高中物理动量定理试题经典及解析

合集下载

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案)

1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
1 2
2mv12
1 2
2mv02
1 2
(m
2m
m)v22
u(2mg)(L
x)
Ep
最大弹性势能 EP
mv
2 0
解得:vn=

m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相 关数学知识辅助分析、求解。
6.如图的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作,已知 P1、P2 的质量都为 m=1 kg,P 与 AC 间的 动摩擦因数为 μ=0.1,AB 段长 L=4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的 碰撞为弹性碰撞。
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.

高中物理动量经典大题练习(含答案)

高中物理动量经典大题练习(含答案)

1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。

2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。

一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。

已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。

请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。

高中物理动量守恒定律试题经典及解析

高中物理动量守恒定律试题经典及解析

高中物理动量守恒定律试题经典及分析一、高考物理精讲专题动量守恒定律1. 水平搁置长为 L=4.5m 的传递带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边沿恰于传递带右端 B 对齐;质量为 m 1=1kg的物块自传递带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摇动一个小角度即被取走。

2已知物块与传递带间的滑动摩擦因数为μ,取重力加快度 g10m/s 2 。

求:( 1)碰撞后瞬时,小球遇到的拉力是多大?( 2)物块在传递带上运动的整个过程中,与传递带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2)【分析】【详解】解:设滑块 m1与小球碰撞前向来做匀减速运动,依据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1v ,说明假定合理m 1v 1 = 12滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,依据牛顿第二定律:F m 2 gm 2 v 22l小球遇到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传递带运转距离为: S 1 vt 1 3m 滑块与传递带的相对行程为:X 1LX 1设滑块与小球碰撞后不可以回到传递带左端,向左运动最大时间为 t 2则依据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m11v1 t 2=2m22因为 x m L ,说明假定建立,即滑块最后从传递带的右端走开传递带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传递带上的总时间为2t2在滑块与传递带碰撞后的时间内,传递带与滑块间的相对行程X 22vt212m所以,整个过程中,因摩擦而产生的内能是Q m1 g x1 x22.以下图,质量M=1kg 的半圆弧形绝缘凹槽搁置在圆滑的水平面上,凹槽部分嵌有cd 和 ef 两个圆滑半圆形导轨, c 与 e 端由导线连结,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行 ce 由静止着落,并恰巧从 ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触优秀。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

高中物理动量定理专项训练100(附答案)含解析

高中物理动量定理专项训练100(附答案)含解析

高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。

求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

2.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.μ=(2)F=130N【答案】(1)0.32【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。

