高中物理二轮复习 专项训练 物理动量定理
2019年高三总复习二轮复习专题攻略之动量定理的应用

【典例1】如图所示,把重物G 压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法是:A .在缓缓拉动纸带时,重物和纸带间的摩擦力大;B .在迅速拉动时,纸带给重物的摩擦力小;C .在缓缓拉动时,纸带给重物的冲量大;D .在迅速拉动时,纸带给重物的冲量小.【答案】CD【典例2】 物体在恒定的合力F 作用下做直线运动,在时间Δt 1 内速度由0增大到v ,在时间Δt 2内速度由v 增大到2v 。
设F 在Δt 1 内做的功是W 1,冲量是I 1;在Δt 2 内做的功是W 2,冲量是I 2;那么( )A.I 1<I 2,W 1=W 2B.I 1<I 2,W 1<W 2C.I 1=I 2,W 1=W 2D.I 1=I 2,W 1<W 2【解析】 I 1=F Δt 1=mv ,I 2=F Δt 2=2mv -mv =mv ,所以冲量相同,由动能定理W 1=12mv 2,W 2=12m ×4v 2-12mv 2=32mv 2,所以W 1<W 2,D 正确。
【答案】 D【典例3】中国载人航天工程新闻发言人宣布,执行我国首次空间交会对接任务的天宫一号目标飞行器已通过出厂评审,进入开展任务实施前最后的测试阶段,届时将和神舟八号飞船进行第一次无人交会对接试验。
设神舟八号宇宙飞船以v = 10 km/s 的速度在太空中飞行,突然进入一密度ρ= 1.0×10-7 kg/m 3的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上。
欲使飞船保持原速度不变,飞船的助推器的助推力应增大多少?(已知飞船的正横截面积S = 2 m 2)【解析】飞船进入微陨石尘区时,受到一个持续的作用力,选在极短时间Δt 内作用在飞船上的微陨石尘为研究对象,运用动量定理来求解在时间Δt 内与飞船碰撞的微陨石尘的质量等于横截面积为S 、长为v ·Δt 的直柱体内微陨石尘的质量,即m =ρSv Δt ,且初动量为0,末动量为mv .设飞船对微陨石尘的作用力为F ,由动量定理得:F·Δt=mv-0解得:F=错误!未找到引用源。
高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。
高中物理动量定理专项训练100(附答案)含解析

高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L =-当2HL =时小球抛的最远2.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。
求: ①A 与B 撞击结束时的速度大小v ;②在整个过程中,弹簧对A 、B 系统的冲量大小I 。
【答案】①3m/s ; ②12N •s 【解析】 【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向 由动量守恒定律得m 1v 0=(m 1+m 2)v代入数据解得v =3m/s②以向左为正方向,A 、B 与弹簧作用过程 由动量定理得I =(m 1+m 2)(-v )-(m 1+m 2)v代入数据解得I =-12N •s负号表示冲量方向向右。
高三二轮复习:动量定理、动量守恒

【练习5】高压采煤水枪出口的截面积为S,水的射速为v,水平射到煤层上后,水速度为零,若水的密度为ρ,求煤层对水的平均冲力的大小?
【答案】:ρSv2
【练习6】一质量为m,长为L的柔软绳自由悬垂,下端恰与一台秤秤盘接触。某时刻放开柔软绳上端,求台秤的最大示数。(重力加速度大小为g)
【练习3】在距地面h高处以v0水平抛出质量为m的物体,当物体着地时和地面碰撞时间为Δt,则这段时间内物体受到地面给予竖直方向的冲量为()
