知抛物线y= ax 2+ bx+c (a >0),的对称轴为直线x=l ,且经过点(-1,y 1),(2,y 2),试比较y 1与y 2的大小:y 1 y 2(填“>”“<”或“≠”).13.用一定长度的绳子围成一个矩形,如果矩形的一边长x( m)与面积y(m 2)满足关系式y= - (x -12)2+144(0 <x <24),则该矩形而积的最大值为14.已知二次函数的图象开口向上,且顶点在y 轴的负半轴上,请写出一个满足条件的二次函数关系式: 15.已知二次函数y= ax 2+ bx+c (a ,b ,c 为常数,a ≠0),x 与y 的部分对应值如下表.则当x 满足的条件是________时,y=0; 当x 满足的条件是 时,y>0.三、解答题(共40分) 16.(12分)如图所示,二次函数y= ax 2+ bx+c 的图象经过A 、B 、C 三点.(1)观察图象写出A 、B 、C 三点的坐标,并求出此二次函数的表达式;(2)求出抛物线的顶点坐标和对称轴. 1217.(12分)有一座抛物线形拱桥,正常水位时,桥下河面宽20m,水面距拱顶4m.(1)在如图所示的坐标系中,求抛物线的解析式;(2)为了保证船只通过,桥下水面的宽度不得小于18m,问:水面在正常水位基础上上涨多少m时,就会影响船只通过?18.(16分)商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,商场决定采取适当降价措施,经调查显示,如果一件衬衫每降价1元,每天可多售2件.(1)设每件降价x元,每天盈利y元,写出y与x的关系式;(2)若商场每天要盈利1200元,每件应降价多少元?(3)每件降价多少元时,商场每天盈利最大?最大盈利是多少元?。

数学九年级上学期《二次函数》单元检测卷(含答案)

数学九年级上学期《二次函数》单元检测卷(含答案)
C、由抛物线与y轴的交点在y轴的负半轴上可知,A<0,由直线可知,A>0,错误;
D、由直线可知,直线经过(0,1),错误,
故选A.
[点睛]考核知识点:一次函数和二次函数性质.
7.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()
1.抛物线 的顶点坐标是()
A (﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)
[答案]D
[解析]
[分析]
根据顶点式 ,顶点坐标是(h,k),即可求解.
[详解]∵顶点式 ,顶点坐标是(h,k),
∴抛物线 的顶点坐标是(1,2).
故选D.
[此处有视频,请去附件查看]
2.已知二次函数y=A(x-1)2+3,当x<1时,y随x的增大而增大,则A的取值范围是()
25.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元)的关系数据如下:
x
30
32
34
36
y
40
36
32
28
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
3.把二次函数y=x2-4x+1化成y=A(x-h)2+k的形式是()
A.y=(x-2)2+1B.y=(x-2)2-1C.y=(x-2)2-3D.y=(x-2)2+3
[答案]C
[解析]
[分析]

