高考化学选修三知识点总结
高中化学选修三知识点归纳总结

高中化学选修三知识点归纳总结
一、杂原子
1、杂原子是指不包含金属元素和非金属元素外,有电荷的原子。
它们
卷入了化学反应,形成了大量的物质及离子化合物,其中有些杂原子
表现出特殊特性,如硫氰酸盐类及其他硫酸盐,氧化物、元素络合物、磷根类及其他磷酸盐等。
2、阴离子杂原子包括氮离子(NO3–),氧离子(O2–),氧化物
(SO42–)。
这些杂原子往往被用于构建表示各种化合物的分子式,以及表示各种化合物溶解过程的溶液,其形式一般都是正或负电荷。
二、活性氧
1、活性氧(Active Oxygen)是指在化学反应中具有自由自由基或自由
载体特性,可以构成一类性质不稳定的氧分子,例如:自由基羟基氧(·OH)、一氧化氮(·NO)、氧化氮(·NO2)及活性氧(·O2)等。
2、活性氧在地球上的形态十分多样,一般可以分为还原氧和氧化氧,
其中还原氧(·OH)及超氧(·O2)便是衡量活性氧的重要参数。
活性
氧产生的最主要源头是臭氧层破坏及空气污染,同时也是太阳紫外线(UV)的重要来源。
三、原子容量
1、原子容量也称为原子库仑或原子数,是指组成某种元素的原子的数目。
它是用于表示元素活性的量化参数,主要用于衡量比较不同元素的化学反应特性;它被广泛使用于工业合成化学反应,也可用于判断物质溶解和析出反应中元素的构成及参与情况。
2、原子容量可以提示一定元素氧化反应的过程,在绘制一定元素与其他元素活性差异图时,可以参考元素原子容量大小,从而勾勒出各种活性差异之间的关系。
此外,原子容量还可以参照某些离子溶解度规律,用以预测物质的析出反应。
高中化学选修3知识点总结

高中化学选修3知识点总结高中化学选修3知识点总结高中化学选修3知识一、化学平衡弱电解质的电离、盐类的水解、难溶电解质的溶解等问题都涉及化学平衡的理念,基于此,研究这类问题,我们要从平衡的角度出发,运用化学平衡的观念分析问题。
化学平衡的研究对象是一定条件下的可逆反应,而弱电解质的电离、盐类的水解、难溶电解质的溶解等都是可逆反应,在水溶液中的行为都表现为一种动态的平衡,这些平衡可看作化学平衡中的一种特例(水溶液中的化学平衡),因此它们有化学平衡的共性,也有其鲜明的个性。
1.弱电解质的电离(以CH3COOH的电离为例)(1)弱电解质的电离:CH3COOHCH3COO—+H+。
(2)电离平衡常数:用K表示,CH3COOH的电离平衡常数可表示为K(CH3COOH)=[c(H+)·c(CH3COO—)]/c(CH3COOH)。
注意:电离平衡常数只随温度的变化而改变,不随参与电离平衡的分子和各离子的浓度变化而变化。
K电离表达式中的各浓度指平衡时的浓度。
通常都用在25℃的电离常数来讨论室温下各种弱电解质溶液的平衡状态。
多元弱酸是分步电离的,它的每一步电离都有相应的.电离常数,通常用K1、K2、K3等表示,其大小关系为K1>K2>K3,一般都要相差104~105倍。
(3)弱电解质电离的特点:①共性特点:动(动态平衡)、定(各微粒的含量保持不变)、等(电离的速率等于离子结合成分子的速率)、变(条件改变,平衡发生移动)。
②个性特点:电离过程吸热;电离程度较小。
(4)外界条件对电离平衡的影响:①浓度:增大弱电解质的浓度,电离平衡向右移动,溶质分子的电离程度减小;增大离子的浓度,电离平衡向左移动,溶质分子的电离程度减小。
②温度:升高温度,电离平衡向右移动,溶质分子的电离程度增大;降低温度,电离平衡向左移动,溶质分子的电离程度减小。
注意:区分电离平衡移动与电离程度变化的关系,电离平衡移动的方向利用化学平衡移动原理来分析,而电离程度是一个相对值,即使电离平衡向右移动,电离程度也不一定增大。
化学选修三有机物知识点总结

化学选修三有机物知识点总结一、有机物的结构特点。
1. 碳原子的成键特点。
- 碳原子最外层有4个电子,不易失去或得到电子,可与其他原子形成4个共价键。
- 碳原子间可以形成单键(如烷烃中的C - C键)、双键(如烯烃中的C = C 键)、三键(如炔烃中的C≡C键)。
- 碳原子间可以形成链状结构,也可以形成环状结构。
2. 有机物分子的空间构型。
