最新高中物理动量定理试题经典
高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。
高中物理动量经典大题练习(含答案)

1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。
2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。
一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。
已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。
请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。
高中物理动量守恒定律题20套(带答案)

1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
1 2
2mv12
1 2
2mv02
1 2
(m
2m
m)v22
u(2mg)(L
x)
Ep
最大弹性势能 EP
mv
2 0
解得:vn=
=
m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相 关数学知识辅助分析、求解。
6.如图的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作,已知 P1、P2 的质量都为 m=1 kg,P 与 AC 间的 动摩擦因数为 μ=0.1,AB 段长 L=4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的 碰撞为弹性碰撞。
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.
物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F .【答案】(1)0.32μ= (2)F =130N【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv ,代入数据解得:F=130N .3.滑冰是青少年喜爱的一项体育运动。
高中物理动量定理题20套(带答案)及解析

高中物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2C v N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向;(2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量;解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左(2)碰撞过程对B 应用动量定理可得:0B I Mv =-可解得:3I N s =⋅ 方向水平向右3.如图所示,真空中有平行正对金属板A 、B ,它们分别接在输出电压恒为U =91V 的电源两端,金属板长L =10cm 、两金属板间的距离d =3.2cm ,A 、B 两板间的电场可以视为匀强电场。
动量动量定理练习题

动量定理练习题一、单选题1.如图所示,一恒力F与水平方向夹角为θ,作用在置于光滑水平面上,质量为m的物体上,作用时间为t,则力F的冲量为()A.Ft B.mgt C.F cosθt D.(mg-F sinθ)t2.质量为m的质点以速度υ绕半径R的圆周轨道做匀速圆周运动,在半个周期内动量的改变量大小为()A.0 B.mυC.2mυD.条件不足,无法确定3.如图所示质量为m的物块沿倾角为θ的斜面由底端向上滑去,经过时间t1速度为零后又下滑,经过时间t2回到斜面底端,在整个运动过程中,重力对物块的总冲量为()A.0 B.mg sinθ(t1+ t2) C.mg sinθ(t1- t2) D.mg(t1+ t2)4.水平抛出的物体,不计空气阻力,则()A.在相等时间内,动量的变化相同B.在任何时间内,动量的变化方向都在竖直方向C.在任何时间内,动量对时间的变化率相同D.在刚抛出的瞬间,动量对时间的变化率为零5.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。
若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,则()A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量6.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓球上升到最高点和从最高点返回到抛出点的过程相比较()A.重力在上升过程的冲量大B.合外力在上升过程的冲量大C.重力冲量在两过程中的方向相反D.空气阻力冲量在两过程中的方向相反7.动量相等的甲、乙两车,刹车后沿两条水平路面滑行.若两车质量之比m1:m2=1:2,路面对两车的阻力相同,则两车滑行时间之比为()A.1:1 B.1:2 C.2:1 D.1:48.A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则()A.经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同B.A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下C.三个小球运动过程的动量变化率大小相等,方向相同D.三个小球从抛出到落地过程中A球所受的冲量最大二、计算题1、用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,求铁锤钉钉子的平均作用力是多大?(g 取10m/s2)2、一个质量为0.18kg的垒球,以25m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为45m/s,设球棒与垒球的作用时间为0.01s.求:(1)球棒对垒球的平均作用力大小(2)球棒对垒球做的功3、质量为m=0.2kg的橡皮球自高处落下,以速率v0=5m/s碰地,竖直向上弹回,碰撞时间为t=0.1s,离地时速率为v=3m/s,求:(1)在碰撞过程中地面对橡皮球的平均作用力(2)若把橡皮球改为钢球,碰撞时间为0.01s,则碰撞时的平均作用力是多少?4、质量为1 kg的小球从距地面高0.45 m处自由下落到地面上,反弹后上升的最大高度为0.20 m,小球与地面接触的时间为0.05 s,不计空气阻力,g取10 m/s2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高中物理动量定理试题经典一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
质量m0=0.005kg的子弹以速度v0=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取10m/s2。
求:(1)物块的最大速度v1;(2)木板的最大速度v2;(3)物块在木板上滑动的时间t .【答案】(1)3m/s ;(2)1m/s ;(3)0.5s 。
【解析】 【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m 0v 0=(m +m 0)v 1解得:v 1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m +m 0)v 1=(M +m +m 0)v 2。
解得:v 2=1m/s(3)对木板,根据动量定理得:μ(m +m 0)gt =Mv 2-0解得:t =0.5s3.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv = 解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=4.质量为0.2kg的小球竖直向下以6m/s的速度落至水平地面,再以4m/s的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s,则小球受到地面的平均作用力大小?(取g=10m/s2).【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;【解析】【分析】【详解】(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s小球与地面碰撞后的动量为p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s小球与地面碰撞前后动量的变化量为Δp=p2-p1=2 kg·m/s(2)由动量定理得(F-mg)Δt=Δp所以F=pt∆∆+mg=20.2N+0.2×10N=12N,方向竖直向上.5.如图所示,用0.5kg的铁睡把钉子钉进木头里去,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s(取g=10m/s2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大?(2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大?【答案】(1)200N,方向竖直向下;(2)205N,方向竖直向下【解析】【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F,取铁锤的速度v的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv-=-则10.5 4.0N200N0.01mvFt ⨯===由牛顿第三定律可知,铁锤钉钉子的平均作用力1F'的大小也为200N,方向竖直向下。
(2)考虑铁锤受的重力时,设铁锤受到钉子竖直向上的作用力为2F,取铁锤的速度v的方向为正方向,由动量定理得()20mg F t mv -=-可得2205N mvF mg t=+= 即考虑铁锤受的重力时,铁锤打打子的平均作用力为2F '=205N ,方向竖直向下。
6.质量为70kg 的人不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知人先自由下落3.2m ,安全带伸直到原长,接着拉伸安全带缓冲到最低点,缓冲时间为1s ,取g =10m/s 2.求缓冲过程人受到安全带的平均拉力的大小. 【答案】1260N 【解析】 【详解】人下落3.2m 时的速度大小为28.0m /s v gh ==在缓冲过程中,取向上为正方向,由动量定理可得()0()F mg t mv -=--则缓冲过程人受到安全带的平均拉力的大小1260N mvF mg t=+=7.如图所示,质量的小车A 静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。
可视为质点的小物块B 置于A 的最右端,B 的质量。
现对小车A 施加一个水平向右的恒力F =20N ,作用0.5s 后撤去外力,随后固定挡板与小物块B 发生碰撞。
假设碰撞时间极短,碰后A 、B 粘在一起,继续运动。
求:(1)碰撞前小车A 的速度;(2)碰撞过程中小车A 损失的机械能。
【答案】(1)1m/s (2)25/9J 【解析】 【详解】(1)A 上表面光滑,在外力作用下,A 运动,B 静止, 对A ,由动量定理得:,代入数据解得:m/s ;(2)A 、B 碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:,代入数据解得:,碰撞过程,A 损失的机械能:,代入数据解得:;8.如图所示,在粗糙的水平面上0.5a —1.5a 区间放置一探测板(0mv q a B=)。
在水平面的上方存在水平向里,磁感应强度大小为B 的匀强磁场,磁场右边界离小孔O 距离为a ,位于水平面下方离子源C 飘出质量为m ,电荷量为q ,初速度为0的一束负离子,这束离子经电势差为2029mv U q=的电场加速后,从小孔O 垂直水平面并垂直磁场射入磁场区域,t 时间内共有N 个离子打到探测板上。
(1)求离子从小孔O 射入磁场后打到板上的位置。
(2)若离子与挡板碰撞前后没有能量的损失,则探测板受到的冲击力为多少? (3)若射到探测板上的离子全部被板吸收,要使探测板不动,水平面需要给探测板的摩擦力为多少?【答案】(1)打在板的中间(2)23Nmv t方向竖直向下(3) 033Nmv t 方向水平向左【解析】(1)在加速电场中加速时据动能定理: 212qU mv =, 代入数据得023v v =在磁场中洛仑兹力提供向心力: 2v qvB m r =,所以半径02233mv mv r a qB qB === 轨迹如图:13O O a '=, 030OO A ∠=' , 023cos3033OA a a ==所以0tan60OB OA a ==,离子离开磁场后打到板的正中间。
(2)设板对离子的力为F ,垂直板向上为正方向,根据动量定理:()0002sin30sin303Ft Nmv Nmv Nmv =--=F=23Nmv t根据牛顿第三定律,探测板受到的冲击力大小为23Nmv t,方向竖直向下。
(3)若射到探测板上的离子全部被板吸收,板对离子水平方向的力为T ,根据动量定理:003cos303Tt Nmv Nmv ==,T=033Nmv t 离子对板的力大小为33Nmv t,方向水平向右。
所以水平面需要给探测板的摩擦力大小为33Nmv t,方向水平向左。
9.如图所示,质量为m =1.0 kg 的物块A 以v 0=4.0 m/s 速度沿粗糙水平面滑向静止在水平面上质量为M =2.0 kg 的物块B ,物块A 和物块B 碰撞时间极短,碰后两物块粘在一起.已知物块A 和物块B 均可视为质点,两物块间的距离为L =1.75 m ,两物块与水平面间的动摩擦因数均为μ=0.20,重力加速度g =10 m/s 2.求:(1)物块A 和物块B 碰撞前的瞬间,物块A 的速度v 的大小; (2)物块A 和物块B 碰撞的过程中,物块A 对物块B 的冲量I ; (3)物块A 和物块B 碰撞的过程中,系统损失的机械能ΔE . 【答案】(1)3 m/s (2)2 N·s,方向水平向右(3)【解析】试题分析:物块A 运动到和物块B 碰撞前的瞬间,根据动能定理求得物块A 的速度;以物块A 和物块B 为系统,根据动量守恒求得碰后两物块速度,再根据动量定理求得物块A 对物块B 的冲量.以物块A 和物块B 为系统,根据能量守恒求得系统损失的机械能.(1)物块A运动到和物块B碰撞前的瞬间,根据动能定理得,解得(2)以物块A和物块B为系统,根据动量守恒得:,以物块B为研究对象,根据动量定理得:,解得,方向水平向右(3)以物块A和物块B为系统,根据能量守恒得解得:10.一个质量为2kg的物体静止在水平桌面上,如图1所示,现在对物体施加一个水平向右的拉力F,拉力F随时间t变化的图象如图2所示,已知物体在第1s内保持静止状态,第2s初开始做匀加速直线运动,第3s末撤去拉力,第5s末物体速度减小为求:前3s内拉力F的冲量。