磁感应强度
名词解释磁感应强度

名词解释磁感应强度
磁感应强度是一种表述磁场中各点磁力大小和方向的矢量性物理量。
它的大小通常用特斯拉 (T) 作为单位,而方向则用高斯 (G) 作为单位。
在物理学中,磁感应强度是描述磁场强度大小和方向的重要物理量,它是电场强度的相对论修正。
磁感应强度的符号与磁场方向相同,即磁感应强度的符号由磁场的符号决定。
磁感应强度的应用场景广泛,比如在物理学、工程学、电子学等领域都有广泛的应用。
在物理学中,磁感应强度常用于研究磁场的性质、磁场的分布和磁场的力作用等;在工程学中,磁感应强度常用于测量磁场的强度,比如磁感应强度计、磁通量密度计等;在电子学中,磁感应强度常用于研究电子器件的磁性和磁场对电子的影响,比如磁耦合等离子体器件、磁存储器件等。
磁感应强度是一个十分重要的物理量,它在各个领域都有广泛的应用,对于我们理解自然界和人类活动中的应用有着重要的意义。
磁感应强度与磁场掌握磁感应强度的计算方法

磁感应强度与磁场掌握磁感应强度的计算方法磁感应强度与磁场:掌握磁感应强度的计算方法磁感应强度是衡量磁场强弱的物理量,是指单位面积垂直于该面的平面内,通过垂直于该面的磁感线的总数。
本文将介绍磁感应强度的定义以及计算方法,帮助读者更好地掌握磁场的性质和特点。
1. 磁感应强度的定义磁感应强度B是描述磁场强弱的物理量,单位是特斯拉(T)。
它表示单位面积内所通过的磁感线数目,可以用以下公式计算:B = Φ/A其中,B代表磁感应强度,Φ代表通过该面的磁通量,A代表单位面积。
2. 磁通量的计算方法磁通量Φ是指单位面积内通过的磁感线的总数,可以使用以下公式计算:Φ = B * A * cosθ其中,Φ代表磁通量,B代表磁感应强度,A代表面积,θ代表磁场线与该面法线的夹角。
3. 磁感应强度的计算方法磁感应强度可以通过磁场中的运动电荷所受的磁力来计算。
根据洛伦兹力的公式,可以得到如下计算公式:F = q * v * B * sinθ其中,F代表洛伦兹力,q代表电荷量,v代表运动速度,B代表磁感应强度,θ代表电荷速度方向与磁场方向的夹角。
根据洛伦兹力的定义,我们可以推导出磁感应强度的计算公式:B = F / (q * v * sinθ)通过测量洛伦兹力的大小和相应的电荷量、速度以及夹角,可以得到磁感应强度的数值。
4. 磁感应强度的测量方法除了通过洛伦兹力的计算方法,还可以使用霍尔效应测量磁感应强度。
霍尔效应是指当电流通过一个薄片时,薄片两侧产生的电压与磁场强度成正比的现象。
具体实验步骤如下:1) 将霍尔元件放置在磁场中,使其法线与磁场方向垂直。
2) 测量被测磁场的磁感应强度和相应的霍尔电压。
3) 根据霍尔电压与磁感应强度成正比的关系,可以计算出磁感应强度的数值。
5. 磁感应强度与磁场强度的关系磁感应强度与磁场强度是两个相关但不完全相同的概念。
磁场强度H是指单位长度内所绕的磁感线数目,单位是安培/米(A/m)。
它描述的是磁场中的电流产生的磁感应强度。
物理磁感应强度知识点

物理磁感应强度知识点
一、磁感应强度的定义
磁感应强度是描述磁场强弱和方向的物理量,用字母 B 表示。
定义:在磁场中垂直于磁场方向的通电导线,所受的安培力 F 跟电流 I 和导线长度 L 的乘积 IL 的比值叫做磁感应强度。
公式:(B = frac{F}{IL})
二、磁感应强度的单位
国际单位:特斯拉(T)
三、磁感应强度的方向
磁感应强度的方向就是磁场的方向,小磁针静止时 N 极所指的方向规定为该点的磁感应强度的方向。
四、磁感应强度的特点
1. 磁感应强度是矢量,既有大小又有方向。
2. 磁场中某点的磁感应强度由磁场本身决定,与放入的通电导线所受的安培力大小、导线的长度、电流的大小等均无关。
五、匀强磁场
如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫做匀强磁场。
六、磁感应强度的叠加
空间中如果存在多个磁场,某点的磁感应强度等于各个磁场在该点产生的磁感应强度的矢量和。
磁感应强度

1 磁感应强度 (flux density):表示磁场内某点的磁场强弱和方向的物理量,单位是特斯拉(T),用符号B表示。