A. B.
C. D.
答案:B
【例3】一艘帆船在静水中由于风力的推动做匀速直线运动,帆面的面积为S,风速为v1,船速为v2(v2﹤v1),空气密度为ρ,帆船在匀速前进时帆面受到的平均风力大小为多少?(设空气碰到帆后随帆一起运动)
答案:AC
【练习10】如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是()
A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒
B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小
C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小
D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量
解析:AC(在过程Ⅰ中,钢珠仅受重力的作用,钢球由静止开始自由下落,钢珠的末动量就是钢球动量的改变量。由动量定理可知它等于钢珠所受到的合外力的冲量,这个冲量就是重力的冲量。钢珠从开始下落直到它陷入泥潭后静止的全过程(即包括过程Ⅰ和过程Ⅱ),它动量的改变量为零,合外力的冲量为零,即全过程重力冲量的大小等于在泥潭中所受到阻力冲量的大小)
高考物理第二轮复习动量定理及反冲模型讲义册子

第7讲 动量定理及反冲模型题一:高台滑雪运动员经过一段滑行后从斜坡上的O 点水平飞出,斜坡与水平面的夹角θ=37°,运动员连同滑雪板的总质量m =50 kg ,他落到了斜坡上的A 点,A 点与O 点的距离s =12 m ,如图所示。
忽略斜坡的摩擦和空气阻力的影响,重力加速度g =10 m/s 2。
(1)求运动员离开O 点时的速度大小。
(2)运动员落到斜坡上顺势屈腿以缓冲,使他垂直于斜坡的速度在t =0.50 s 的时间内减小为零,设缓冲阶段斜坡对运动员的弹力可以看作恒力,求此弹力的大小。
题二:雨滴在空中下落时,由于空气阻力的影响,最终会以恒定的速度匀速下降,我们把这个速度叫做收尾速度。
研究表明,在无风的天气条件下,空气对下落雨滴的阻力可由公式f =12C ρSv 2来计算,其中C为空气对雨滴的阻力系数(可视为常量),ρ为空气的密度,S 为雨滴的有效横截面积(即垂直于速度v 方向的横截面积)。
假设雨滴下落时可视为球形,且在到达地面前均已达到收尾速度。
每个雨滴的质量均为m ,半径均为R ,雨滴下落空间范围内的空气密度为ρ0,空气对雨滴的阻力系数为C 0,重力加速度为g 。
(1)求雨滴在无风的天气条件下沿竖直方向下落时收尾速度的大小;(2)大量而密集的雨滴接连不断地打在地面上,就会对地面产生持续的压力。
设在无风的天气条件下,雨滴以收尾速度匀速竖直下落的空间,单位体积内的雨滴个数为n (数量足够多),雨滴落在地面上不反弹,雨滴撞击地面时其所受重力可忽略不计,求水平地面单位面积上受到的由于雨滴对其撞击所产生的压力大小。
题三:在微观领域,动量守恒定律和能量守恒定律依然适用。
在轻核聚变的核反应中,两个氘核(H 21)以相同的动能E 0=0.35 MeV 做对心碰撞,假设该反应中释放的核能全部转化为氦核(He 32)和中子(n 10)的动能。
已知氘核的质量m D=2.0141 u,中子的质量m n=1.0087 u,氦核的质量m He=3.0160 u,其中1 u 相当于931 MeV。
高中物理动量守恒定律专项训练100(附答案)

高中物理动量守恒定律专项训练100(附答案)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0s in30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx == C 点相对于O 点的高度: h=2x 0sin30°+R+Rcos30°=(43)+x 0…⑤ 物块从O 到C 的过程中机械能守恒,得:12mv o 2=mgh+12mv c 2…⑥ 联立④⑤⑥得:0(53)o v gx +=…⑦ 设A 与B 碰撞后共同的速度为v B ,碰撞前A 的速度为v A ,滑块从P 到B 的过程中机械能守恒,得:12mv 2+mg (3x 0sin30°)=12mv A 2…⑧ A 与B 碰撞的过程中动量守恒.得:mv A =2mv B …⑨ A 与B 碰撞结束后从B 到O 的过程中机械能守恒,得:12•2mv B 2+E P =12•2mv o 2+2mg•x 0sin30°…⑩ 由于A 与B 不粘连,到达O 点时,滑块B 开始受到弹簧的拉力,A 与B 分离. 联立⑦⑧⑨⑩解得:033v gx =考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A 、B 到达P 点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高中物理 高三二轮专题复习:动量守恒定律应用(二)综合计算

v0 gt 6 m/s
细绳绷直瞬间,细绳张力远大于A、B的重力,A、B相互作用, 总动量守恒: mBv0 (mA mB )v