比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。

(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F .【答案】(1)0.32μ= (2)F =130N【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv ,代入数据解得:F=130N .3.滑冰是青少年喜爱的一项体育运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量定理试题经典及解析
一、高考物理精讲专题动量定理
1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅 0.2s 的发射时间,就能将质量为 m=5kg 的礼花弹竖直抛上 180m 的高空。(忽略发射底座高 度,不计空气阻力,g 取 10m/s2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于 礼花弹自身重力)
x1
v1t2
1 3
m
木板运动的距离:
x2
1 2
v2t2
5 12
m
由于 x1 x2 L ,假设成立,木板停下后,物块在木板上滑行的时间:
t3
L x1 x2 v1
1s 4
因此物块在板上滑行的总时间为: t
t1
t2
t3
5 6
s
5.如图所示,两个小球 A 和 B 质量分别是 mA=2.0kg,mB=1.6kg,球 A 静止在光滑水平面上 的 M 点,球 B 在水平面上从远处沿两球的中心连线向着球 A 运动,假设两球相距 L≤18m 时存 在着恒定的斥力 F,L>18m 时无相互作用力.当两球相距最近时,它们间的距离为 d=2m,此 时球 B 的速度是 4m/s.求:
(2)设蹦床的压缩量为 x,小孩离开蹦床后上升了 H.从最低点处到最高点,重力做功
mg x
H
,根据
F-x
图象的面积可求出弹力做功:W弹
kx2 2
从最低点处到最高点,根据动能定理: mg H x kx2 0
2
可得: H kx2 x ,可以判断上升高度与质量 m 有关,质量大的上升高度小. 2mg
h 1 gt2 2
解得
t 6s
对礼花弹从发射到抛到最高点,由动量定理
Ft0 mg(t t0 ) 0
其中
t0 0.2s
解得
F 1550N
(2)设在最高点爆炸后两块质量分别为 m1、m2,对应的水平速度大小分别为 v1、v2,则: 在最高点爆炸,由动量守恒定律得
由能量守恒定律得
m1v1 m2v2
其中
E
1 2
m1v12
1 2
m2v22
m1 1 m2 4
联立解得
m m1 m2
v1 120m/s
之后两物块做平抛运动,则 竖直方向有
水平方向有 由以上各式联立解得
v2 30m/s
h 1 gt2 2
s v1t v2t
s=900m
2.如图所示,足够长的木板 A 和物块 C 置于同一光滑水平轨道上,物块 B 置于 A 的左 端,A、B、C 的质量分别为 m、2m 和 3m,已知 A、B 一起以 v0 的速度向右运动,滑块 C 向左运动,A、C 碰后连成一体,最终 A、B、C 都静止,求:
mv0 Mv2 mv1
解得: v2 2.5m/s
(2)碰撞前,物块在平板车上运动的时间: t1
L v0
1s 4
碰撞后,长木板以 v2 做匀减速运动,加速度大小: a
(m M )g M
7.5m/s2
设长木板停下时,物块还未滑离木板,木板停下所用时间: t2
v2 a
1s 3
在此时间内,物块运动的距离:
(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略 不计),测得前后两块质量之比为 1:4,且炸裂时有大小为 E=9000J 的化学能全部转化为 了动能,则两块落地点间的距离是多少?
【答案】(1)1550N;(2)900m 【解析】
【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为 F,设礼花弹上升时间为 t,则:
【答案】(1)0.15 (2)130 N 【解析】
【详解】
(1)从 A 到 B 过程,由动能定理,有:-μmgs= 1 mv12- 1 mv02
2
2
可得:μ=0.15.
(2)对碰撞过程,规定向左为正方向,由动量定理,有:Ft=mv2-m(-v1)
可得:F=130 N.
8.如图甲所示,蹦床是常见的儿童游乐项目之一,儿童从一定高度落到蹦床上,将蹦床压 下后,又被弹回到空中,如此反复,达到锻炼和玩耍的目的.如图乙所示,蹦床可以简化 为一个竖直放置的轻弹簧,弹力的大小为 kx(x 为床面下沉的距离,也叫形变量;k 为常 量),蹦床的初始形变量可视为 0,忽略空气阻力的影响.
4.如图所示,长为 1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板, 长木板与挡板的总质量为 M =lkg,板的上表面光滑,一个质量为 m= 0.5kg 的物块以大小为 t0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对