其大小可用通电导体在磁场中受力的大小来衡量,即(该导体与磁场方向垂直),其方向与产生磁场的电流的方向遵循右螺旋关系。
磁感应强度也叫磁通密度。
2 磁场强度 (magnetizing force):磁场强度H与磁感应强度B的关系是(µ为磁导率),是一种引用的物理量,用来表示磁场与电流之间的关系。
3 磁通 (flux):磁感应强度与垂直于磁场方向的面积的乘积叫做磁通,单位是韦伯(Wb)。
4 磁导率 (permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。
物质按导磁性能的不同分为磁性物质(或称铁磁物质,如铁、钴、镍及其合金)和非磁性物质(如铜、铝、橡胶等绝缘材料及空气)。
非磁性物质的磁导率近似等于真空的磁导率,而铁磁性物质的磁导率远大于真空的磁导率,即>>。
5 磁滞 (hysteresis):铁磁体在反复磁化的过程中,其磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。
6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。
7 基本磁化曲线 (fundamental magnetization curve):铁磁体磁滞回线的形状与磁感应强度(或磁场强度)的最大值有关,在绘制磁滞回线时,如果对磁感应强度(或磁场强度)最大值取不同的数值,就得到一系列的磁滞回线,连接这些回线顶点的曲线叫基本磁化曲线。
8 磁饱和(magnetic saturation):在磁化曲线中,当磁场强度增加到一定值以后,磁场强度继续增加,而磁感应强度却增加得很少的现象。
9 磁滞损耗 (hysteresis loss):放在交变磁场中的铁磁体,因磁滞现象而产生一些能量损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。
磁感应强度的

磁感应强度的一、磁感应强度1、什么是磁感应强度?磁感应强度指的是一种物质对外界磁场的反应,单个磁体在磁场中会受到向外的拉力,而另一种物质会抵抗这种拉力对位置和方向的改变,当物质抵抗磁力大于物质承受磁力时,就表现出了磁感应强度。
2、磁感应强度的测量方法有哪些?(1)在实验室内进行测量。
采用偏斜磁场实验,在实验室内通过改变电流的强度,改变偏斜磁场的方向,从而求出样品表面的磁感应强度。
(2)对比方法:将样品与已知磁感应强度的标准样品放入相同的磁场,通过比较两者的磁力的大小,来推算样品的磁感应强度。
(3)多电极法:将多个测量电极相绕封装在样品形成一个封闭环状,并通过相绕波形分析仪测量得到样品的磁感应强度值。
3、磁感应强度的应用:(1)电机轴承的送货:磁感应强度可以测量电机轴承的间隙,确保轴承的正常工作。
(2)液体的取样:磁感应强度能够快速、准确地测量液体中的颗粒成分,以确定液体的性质。
(3)食品安全:磁感应强度测量可以鉴定食品中非食安元素,鉴定出不同类型的颗粒细菌,对食品安全进行监督,以确保食品安全。
(4)航空装备安全:磁感应强度可以用来检测航空装备上不同金属件的结合紧密程度,确保飞行安全。
二、磁感应仪使用技巧1、使用部件的正确操作:磁感应仪的使用时首先要熟悉各个控制部件的功能,例如在使用前要检查仪表的连接,电源的接线,主板的连接,保证仪表的稳定,以及配置软件的安装等。
2、检查校准:正确的使用前,还需要检查具体设定参数是否正确,参数检查时要确保与待测设备的类型、型号一致,以及校准仪表,使仪表达到一定的精度,确保测量结果的准确性。
3、采样:根据测量需求确定采样的方式,局部采样在一定范围内采取多次样本取值,整体采样则是采取局部采样的一个概括,即以一次采取一整件物体的样本测量磁感应强度。
4、结果分析:结果有可能会出现偏差的情况,这时候应当重复测量,对测量数据进行求平均、求标准差等分析处理,如果结果变化很小,说明测量结果比较稳定,可以把结果作为准确数据。
磁感应强度的概念和测量

磁感应强度的概念和测量磁感应强度是电磁学中的重要概念之一,用于表示磁场的强度。