绳子绷直瞬间,A、B系统获得的速度:v=2m/s
之后A做匀减速运动,所以细绳绷直瞬间的速度v即为最大速度,A 的最大速度为2 m/s
mg
H
h
mg
H h tan
mB
gS
设改变后的摩擦因数为μ′ ,然后将A从P点释放,A恰好能与B再次碰上, 即A恰好滑到物块B位置时,速度减为零,以A为研究对象,根据能量守恒定律得:
mgh mg h mgS tan
又据(2)的结论可知:
Wf
2 mgH 15
mg
H h
tan
,得: tan 9
W
1 2
mv22
1 2
mv12
末状态动能 初状态动能
题型一:动量守恒定律与能量的综合应用模型(碰撞类)
(利用动能定理、机械能守恒定律、功能关系或能量守恒定律解题)
2.(2014·北京卷)如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相 切,小滑块A和B分别静止在圆弧轨道的最高点和最低点.现将A无初速释放,A与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R=0.2 m;A和 B的质量相等;A和B整体与桌面之间的动摩擦因数μ=0.2.重力加速度g取10 m/s2. 求:
解析
(3)t 时刻后 A 将继续向左运动,假设它能与静止的 B 碰撞,碰撞前速度的大小 为 vA′,由动能定理有
21mAvA′2-12mAv2A=-μmAg(2l+sB)⑩ 联立③⑧⑩式并代入题给数据得 vA′= 7 m/s⑪ 故 A 与 B 将发生碰撞。设碰撞后 A、B 的速度分别为 vA″和 vB″,由动量守 恒定律与机械能守恒定律有 mA(-vA′)=mAvA″+mBvB″⑫ 21mAvA′2=12mAvA″2+12mBvB″2⑬
高中物理动量定理专项训练100(附答案)

1s 4
因此物块在板上滑行的总时间为: t
t1
t2
t3
5 6
s
8.如图,质量分别为 m1=10kg 和 m2=2.0kg 的弹性小球 a、b 用弹性轻绳紧紧的把它们捆 在一起,使它们发生微小的形变,该系统以速度 v0=0.10m/s 沿光滑水平面向右做直线运 动,某时刻轻绳突然自动断开,断开后,小球 b 停止运动,小球 a 继续沿原方向直线运 动。求:
IF mgsinθt BlIt mv 0
解得: IF 1.6N s
(3)3 s 内电阻 R 上产生的的热量为 Q 2.88J ,则 ab 棒产生的热量也为 Q , cd 棒上产生的
热量为 8Q ,则整个回路中产生的总热量为 28. 8 J,即 3 s 内克服安培力做功为 28. 8J
而重力做功为:
高中物理动量定理专项训练 100(附答案)
一、高考物理精讲专题动量定理
1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为 m,人在极短的时 间内给第一辆车一水平冲量使其运动,当车运动了距离 L 时与第二辆车相碰,两车以共同 速度继续运动了距离 L 时停。车运动时受到的摩擦阻力恒为车所受重力的 k 倍,重力加速 度为 g,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
(1)运动员到达斜坡底端时的速率 v ;
(2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。
【答案】(1) 40m / s (2)1.2104W (3) 4.8103 N s 方向为竖直向下
【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒: mgh 1 mv2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理二轮复习 专项训练 物理动量定理一、高考物理精讲专题动量定理1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F .【答案】(1)0.32μ= (2)F =130N【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv ,代入数据解得:F=130N .2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。
(1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。
(2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。
请运用所学物理知识分析说明这样做的道理。
【答案】详情见解析【解析】【详解】(1)根据牛顿第二定律F ma =,加速度定义0i v v a t-=解得 0=-i Ft mv mv即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化(2)快递物品在运送途中难免出现磕碰现象,根据动量定理0=-i Ft mv mv在动量变化相等的情况下,作用时间越长,作用力越小。
充满气体的塑料袋富有弹性,在碰撞时,容易发生形变,延缓作用过程,延长作用时间,减小作用力,从而能更好的保护快递物品。