2022-2023学年人教版九年级数学上册第二十二章 二次函数单元检测试题含答案

2022-2023学年人教版九年级数学上册第二十二章 二次函数单元检测试题含答案

第二十二章《二次函数》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分) 1.下列y关于x的函数中,属于二次函数的是()A.y=x﹣1 B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+12.在同一直角坐标系中,二次函数y=﹣3x2、、y=3x2的图象的共同点是()A.关于y轴对称,开口向上B.关于y轴对称,当x<0时,y随x的增大而减小C.关于y轴对称,最高点是原点D.关于y轴对称,顶点坐标是(0,0)3.二次函数y=﹣(x﹣2)2+1的图象中,若y随x的增大而减小,则x的取值范围是()A.x<2 B.x>2 C.x<﹣2 D.x>﹣24.已知一个二次函数,当x=1时,y有最大值8,其图象的形状、开口方向与抛物线y=﹣2x2相同,则这个二次函数的表达式是()A.y=﹣2x2﹣x+3 B.y=﹣2x2+4C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+65.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+66.下列函数解析式中,一定为二次函数的是()A.y=x+3 B.y=ax2+bx+c C.y=t2﹣2t+2 D.y=x2+7.已知二次函数的图象经过点、、、四点,则与的大小关系正确的是()A. B.C. D.不能确定8.下面所示各图是在同一平面直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象.正确的是()A.B.C.D.9.下列关于抛物线y=﹣x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(﹣1,2)C.在对称轴的右侧,y随x的增大而增大D.抛物线与x轴有两个交点10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是x≥0;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,则y1<y2其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分) 11.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.12.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y =(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则的值为.13.若函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则常数k的值为.14.据权威部门发布的消息,2019年第一季度安徽省城镇居民人均可支配收入约为0.75万元,若第三季度安徽省城镇居民人均可支配收人为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为x,则y与x之间的函数表达式是.15.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行m才停下来.16.如图,已知抛物线y=x2+bx+c的对称轴为直线x=1,点A,B均在抛物线上,且AB与x轴平行,若点A的坐标为,则点B的坐标为.17.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第象限.18.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有.(只填序号)三.解答题(共46分,19题6分,20 ---24题8分)19. 已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?20. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22. 已知抛物线,如图所示,直线是其对称轴,确定,,,的符号;求证:;当取何值时,,当取何值时.23. 如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.24. 某公司计划安排25人生产甲、乙两种产品,已知每人每天生产25件甲或15件乙,甲产品每件利润18元,当参与生产乙产品的工人少于10人时,乙产品每件利润为40元,在4人的基础上每增加1人,每件乙产品的利润下降1元,设每天安排x人生产甲产品,且不少于4人生产乙产品.(1)请根据以上信息完善下表:产品工人数(人)每天产量(件)每件利润(元)甲x18乙(2)请求出销售甲乙两种产品每天的总利润y关于x的表达式;(3)请你设计合理的工人分配方案,使得每天的利润最大化,并求出这个最大利润.答案解析一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 D D B D B C C B A A 二、填空题11. 312..13. 0或﹣1.14. y=0.75(1+x)2.15. 600.16.(2,).17.解:根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.18.解由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=∴abc>0,4ac<b2,当x<时,y随x的增大而减小.故①②⑤正确∵﹣=<1∴2a+b>0故③正确由图象可得顶点纵坐标小于﹣2,则④错误当x=1时,y=a+b+c<0故⑥错误故答案为①②③⑤三.解答题19. 解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.20. 解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.21.【答案】解:∵P(m,n)是抛物线y=x2+1上一动点,∴m2+1=n,∴m2=4n-4,∵点A(0,2),∴AP===n,∴点P到点A 的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,∵AP=2AD,∴PF=2DE,∴OF=2OE,设OE=a,则OF=2a,∴×(2a)2+1=2(a2+1),解得a=,∴a2+1=×2+1=,∴点D的坐标为(,),设OP的解析式为y=kx,则k=,解得k=,∴直线OP的解析式为y=x.【解析】根据点P在抛物线上用n表示出m2,再利用勾股定理列式求出AP,从而得到点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x 轴于F,根据AP=2AD判断出PF=2DE,得到OF=2OE,设OE=a,表示出OF=2a,然后代入抛物线解析式并列出方程求出a的值,再求出点D的坐标,最后利用待定系数法求一次函数解析式解答.22. 解:∵抛物线开口向下,∴,∵对称轴,∴,∵抛物线与轴的交点在轴的上方,∴,∵抛物线与轴有两个交点,∴;证明:∵抛物线的顶点在轴上方,对称轴为,∴当时,;根据图象可知,当时,;当或时,.23. 解:(1)设抛物线解析式为y=a(x+2)(x﹣4),把C(0,﹣4)代入得a•2•(﹣4)=﹣4,解得a=,∴抛物线解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4;(2)连接AC,则AC与抛物线所围成的图形的面积为定值,当△ACM的面积最大时,图中阴影部分的面积最小值,作MN∥y轴交AC于N,如图甲,设M(x, x2﹣x﹣4),由A(4,0),C(0,﹣4)知线段AC所在直线解析式为y=x﹣4,则N(x,x﹣4),∴MN=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,∴S△ACM=S△MNC+S△MNA=•4•MN=﹣x2+4x=﹣(x﹣2)2+4,当x=2时,△ACM的面积最大,图中阴影部分的面积最小值,此时M点坐标为(2,﹣4).24. 解:(1)请根据以上信息完善下表:产品工人数(人)每天产量(件)每件利润(元)甲x25x18乙25﹣x15(25﹣x)19+x(2)y=18×25x+15 (25﹣x)(19+x)=﹣15x2+540x+7125.(3)y=﹣15x2+540x+7125=﹣15(x﹣18)2+11985,当x=18时,y取得最大值,最大值为11985,∴分配18个人生产甲产品,7人生产乙产品时,可以获得最大利润11985元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习必备欢迎下载
二次函数单元检测题
姓名 ________计分__________ 一、选择题(每小题10 分,共30 分)
1、已知二次函数y1 3x
2、y2 1 x 2、
y3
3 x2,它们的图像开口由小到大的顺序是(
)3 2
A、y1 y2 y3
B、y3 y2 y1
C、y1 y3 y2
D、y2 y3 y1
2、抛物线y (x 2) 2 的顶点坐标是()
A、( 2, 0) B 、(- 2,0) C 、( 0, 2)D、(0,-2)
3、二次函数y x 2 bx c 的图象沿x 轴向左平移 2 个单位,再沿y 轴向上平移 3 个单位,
得到的图象的函数解析式为y x 2 2x 1,则 b 与c 分别等于()
A、6,4
B、-8,14
C、-6,6
D、-8,-14
4、如图所示,抛物线顶点坐标是P(1, 3),则函数 y 随自变量
A、 x>3
B、x<3
C、x>1
D、x<1
x 的增大而减小的x 的取值范围是()
5、二次函数y x 2 2x 1的图象