在物理学中,磁场是由磁铁、电流或者变化的电场产生的,并且对其周围物体产生力的作用。
磁感应强度是用来描述磁场的强弱的物理量,通常用符号B表示。
一、磁感应强度的概念:磁感应强度是磁场的物理量,它表示单位面积上通过的磁力线数目。
磁感应强度的方向与磁力线方向一致,其大小决定于磁场的强弱。
在国际单位制中,磁感应强度的单位是特斯拉(T)。
磁场的概念最早由安培、奥斯特和法拉第提出,经过一段时间的发展和研究,才得到了磁感应强度的概念。
磁感应强度是描述磁场强度的物理量,其大小与所带电流的大小和磁场中的物质有关。
二、磁感应强度的测量:测量磁感应强度的方法有多种,常见的有霍尔效应法、霍尔元件法和法拉第电磁感应法等。
1. 霍尔效应法:霍尔效应法是利用霍尔效应来测量磁感应强度的方法,它利用了电流在磁场中的偏转现象。
当电流通过垂直于磁场的导线时,会在导线的一侧产生电位差。
根据霍尔效应的原理,我们可以通过测量这个电位差来确定磁感应强度。
2. 霍尔元件法:霍尔元件法也是利用霍尔效应来测量磁感应强度的一种方法,与霍尔效应法类似。
不同之处在于,霍尔元件法使用了专门的元件来测量电位差,这样可以提高测量精度。
3. 法拉第电磁感应法:法拉第电磁感应法是利用法拉第电磁感应定律来测量磁感应强度的方法。
根据法拉第电磁感应定律,当磁场的磁感应强度发生变化时,在闭合回路中会产生感应电动势。
通过测量这个感应电动势的大小,可以确定磁感应强度的大小。
通过以上的几种方法,我们可以准确地测量磁感应强度,并获得相应的数据。
在实际应用中,磁感应强度的测量对于电磁学的研究和工程应用都具有重要的意义。
结论:磁感应强度是描述磁场强度的物理量,它表示单位面积上通过的磁力线数目。
磁感应强度的测量可以通过霍尔效应法、霍尔元件法和法拉第电磁感应法等多种方法来进行。
磁感应强度的准确测量对于电磁学的研究和应用具有重要意义。
磁感应强度

这个物理量之所以叫做磁感应强度,而没有叫做磁场强度,是由于历史上磁场强度一词已用来表示另外一个 物理量了,区别:磁感应强度反映的是相互作用力,是两个参考点A与B之间的应力关系,而磁场强度是主体单方 的量,不管B方有没有参与,这个量是不变的。
磁感应强度
电磁学术语
01 基本介绍
03 量纲 05 计算方法
目录
02 定义 04 计算公式
磁感应强度是指描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为 T)。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越 大表示磁感应越强。磁感应强度越小,表示磁感应越弱 。
B= F/IL,(由F=BIL而来)。
注:磁场中某点的磁感应强度B是客观存在的,与是否放置通电导线无关,定义式F=BIL中要求一小段通电导 线应垂直于磁场放置才行,如果平行于磁场放置,则力F为零 。
计算公式
B=F/IL=F/qv=Φ/S F:洛伦兹力或者安培力; q:电荷量; v:速度; E:电场强度; Φ(=ΔBS或BΔS,B为磁感应强度,S为面积):磁通量; S:面积; L:磁场中导体的长度。 定义式:F=ILB。 表达式:B=F/IL。
计算方法
无限长载流直导线外: 其中,,为真空磁导率。r为该点到直导线距离。 圆电流圆心处: 其中,r为圆半径。 无限大均匀载流平面外: 其中,α是流过单位长度的电流。 一段载流圆弧在圆心处: 其中,φ是该圆弧对应的圆心角,单位为弧度。 毕奥-萨伐尔定律: Idl表示恒定电流的一电流元,r表示从电流元指向某一场点P的径矢。式中B、dl、r均为矢量,e为单位向量, 方向与r相同 。
磁感应强度

定电流.已知载流长直导线周围磁场的磁感应强度大小为B=k I /r,式中常量k>0,I为电流
强度,r为距导线的距离.若电流Ia在正方形的几何中心O点处产生的磁感应强度大小为B,则
O点处实际的磁感应强度的大小及方向为(忽略电流间的相互作用)(
A.2 2B,方向指向 ad 中点
B.2 2B,方向指向 ab 中点
力
的
大
小
FA=BILsin
B
ߠ