- 甲烷(CH₄):正四面体结构,碳原子位于正四面体的中心,4个氢原子位于正四面体的四个顶点,键角为109°28′。
- 乙烯(C₂H₄):平面结构,分子中的6个原子都在同一平面内,碳碳双键键角约为120°。
- 乙炔(C₂H₂):直线型结构,分子中的4个原子在同一直线上,碳碳三键键角为180°。
- 苯(C₆H₆):平面正六边形结构,12个原子都在同一平面内,碳碳键角为120°。
二、有机物的分类。
1. 按碳骨架分类。
- 链状有机物:分子中的碳原子相互连接成链状,如烷烃、烯烃、炔烃等脂肪族化合物。
- 环状有机物。
- 脂环化合物:分子中含有碳环,但性质与脂肪族化合物相似,如环己烷。
- 芳香化合物:分子中含有苯环的有机物,如苯、甲苯等。
2. 按官能团分类。
- 烷烃(CₙH₂ₙ₊₂):官能团为碳碳单键(C - C),是饱和烃,如甲烷(CH ₄)、乙烷(C₂H₆)等。
- 烯烃(CₙH₂ₙ):官能团为碳碳双键(C = C),如乙烯(C₂H₄)、丙烯(C₃H₆)等。
- 炔烃(CₙH₂ₙ - ₂):官能团为碳碳三键(C≡C),如乙炔(C₂H₂)、丙炔(C₃H₄)等。
- 卤代烃(R - X):官能团为卤素原子(-X,X = F、Cl、Br、I),如氯乙烷(C₂H₅Cl)。
- 醇(R - OH):官能团为羟基(-OH),如乙醇(C₂H₅OH)、甲醇(CH₃OH)等。
- 酚:羟基直接连在苯环上的有机物,官能团为酚羟基,如苯酚(C₆H₅OH)。
- 醛(R - CHO):官能团为醛基(-CHO),如乙醛(CH₃CHO)。
(完整版)高中化学选修3知识点总结

高中化学选修3知识点总结二、复习要点1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
高考化学选修三知识点总结

高考化学选修三知识点总结高考化学选修三是高考化学科目的一部分,主要包括了有机化学、化学工业和活性元素等内容。
这部分的知识点相对较多,需要学生熟练掌握基本概念和反应机理。
以下是对高考化学选修三知识点的详细介绍。
1. 有机化学有机化学是研究碳及其化合物的科学,是高考化学选修三中最重要的知识点之一。
它主要包括以下内容:(1) 有机物的命名:有机化合物的命名是有机化学中非常重要的一部分,通过命名可以了解化合物的结构和性质。
有机化合物的命名方法有很多,常见的有IUPAC命名法和通用命名法。
(2) 有机反应:有机反应是有机化学的核心内容,主要研究有机物之间的化学反应。
有机反应可以分为加成反应、消除反应和取代反应等不同类型。
(3) 有机物的结构与性质:有机物的结构决定了它们的性质,比如溶解性、稳定性和酸碱性等。
了解有机物的结构与性质对于理解有机反应过程和预测产物具有重要意义。
2. 化学工业化学工业是指利用化学原理和方法进行生产的一门学科,它与高考化学选修三中的有机化学有很多的联系。
下面是化学工业的一些知识点:(1) 合成氨工业:合成氨是化学工业中非常重要的基础化学品,广泛应用于制造肥料、塑料、染料等。
合成氨的工业生产主要是通过哈伯-博世过程实现的。
(2) 烯烃工业:烯烃是一类含有双键的有机化合物,具有广泛的用途。
烯烃工业主要是通过石油裂解或煤炭加氢等方法进行生产,用于制造聚乙烯、合成橡胶等产品。
(3) 聚合物材料:聚合物是由大量相同或不同的单体分子经共价键连接而成的大分子化合物,具有重要的应用价值。
化学工业中广泛使用的聚合物材料包括聚乙烯、聚丙烯和聚氯乙烯等。
3. 活性元素活性元素是指具有较高反应性的元素,主要包括氧、氢、氮、氯等。
活性元素在高考化学选修三中也是一个重要的知识点。
(1) 氧的化合物与性质:氧是化学中非常重要的元素,它与其他元素形成的化合物有很多,如氧化物、过氧化物和氢氧化物等。
了解氧化物的性质对于理解燃烧、酸碱反应等有重要意义。
化学选修三知识点总结3

化学选修三知识点总结3化学选修三是高中化学课程中的一部分,主要涉及溶液与溶解度、酸碱中和反应、氧化还原反应、电化学等内容。
这些知识点是化学学习的重要组成部分,对于理解化学世界中的许多现象和反应机理具有重要意义。
下面将对化学选修三中的知识点进行总结和介绍。
一、溶液与溶解度1. 溶液的概念溶液是由溶质和溶剂混合均匀后形成的一种统一的物质。
溶质是指能够溶解在溶剂中的物质,溶剂是指能够溶解其他物质的物质。
溶解的过程取决于溶质和溶剂的相互作用力,通常溶解过程可以用热力学的角度进行解释。
2. 溶解度溶解度是指在一定温度和压力下,单位量的溶剂中最多能溶解的溶质的量。
通常情况下,溶解度与温度有一定的关系,随着温度的升高,溶解度会增大,反之则减小。
3. 影响溶解度的因素影响溶解度的因素有温度、溶质和溶剂的特性等。
对于不同的溶质和溶剂,其溶解度可能有显著的差异。
溶解度的变化对于实际生产和化学反应有着重要的意义。
二、酸碱中和反应1. 酸碱的定义根据不同的定义,酸和碱可以分为不同的种类,如布朗斯特里定义的酸碱、劳里尔定义的酸碱。
在布朗斯特里定义的酸碱中,酸是能够给出质子的物质,碱是能够接受质子的物质。
在劳里尔定义的酸碱中,酸是指能够给出氢离子的物质,碱是指能够接受氢离子的物质。
2. pH值pH值是一种表示溶液酸碱性强弱的指标,通常情况下,pH值小于7的溶液为酸性,pH值大于7的溶液为碱性,pH值等于7的溶液为中性。
pH值的计算需要用到负性对数的概念,它可以用来分析溶液中的酸碱性质。
3. 酸碱中和反应酸碱中和反应是指酸和碱在一定的条件下相互反应,生成盐和水的过程。
在这种反应中,酸和碱失去了其原有的性质,生成新的物质。
酸碱中和反应在生活和工业中有着广泛的应用,如在水处理中、制备盐等方面。
三、氧化还原反应1. 氧化还原反应的概念氧化还原反应是指氧化剂和还原剂相互作用,进行电子的转移而产生新物质的化学反应。
氧化是指物质失去电子,还原是指物质得到电子,氧化还原反应总是同时进行的。
化学选修三有机知识点总结

化学选修三有机知识点总结1. 烷基、烯基、炔基及环烷烃的命名方法和构象:烷基和环烷烃命名法:按照碳原子数、分支数、双键数、环数、连结数、立体构型等命名规则进行命名。
烯烃和炔烃命名法:在碳原子编号的基础上标明双键位置或三键位置。
对于烯烃和炔烃的立体异构体,则需要用E/Z表示立体异构体的相对构型。
2. 芳香族化合物的结构和特性:芳香族化合物分为反芳香族化合物和正芳香族化合物。
反芳香族化合物由4n个π电子组成,呈现出独特的反芳香特性,如环状电子云结构的稳定度低、化学惰性高、难以发生化学反应等。
而正芳香族化合物由(4n+2)个π电子组成,呈现出稳定的芳香特性。
3. 单质、衍生物、合成及应用方面的烃类、醇类、酚类、醛类、酮类、羧酸类、酯类等化合物的物理性质、化学性质、合成方法和应用方面的基本知识。
对于烃类,可以通过烷基化、卤代反应、卤代裂解、加成反应等方法进行合成。
醇类在进行烷基化、烯基化、脱水反应、氧化反应、酯化反应等化学反应时具有独特的化学性质和反应规律。
酚类可通过烃基化、酰化、芳香族的取代反应、芳香族亲电取代反应、氧化等反应合成。
醛类在进行氧化反应、缩合反应和加成反应等反应时呈现出独特的反应特性。
酮类的还原反应、芳香族取代反应、酸催化等反应可以直接合成酮类。
羧酸类的合成方式包括卤代反应、羰基合成、酯化反应、重排反应、氧化反应等化学反应。
酯类的合成反应包括酸催化的酯化反应或碱催化的缩合反应等。
4. 考查学生对有机化合物的判断、鉴别、分离、提纯及测定物质含量等的基本实验技能。
有机化合物的鉴别方法包括性质比对、芳香族物质嗅觉识别、滴定法、沉淀法、质谱分析、红外光谱分析、核磁共振光谱分析等。
有机化合物的分离和提纯方法包括溶剂萃取法、蒸馏法、结晶法等。
而测定有机化合物含量的方法包括比色法、气相色谱法、多小时萃取法、显微镜法等。
高中化学选修3-物质结构和性质-全册知识点总结

高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学选修3知识点全部归纳(物质的结构与性质)▼第一章原子结构与性质.一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p 轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
基态原子核外电子的排布按能量由低到高的顺序依次排布。
3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。
常用符号I1表示,单位为kJ/mol。
(1).原子核外电子排布的周期性.随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2).元素第一电离能的周期性变化.随着原子序数的递增,元素的第一电离能呈周期性变化:★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;★同主族从上到下,第一电离能有逐渐减小的趋势.说明:①同周期元素,从左往右第一电离能呈增大趋势。
电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。
Be、N、Mg、P②.元素第一电离能的运用:a.电离能是原子核外电子分层排布的实验验证.b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化.元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。
随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势.电负性的运用:a.确定元素类型(一般>,非金属元素;<,金属元素).b.确定化学键类型(两元素电负性差值>,离子键;<,共价键).c.判断元素价态正负(电负性大的为负价,小的为正价).d.电负性是判断金属性和非金属性强弱的重要参数(表征原子得电子能力强弱).例8.下列各组元素,按原子半径依次减小,元素第一电离能逐渐升高的顺序排列的是A.K、Na、Li B.N、O、C C.Cl、S、P D.Al、Mg、Na例9.已知X、Y元素同周期,且电负性X>Y,下列说法错误的是A.X与Y形成化合物时,X显负价,Y显正价B.第一电离能可能Y小于XC.最高价含氧酸的酸性:X对应的酸性弱于Y对应的酸性D.气态氢化物的稳定性:HmY小于HmX二.化学键与物质的性质.内容:离子键――离子晶体1.理解离子键的含义,能说明离子键的形成.了解NaCl型和CsCl型离子晶体的结构特征,能用晶格能解释离子化合物的物理性质.(1).化学键:相邻原子之间强烈的相互作用.化学键包括离子键、共价键和金属键.(2).离子键:阴、阳离子通过静电作用形成的化学键.离子键强弱的判断:离子半径越小,离子所带电荷越多,离子键越强,离子晶体的熔沸点越高.离子键的强弱可以用晶格能的大小来衡量,晶格能是指拆开1mol离子晶体使之形成气态阴离子和阳离子所吸收的能量.晶格能越大,离子晶体的熔点越高、硬度越大.离子晶体:通过离子键作用形成的晶体.典型的离子晶体结构:NaCl型和CsCl型.氯化钠晶体中,每个钠离子周围有6个氯离子,每个氯离子周围有6个钠离子,每个氯化钠晶胞中含有4个钠离子和4个氯离子;氯化铯晶体中,每个铯离子周围有8个氯离子,每个氯离子周围有8个铯离子,每个氯化铯晶胞中含有1个铯离子和1个氯离子.(3).晶胞中粒子数的计算方法--均摊法.2.了解共价键的主要类型σ键和π键,能用键能、键长、键角等数据说明简单分子的某些性质(对σ键和π键之间相对强弱的比较不作要求).(1).共价键的分类和判断:σ键(“头碰头”重叠)和π键(“肩碰肩”重叠)、极性键和非极性键,还有一类特殊的共价键-配位键.(2).共价键三参数.共价键的键能与化学反应热的关系:反应热= 所有反应物键能总和-所有生成物键能总和.3.了解极性键和非极性键,了解极性分子和非极性分子及其性质的差异.(1)共价键:原子间通过共用电子对形成的化学键.(2)键的极性:极性键:不同种原子之间形成的共价键,成键原子吸引电子的能力不同,共用电子对发生偏移.非极性键:同种原子之间形成的共价键,成键原子吸引电子的能力相同,共用电子对不发生偏移.(3)分子的极性:①极性分子:正电荷中心和负电荷中心不相重合的分子.非极性分子:正电荷中心和负电荷中心相重合的分子.②分子极性的判断:分子的极性由共价键的极性及分子的空间构型两个方面共同决定.非极性分子和极性分子的比较4.分子的空间立体结构(记住)常见分子的类型与形状比较5.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系.(1).原子晶体:所有原子间通过共价键结合成的晶体或相邻原子间以共价键相结合而形成空间立体网状结构的晶体.(2).典型的原子晶体有金刚石(C)、晶体硅(Si)、二氧化硅(SiO2).金刚石是正四面体的空间网状结构,最小的碳环中有6个碳原子,每个碳原子与周围四个碳原子形成四个共价键;晶体硅的结构与金刚石相似;二氧化硅晶体是空间网状结构,最小的环中有6个硅原子和6个氧原子,每个硅原子与4个氧原子成键,每个氧原子与2个硅原子成键.(3).共价键强弱和原子晶体熔沸点大小的判断:原子半径越小,形成共价键的键长越短,共价键的键能越大,其晶体熔沸点越高.如熔点:金刚石>碳化硅>晶体硅.6.理解金属键的含义,能用金属键的自由电子理论解释金属的一些物理性质.知道金属晶体的基本堆积方式,了解常见金属晶体的晶胞结构(晶体内部空隙的识别、与晶胞的边长等晶体结构参数相关的计算不作要求).(1).金属键:金属离子和自由电子之间强烈的相互作用.请运用自由电子理论解释金属晶体的导电性、导热性和延展性.(2)①金属晶体:通过金属键作用形成的晶体.②金属键的强弱和金属晶体熔沸点的变化规律:阳离子所带电荷越多、半径越小,金属键越强,熔沸点越高.如熔点:Na<Mg<Al,Li>Na>K>Rb>Cs.金属键的强弱可以用金属的原子7.了解简单配合物的成键情况(配合物的空间构型和中心原子的杂化类型不作要求).(1)配位键:一个原子提供一对电子与另一个接受电子的原子形成的共价键.即成键的两个原子一方提供孤对电子,一方提供空轨道而形成的共价键.(2)①.配合物:由提供孤电子对的配位体与接受孤电子对的中心原子(或离子)以配位键形成的化合物称配合物,又称络合物.②形成条件:a.中心原子(或离子)必须存在空轨道. b.配位体具有提供孤电子对的原子.③配合物的组成.④配合物的性质:配合物具有一定的稳定性.配合物中配位键越强,配合物越稳定.当作为中心原子的金属离子相同时,配合物的稳定性与配体的性质有关.三.分子间作用力与物质的性质.1.知道分子间作用力的含义,了解化学键和分子间作用力的区别.分子间作用力:把分子聚集在一起的作用力.分子间作用力是一种静电作用,比化学键弱得多,包括范德华力和氢键.范德华力一般没有饱和性和方向性,而氢键则有饱和性和方向性.2.知道分子晶体的含义,了解分子间作用力的大小对物质某些物理性质的影响.(1).分子晶体:分子间以分子间作用力(范德华力、氢键)相结合的晶体.典型的有冰、干冰.(2).分子间作用力强弱和分子晶体熔沸点大小的判断:组成和结构相似的物质,相对分子质量越大,分子间作用力越大,克服分子间引力使物质熔化和气化就需要更多的能量,熔、沸点越高.但存在氢键时分子晶体的熔沸点往往反常地高.3.了解氢键的存在对物质性质的影响(对氢键相对强弱的比较不作要求).NH3、H2O、HF中由于存在氢键,使得它们的沸点比同族其它元素氢化物的沸点反常地高.影响物质的性质方面:增大溶沸点,增大溶解性表示方法:X—H……Y(N O F) 一般都是氢化物中存在.4.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别.四、几种比较1、离子键、共价键和金属键的比较2、非极性键和极性键的比较3.物质溶沸点的比较(重点)(1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体(2)同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。
①离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。
②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。
③原子晶体:键长越小、键能越大,则熔沸点越高。
(3)常温常压下状态①熔点:固态物质>液态物质②沸点:液态物质>气态物质。