x 轴上截得的线段长为()
A、2 2
B、 3 2
C、 2 3
D、33
6、抛物线y x2 2kx 2 与 x 轴交点的个数为()
A、0
B、1
C、2
D、以上都不对
7、抛物线y ax 2bx c( a0) ,对称轴为直线
A、-1
B、0
C、1
D、3
x =2,且经过点P( 3, 0),则 a b c的值为()
8、若方程ax 2 bx c 0 的两个根是- 3 和1,那么二次函数y ax 2 bx c 的图象的对称轴
是直线()
A、x =-3
B、x =-2
C、x =-1
D、x =1
9、函数y ax b 与y ax 2 bx c 的图象如图所示,则下列选项中正确的是())
A、ab 0, c 0
B、
ab
0,c 0 C、 ab 0,c 0 D、ab 0,c 0
10、已知函数y ax 2 bx c 的图象如图所示,则函数y ax b 的图象是()
二、填空题(每小题 3 分,共 30 分)
1、若y (m2 m)x m2m是二次函数,则m =______;
2、已知二次函数y ax 2 bx c 的图象如图所示,则a___0, b___0, c___0,
学习必备欢迎下载
b2 4ac ____0;
3、抛物线y x2 2x 8 的对称轴为直线_______,顶点坐标为______,与 y 轴的交点坐标为________;
4、写出一个经过(0,- 2)的抛物线的解析式 _______________ ;
5、若二次函数y mx 2 3x 2m m2的图象经过原点,则m= _________;
6、抛物线y x2 6x 16 与x轴交点的坐标为_________;
7、函数y 2x 2 x
有最 ____值,最值为 _______;
8、已知函数y mx2 (m 2 m)x 2 的图象关于y轴对称,则m=________;
9、关于 x 的一元二次方程x2 x n 0 没有实数根,则抛物线y x2 x n的顶点在第 _____象限;
10、抛物线y x2 bx c 与x轴的正半轴交于点A、 B 两点,与y 轴交于点C,且线段 AB 的长为 1,△ABC的面积为 1,则 b 的值为 ______。

三、解答题:
1、根据条件求二次函数的解析式(每小题 5 分,共 20 分)
( 1)抛物线过(-1,- 22),( 0,- 8),( 2,8)三点;
( 2)抛物线过(-1, 0),(3, 0),(1,- 5)三点;
( 3)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,- 2);
( 4)已知二次函数的图象的顶点坐本标为(3,-2 )且与
y轴交与
(0,
5

2
①求函数的解析式, 并画于它的图象;②当x 为何值时, y 随 x 增大而增大。

2、( 8 分)某旅社有客房120 间,每间房间的日租金为50 元,每天都客满,旅社装修后要提高租金,
经市场调查,如果一间客房的日租金每增加 5 元,则每天出租的客房会减少 6 间。

不考虑其他因素,
旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加
多少元?
3、( 8 分)某水果批发商场经销一种高档水果, 如果每千克盈利10 元 , 每天可售出500 千克 , 经市场调查发现 , 在进货价不变的情况下, 若每千克涨价一元, 日销售量将减少20 千克。

(1)现要保证每天盈利 6000 元 , 同时又要让顾客得到实惠 , 那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看 , 那么每千克应涨价多少元 , 能使商场获利最多。

4( 8 分)某市人民广场上要建造一个圆形的喷水池, 并在水池中央垂直安装一个柱子OP,柱子顶端上喷头 , 由 P 处向外喷出的水流( 在各个方向上) 沿形状相同的抛物线路径落下( 如图所示 ) 。

若已知喷出的水流的最高点 A 距水平面的高度是 4 米 , 离柱子 OP的距离为 1 米。

P 处装OP=3 米 ,
(1)求这条抛物线的解析式;
(2)若不计其它因素 , 水池的半径至少要多少米 , 才能使喷出的水流不至于落在池外。

5、( 8 分)如图,二次函数y mx2 4m 的顶点坐标为(0,2),矩形ABCD的顶点B、C在x轴上,
A、 D 在抛物线上,矩形ABCD在抛物线与 x 轴所围成的图形内。

1)求二次函数的解析式;
2)设点 A 的坐标为( x, y), 试求矩形 ABCD的周长 P 关于自变量 x 的函数解析式,并求出自变量x 的取
值范围;
3)是否存在这样的矩形ABCD,使它的周长为 9?试证明你的结论。

1 x25x 6的图象与x轴从左到右两个交点依次为A、 B, 与 y 6、( 8 分)二次函数y
轴交于点C,
4 2
(1)求 A、 B、 C 三点的坐标;
, 并写出自( 2)如果 P(x,y) 是抛物线AC之间的动点 ,O 为坐标原点 , 试求△ POA的面积 S 与 x 之间的函数关系式
变量 x 的取值范围;
( 3)是否存在这样的点P, 使得 PO=PA,若存在 , 求出点 P 的坐标;若不存在, 说明理由。

相关文档
最新文档