I
B // I
FA=BIL 最大
FA=0
磁感应强度 放入磁场中某点的电流元所受的安培力的最大值F与
1、定义:
电流I和导线长度L的乘积IL(电流元)的比值叫做电
流元所在处的磁感应强度,用大写字B来表示。
安培力达
到最大值
同一位置,安培力与电
流元的比值为定值,能
反映磁场的强弱。
C.10B,方向垂直于纸面向里
D.10B,方向垂直于纸面向外
A)
味 解析 由安培定则可知,直导线a在O点产生的磁感应强度方向由O指向b,大小为B,直
道
导线c在O点产生的磁感应强度方向由
O指向d,大小为3B,两者在O点产生的合磁感应
江
湖 强度大小为2B,方向由O指向d,同理b、d两直导线产生的磁感应强度大小也为2B,方向
强度大小和方向是 (
C)
A.磁感应强度大小为0
B.大小为2B,方向竖直向上
C.大小为 2 2 B,方向竖直向下
D.大小为 2 2 B,方向竖直向上
味
道
江
湖
太
明
论
理
例13
跟
我
走
大
显
身
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场环路定理
1
一、磁场的高斯定理
1.磁力线 BB B A 为形象的描绘磁场分布的而 引入的一组有方向的空间曲线。 B A 1.规定 •方向:磁力线上某点的切线方向为该点磁场方向。
•大小:通过磁场中某点垂直于 磁感应强度的单位面积的磁力 线根数等于该点磁感应强度的 d m 大小。
穿过一面元的磁通量:
d m BdS BdS cos B dS 式中:dS dSn ˆ 称为面元矢量。 ˆ 为法线方向单位矢量。 n
4
2.穿过某一曲面的磁通量
m d m B dS
d m
B
BdS cos
dS
d m
dS
B
dS
B
2
磁感应强度大小为磁力线的面密度。 可用磁力线的疏密程度表示磁感应强度的大小。
2.磁力线形状 •直线电流的磁力线分布
•载流螺线管的磁力线分布
I
3.磁力线的性质 1.磁力线为闭合曲线或两头伸向无穷远; 2.磁力线密处 B 大;磁力线疏处 B 小; 3.闭合的磁力线和载流回路象锁链互套在一起; 4.磁力线和电流满足右手螺旋法则。
dB
dB' '
dl '
o
dl ' '
无数对称元在 p点的总磁场方向平行于电流平面。 因为电流平面是无限大,故与电流平面等距离的 各点B的大小相等。在该平面两侧的磁场方向相反。
14
B dl B 2l o jl
L
作一安培回路如图: bc和 da两边被电流平 面等分。ab和cd 与电 流平面平行,则有:
L
(1)环路要经过所研究的场点。 (2)环路的长度便于计算;
9
例1:密绕载流螺线管通有电流为 I,线圈密度为 n, 求管内一点的磁感应强度 。 . . . . . . . . . . . . . . . 解:理想密绕螺线管,管内的磁 a b 场是均匀的,管外的磁场为 0 ; B 作闭合环路 abcda,环路内的 电流代数和为: I nabI
B dl B 2 r 0 N I ( L) 0 N I B 2 r
当 r >> ( R2 – R1) 时
r
。 B 0nI 与直螺管的结论一致 d
N n 为沿轴向线圈密度; 2r
1
dr
r
d2 d1
h
Φm B dS d2 Bhdr
2
0 N I h d2 dr 0 N I h d1 ln d 2 d2 2 2 r
1 2
(S)
2
16
m B dS 0
证明: 由于磁力线为闭合曲线,穿入穿出 闭合面的磁力线根数相同,正负通量抵消。 磁场中的高斯定理阐明了磁场的性质: •磁场是无源场,磁力线为闭合曲线。
二、安培环路定理
1.定理表述 磁感应强度沿闭合回路的线积分等于环路所包围 的电流代数和乘以 0。
数学表达式:
L
B dl 0 I
6
安培环路定理
2.明确几点
L
B dl 0 I
(1)电流正负规定:电流方向与环路方向满足右手定 则时电流 I 取正;反之取负。
(2) B 为环路上一点的磁感应强度,不是任意点的,
它与环路内外电流都有关。 (3)环路定理只适用于闭合电流或无限电流.有限电流 不适用环路定理,只能用毕奥—萨伐尔定律。
ˆ n
S