物 块的冲量大小为 2. 5N • s,已知板与水平面间的动摩擦因数为 = 0.5,重力加速度为
考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是 解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.
3.质量 0.2kg 的球,从 5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高 度为 4.05m.如果球从开始下落到弹起达最大高度所用时间为 1.95s,不考虑空气阻力,g 取 10m/s2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】 自由落体过程 v12=2gh1,得 v1=10m/s; v1=gt1 得 t1=1s 小球弹起后达到最大高度过程 0− v22=−2gh2,得 v2=9m/s 0-v2=-gt2 得 t2=0.9s 小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1) 其中 t′=t-t1-t2=0.05s 得 F=78N 由牛顿第三定律得 F′=-F,所以小球对钢板的作用力大小为 78N,方向竖直向下;
(1)球 B 的初速度大小; (2)两球之间的斥力大小; (3)两球从开始相互作用到相距最近时所经历的时间.
【答案】(1) vB0 9 m s ;(2) F 2.25N ;(3) t 3.56s
【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出 B 球 的初速度;(2)在两球相距 L>18m 时无相互作用力,B 球做匀速直线运动,两球相距 L≤18m 时存在着恒定斥力 F,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间. (1)设两球之间的斥力大小是 F,两球从开始相互作用到两球相距最近时所经历的时间是
【答案】(1)a.
b. v 2gH c. I mgt 2m 2gH (2)上升高度与
质量 m 有关,质量大的上升高度小 【解析】 【分析】 (1)a、根据胡克定律求出劲度系数,抓住弹力与形变量成正比,作出弹力 F 随 x 变化的 示意图. b、根据机械能守恒求出小孩刚接触蹦床时的速度大小;
c、根据动量定理求出蹦床对该小孩的冲量大小. (2)根据图线围成的面积表示弹力做功,得出弹力做功的表达式,根据动能定理求出弹力 做功,从而求出 x1 的值. 【详解】
(1)在一次玩耍中,某质量为 m 的小孩,从距离蹦床床面高 H 处由静止下落,将蹦床下 压到最低点后,再被弹回至空中. a.请在图丙中画出小孩接触蹦床后,所受蹦床的弹力 F 随形变量 x 变化的图线; b.求出小孩刚接触蹦床时的速度大小 v; c.若已知该小孩与蹦床接触的时间为 t,求接触蹦床过程中,蹦床对该小孩的冲量大小 I. (2)借助 F-x 图,可确定弹力做功的规律.在某次玩耍中,质量不同的两个小孩(均可视 为质点),分别在两张相同的蹦床上弹跳,请判断:这两个小孩,在蹦床上以相同形变量 由静止开始,上升的最大高度是否相同?并论证你的观点.
(2)在以后的运动过程中,求弹簧具有的最大弹性势能 Ep.
【答案】(1) F mv0 2t
(2)
EP
1 12
mv02
【解析】
【详解】
(1)设 A、B 碰撞后瞬间的速度为 v1 ,碰撞过程 A、B 系统动量守恒,取向右为正方向,由动
量守恒定律有: mv0 2mv1
解得
v1
1 2
v0
设 A、B 碰撞时的平均作用力大小为 F,对 B 有 Ft mv1 0
t。当两球相距最近时球 B 的速度 vB 4 m s ,此时球 A 的速度 vA 与球 B 的速度大小相
等, vA vB 4 m s ,由动量守恒定律可 mBvB0 mA mB v 得: vB0 9 m s ;
(2)两球从开始相互作用到它们之间距离最近时,它们之间的相对位移 Δx=L-d,由功能关
【点睛】
解决本题的关键知道运动员在整个过程中的运动情况,结合运动学公式、动能定理等知识
进行求解.
9.起跳摸高是学生常进行的一项活动。某中学生身高 1.80m,质量 70kg。他站立举臂,手
指摸到的高度为 2.10m.在一次摸高测试中,如果他下蹲,再用力瞪地向上跳起,同时举
臂,离地后手指摸到高度为 2.55m。设他从蹬地到离开地面所用的时间为 0.7s。不计空气
解得: v1 v0 .
②设 C 与 A 碰后共同速度大小为 v2 ,对 A、C 在碰撞过程由动量守恒定律得: mv0-3mv1 (m 3m)v2 在 A、C 碰撞过程中对 A 由动量定理得: ICA mv2-mv0
解得:
ICA
3 2
mv0

A、C
碰过程中
C

A
的冲量大Байду номын сангаас为
3 2
mv0

方向为负.
(i)C 与 A 碰撞前的速度大小 (ii)A、C 碰撞过程中 C 对 A 到冲量的大小. 【答案】(1)C 与 A 碰撞前的速度大小是 v0;
(2)A、C 碰撞过程中 C 对 A 的冲量的大小是 3 mv0. 2
相关文档
最新文档