3.滑冰是青少年喜爱的一项体育运动。
如图,两个穿滑冰鞋的男孩和女孩一起在滑冰场沿直线水平向右滑行,某时刻他们速度均为v 0=2m/s ,后面的男孩伸手向前推女孩一下,作用时间极短,推完后男孩恰好停下,女孩继续沿原方向向前滑行。
已知男孩、女孩质量均为m =50kg ,假设男孩在推女孩过程中消耗的体内能量全部转化为他们的机械能,求男孩推女孩过程中:(1)女孩受到的冲量大小;(2)男孩消耗了多少体内能量?【答案】(1) 100N •s (2) 200J【解析】【详解】(1)男孩和女孩之间的作用力大小相等,作用时间相等,故女孩受到的冲量等于男孩受到的冲量,对男孩,由动量定理得:I =△P =0-mv 0=-50×2=-100N•s ,所以女孩受到的冲量大小为100N•s ;(2)对女孩,由动量定理得100=mv 1-mv 0, 故作用后女孩的速度1100502m/s 4m/s 50v +⨯== 根据能量守恒知,男孩消耗的能量为221011125016504200J 222E mv mv =-⋅=⨯⨯-⨯=; 4.如图所示,质量为m =245g 的木块(可视为质点)放在质量为M =0.5kg 的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m 0 = 5g 的子弹以速度v 0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取10m/s 2,求:(1)子弹进入木块后子弹和木块一起向右滑行的最大速度v 1(2)木板向右滑行的最大速度v 2(3)木块在木板滑行的时间t【答案】(1) v 1= 6m/s (2) v 2=2m/s (3) t =1s【解析】【详解】(1)子弹打入木块过程,由动量守恒定律可得:m 0v 0=(m 0+m )v 1解得:v 1= 6m/s(2)木块在木板上滑动过程,由动量守恒定律可得:(m 0+m )v 1=(m 0+m +M )v 2解得:v 2=2m/s(3)对子弹木块整体,由动量定理得:﹣μ(m 0+m )gt =(m 0+m )(v 2﹣v 1)解得:物块相对于木板滑行的时间 211s v v t gμ-==-5.如图,有一个光滑轨道,其水平部分MN 段和圆形部分NPQ 平滑连接,圆形轨道的半径R =0.5m ;质量为m 1=5kg 的A 球以v 0=6m/s 的速度沿轨道向右运动,与静止在水平轨道上质量为m 2=4kg 的B 球发生碰撞,两小球碰撞过程相互作用的时为t 0=0.02s ,碰撞后B 小球恰好越过圆形轨道最高点。
两球可视为质点,g =10m/s 2。
求:(1)碰撞后A 小球的速度大小。
(2)碰撞过程两小球间的平均作用力大小。
【答案】(1)2m/s (2)1000N【解析】【详解】(1)B 小球刚好能运动到圆形轨道的最高点:222v m g m R= 设B 球碰后速度为2v ,由机械能守恒可知:22222211222m v m gR m v =+ A 、B 碰撞过程系统动量守恒:101122m v m v m v =+碰后A 速度12/v m s =(2)A 、B 碰撞过程,对B 球:022Ft m v =得碰撞过程两小球间的平均作用力大小 1000F N =6.如图所示,质量为m =0.5kg 的木块,以v 0=3.0m/s 的速度滑上原来静止在光滑水平面上的足够长的平板车,平板车的质量M =2.0kg 。
若木块和平板车表面间的动摩擦因数μ=0.3,重力加速度g =10m/s 2,求:(1)平板车的最大速度;(2)平板车达到最大速度所用的时间.【答案】(1)0.6m/s (2)0.8s【解析】【详解】(1)木块与平板车组成的系统动量守恒,以向右为正方向,由动量守恒定律得: mv 0=(M +m )v ,解得:v =0.6m/s(2)对平板车,由动量定律得:μmgt =Mv解得:t =0.8s7.以初速度v 0=10m/s 水平抛出一个质量为m =2kg 的物体,若在抛出后3s 过程中,它未与地面及其它物体相碰,g 取l0m/s 2。
求:(1)它在3s 内所受重力的冲量大小;(2)3s 内物体动量的变化量的大小和方向;(3)第3秒末的动量大小。
【答案】(1)60N ·s (2)60kg ·m/s ,竖直向下(3)10kg m /s ⋅【解析】【详解】(1)3s 内重力的冲量:I =Ft =mgt =2×10×3N ·s=60N ·s(2)3s 内物体动量的变化量,根据动量定理:△P =mgt =20×3kg ·m/s=60kg ·m/s方向:竖直向下。
(3)第3s 末的动量:220==y P mv m v v +末末()222102010kg m /s gt +=⋅8.一质量为1 kg 的小物块放在水平地面上的A 点,距离A 点8 m 的位置B 处是一面墙,如图所示.物块以v0=5 m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为3 m/s,碰后以2 m/s的速度反向运动直至静止.g取10 m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.01s,求碰撞过程中墙面对物块平均作用力的大小F;【答案】(1)0.1(2)500N【解析】(1)由动能定理,有-μmgs=12mv2-12m v02可得μ=0.1(2)由动量定理,规定水平向左为正方向,有FΔt=mv′-(-mv)可得F=500N9.如图,质量分别为m1=10kg和m2=2.0kg的弹性小球a、b用弹性轻绳紧紧的把它们捆在一起,使它们发生微小的形变,该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动,某时刻轻绳突然自动断开,断开后,小球b停止运动,小球a继续沿原方向直线运动。
求:① 刚分离时,小球a的速度大小v1;② 两球分开过程中,小球a受到的冲量I。
【答案】① 0.12m/s ;②【解析】【分析】根据“弹性小球a、b用弹性轻绳紧紧的把它们捆在一起,使它们发生微小的形变”、“光滑水平面”“某时刻轻绳突然自动断开”可知,本题考察类“碰撞”问题。
据类“碰撞”问题的处理方法,运用动量守恒定律、动量定理等列式计算。
【详解】① 两小球组成的系统在光滑水平面上运动,系统所受合外力为零,动量守恒,则:代入数据求得:② 两球分开过程中,对a,应用动量定理得:10.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.在正方体密闭容器中有大量某种气体的分子,每个分子质量为m ,单位体积内分子数量n 为恒量.为简化问题,我们假定:分子大小可以忽略;分子速率均为v ,且与器壁各面碰撞的机会均等;分子与器壁碰撞前后瞬间,速度方向都与器壁垂直,且速率不变.(1)求一个气体分子与器壁碰撞一次给器壁的冲量I 的大小;(2)每个分子与器壁各面碰撞的机会均等,则正方体的每个面有六分之一的几率.请计算在Δt 时间内,与面积为S 的器壁发生碰撞的分子个数N ;(3)大量气体分子对容器壁持续频繁地撞击就形成了气体的压强.对在Δt 时间内,与面积为S 的器壁发生碰撞的分子进行分析,结合第(1)(2)两问的结论,推导出气体分子对器壁的压强p 与m 、n 和v 的关系式.【答案】(1)2I mv =(2) 1.6N n Sv t =∆ (3)213nmv 【解析】(1)以气体分子为研究对象,以分子碰撞器壁时的速度方向为正方向根据动量定理 2I mv mv mv -=--=-'由牛顿第三定律可知,分子受到的冲量与分子给器壁的冲量大小相等方向相反 所以,一个分子与器壁碰撞一次给器壁的冲量为 2I mv =;(2)如图所示,以器壁的面积S 为底,以vΔt 为高构成柱体,由题设条件可知,柱体内的分子在Δt 时间内有1/6与器壁S 发生碰撞,碰撞分子总数为16N n Sv t =⋅∆ (3)在Δt 时间内,设N 个分子对面积为S 的器壁产生的作用力为FN 个分子对器壁产生的冲量 F t NI ∆=根据压强的定义 F p S= 解得气体分子对器壁的压强 213p nmv = 点睛:根据动量定理和牛顿第三定律求解一个分子与器壁碰撞一次给器壁的冲量;以Δt 时间内分子前进的距离为高构成柱体,柱体内1/6的分子撞击柱体的一个面,求出碰撞分子总数;根据动量定理求出对面积为S 的器壁产生的撞击力,根据压强的定义求出压强;11.如图所示,小球A 系在细线的一端,细线的另一端固定在0点,0点到水平面的距离为h.物块B 的质量是小球A 的2倍,置于粗糙的水平面上且位于0点的正下方,物块与水平面之间的动摩擦因数为μ.现拉动小球使细线水平伸直,小球由静止开始释放,运动到最低点时与物块发生弹性正碰.小球与物块均视为质点,不计空气阻力,重力加速度为g.求:(1)碰撞后,小球A 反弹瞬间的速度大小;(2)物块B 在水平面上滑行的时间t.【答案】(18gh (22gh 【解析】(1)设小球的质量为m ,运动到最低点与物块碰撞前的速度大小为1v ,碰后A 、B 速度分别为1v '和2v ',碰撞前后的动量和机械都守恒,则有: 2112mgh mv = 1122mv mv mv ''=+2221121112222mv mv mv ''=+⨯ 解得:12gh v '=222gh v '=, 所以碰后A 2gh ; (2)物块在水平面上滑行所受摩擦力的大小2F mg μ=,设物块在水平面上滑行的时间为t ,根据动量定量,有:202Ft mv '-=- 解得:22gh t =. 点睛:本题综合考查动量守恒定律、机械能守恒定律及动量定理,要注意正确分析物理过程,选择合适的物理规律求解,要明确碰撞的基本规律是系统的动量守恒.12.质量为0.5kg 的小球从h =2.45m 的高空自由下落至水平地面,与地面作用0.2s 后,再以5m /s 的速度反向弹回,求小球与地面的碰撞过程中对地面的平均作用力.(不计空气阻力,g =10m /s 2)【答案】35N【解析】小球自由下落过程中,由机械能守恒定律可知:mgh=12mv12;解得:v17==m/s,同理,回弹过程的速度为5m/s,方向竖直向上,设向下为正,则对碰撞过程由动量定理可知:mgt-F t=-mv′-mv代入数据解得:F=35N由牛顿第三定律小球对地面的平均作用力大小为35N,方向竖直向下.。