3.穿过闭合曲面的磁通量
m d m B dS
规定:取闭合面外法线方向为正向。 磁力线穿出闭合面为正通量, 磁力线穿入闭合面为负通量。
2
B
磁通量单位:韦伯,Wb
2
ˆ n
B
5
3.磁场中的高斯定理 定理表述:穿过任意闭合面的磁通量等于 0。
13
例4:无限大平板电流的磁场分布。设一无限大导体 薄平板垂直于纸面放置,其上有方向垂直于纸面朝外 的电流通过,面电流密度(即指通过与电流方向垂直 的单位长度的电流)到处均匀。大小为 j 。 解:视为无限多平行长 dB ' 直电流的场。 p 分析求场点p的对称性 做 po 垂线,取对称的 长直电流元,其合磁场 方向平行于电流平面。
解:在管内作环路半径为 r的圆环 ,
环路内电流代数和为: I NI
rR
o R1
2
当 r >> ( R2 – R1) 时N n 为沿轴向线圈密度;
0 NI B2r 0 NI B 2r
2r
B dl 0 I
L
B 0nI与直螺管的结论一致。
左边=右边 定理成立。 推广到任意路径都成立,证毕。
8
安培环路定理为我们提供了求磁感应强度的另一种 方法。但利用安培环路定理求磁感应强度要求磁场具有 高度的对称性 。 利用高安培环路定理求磁感应强度的关健:根据 磁场分布的对称性,选取合适的闭合环路。 3.选取环路原则
B 的方向与环路方向 (3)要求环路上各点 B 大小相等, I 一致,目的是将: B dl 0 0 I 写成 B L dl 或 B 的方向与环路方向垂直, B dl , cos 0 B dl 0
B dl
2 I r 2 I r 2I 2 R R
Bdl cos
L
R
由于环路上各点 磁感应强度 大小相 等,方向与环路一致。
r
B // dl , cos 1
11
2 r I I B dl B 2 r B d l 0 2 0 R 0 I B r r 2 2R
b c a a b
c d B dl B dl 0, B d l , cos 0 d b d B 0nI B外 0, B dl 0 螺线管外: b c B dl B dl Bab 0 I 0nabI
dB
dB ' dB' '
dl '
p
d
dl ' '
l
c
B
结果
o j
2
o
方向如图所示。
a
b
在无限大均匀平面电流的两侧的磁场都为 均匀磁场,并且大小相等,但方向相反。
15
例5 一矩形截面的空心环形螺线管,尺寸如图所示, 其上均匀绕有N匝线圈,线圈中通有电流I。试求: (1)环内距轴线为r 远处的磁感应强度;(2)通过 螺线管截面的磁通量。 I
2.圆柱体外一点 r > R 区域在圆柱体外作一环路, 环路内电流代数和为: I I 同理:
I
I B dl B 2 r B d l 0 0 I 1 B B 2r r I 0
分布曲线:
L
R
r
r
2R B r
o
1 B r
L
R
r
12
例3:一环形载流螺线管,匝数为 N ,内径为 R1 ,外径为 R2 ,通 有电流 I ,求管内磁感应强度。
(4)安培环路定理说明磁场性质—磁场是有旋场。
7
特例:以无限长载流直导线为例。 长直导线周围的B 线为一系列的同心圆,选取 路径方向与磁感应强度方向相同;
L
左边= B dl L Bdl cos
由于环路上各点的磁感应强 度大小相等;且 B // dl
I
L
B
0, cos 1 0 I 2r 0 I 左边= B dl 2r L 右边= 0 I 0 I
3
2.磁通量 定义:通过任一曲面的磁力线的条 数称为通过这一面元的磁通量。 1.穿过一面元的磁通量 d m
ˆ dS n
dS 面元在垂直于磁场方 dS 向的投影是 dS , 所以通过面元 dS 的磁通量等于面元dS的磁通量,
B
dS dS cos(E n) dS cos
c
a
B dl B dl B dl B dl B dl
d
da
c
B外 0
10
例2:圆柱形载流导体半径为 R ,通有电流为 I ,电 流在导体横载面上均匀分布,求圆柱体内、外的磁感 应强度的分布。 解:导体内外的磁场是以中心轴线为对称分布的。 I 1.圆柱体内部 r < R 区域选取半径为 r 的环路, 环路内电流代数和为: