磁场强度 H 和磁感应强度 B 的区别,联系和物理意义
磁感应强度与磁场掌握磁感应强度的计算方法

磁感应强度与磁场掌握磁感应强度的计算方法磁感应强度与磁场:掌握磁感应强度的计算方法磁感应强度是衡量磁场强弱的物理量,是指单位面积垂直于该面的平面内,通过垂直于该面的磁感线的总数。
本文将介绍磁感应强度的定义以及计算方法,帮助读者更好地掌握磁场的性质和特点。
1. 磁感应强度的定义磁感应强度B是描述磁场强弱的物理量,单位是特斯拉(T)。
它表示单位面积内所通过的磁感线数目,可以用以下公式计算:B = Φ/A其中,B代表磁感应强度,Φ代表通过该面的磁通量,A代表单位面积。
2. 磁通量的计算方法磁通量Φ是指单位面积内通过的磁感线的总数,可以使用以下公式计算:Φ = B * A * cosθ其中,Φ代表磁通量,B代表磁感应强度,A代表面积,θ代表磁场线与该面法线的夹角。
3. 磁感应强度的计算方法磁感应强度可以通过磁场中的运动电荷所受的磁力来计算。
根据洛伦兹力的公式,可以得到如下计算公式:F = q * v * B * sinθ其中,F代表洛伦兹力,q代表电荷量,v代表运动速度,B代表磁感应强度,θ代表电荷速度方向与磁场方向的夹角。
根据洛伦兹力的定义,我们可以推导出磁感应强度的计算公式:B = F / (q * v * sinθ)通过测量洛伦兹力的大小和相应的电荷量、速度以及夹角,可以得到磁感应强度的数值。
4. 磁感应强度的测量方法除了通过洛伦兹力的计算方法,还可以使用霍尔效应测量磁感应强度。
霍尔效应是指当电流通过一个薄片时,薄片两侧产生的电压与磁场强度成正比的现象。
具体实验步骤如下:1) 将霍尔元件放置在磁场中,使其法线与磁场方向垂直。
2) 测量被测磁场的磁感应强度和相应的霍尔电压。
3) 根据霍尔电压与磁感应强度成正比的关系,可以计算出磁感应强度的数值。
5. 磁感应强度与磁场强度的关系磁感应强度与磁场强度是两个相关但不完全相同的概念。
磁场强度H是指单位长度内所绕的磁感线数目,单位是安培/米(A/m)。
它描述的是磁场中的电流产生的磁感应强度。
饱和磁感应强度,磁化强度的详细介绍

现在你通过电流I,把磁场H加到某种材料当中,你所要研究的粒子,不再活在真空,而在材料里活动,它可以是金属里本身自带的电子,也可以是通过外界射束打入的。这都无妨,只需记住现在你要研究的粒子不再在真空,而在介质里。一个粒子受到的力学上的响应,当然是与这个点的总磁场有关。因此,B的意义就变得丰富了,它代表在该点处的总磁场。为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。
进一步,χ>0但是数值不太大的,你命名他为顺磁介质,它顺从的跟着磁场方向嘛;χ>0数值比较大的,就是铁磁介质,由于其他机制(超过深度不加以介绍),外加的磁场产生了很大的内磁场,比用用电流制造永磁铁的过程;χ<0,就是H给材料产生的外加磁场M与H方向相反,所以就是反磁介质,或叫抗磁介质;如果是第一类超导体,它所谓的完全抗磁性,就是这个意思:外加场H,总有感生的内场M,把外场抵消,使得超导体内部磁场为零。物理上看,好像磁场穿不进来一样。
这个公式多了个外加因子,不好看。现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。
磁场强度与磁感应强度的关系

磁场强度与磁感应强度的关系磁场是一个十分神秘而又普遍存在于我们生活中的物理现象。
无论是地球上的自然磁场,还是人造磁场如电磁铁产生的磁场,都对我们的生活产生了重要的影响。
而磁场强度与磁感应强度是研究磁场的重要指标,它们之间有着紧密的关系。
首先,磁场强度是磁场的物理量。
在空间某一点处,磁场强度的大小表示受试验样品所受的磁力的大小。
磁场强度的单位是特斯拉(T)。
磁感应强度则是磁场对单位面积垂直于磁场方向的物体所产生的力的大小。
磁感应强度的单位是特斯拉(T)。
可以看出,磁场强度和磁感应强度在单位上是相同的。
那么磁场强度和磁感应强度之间究竟是什么关系呢?事实上,磁场强度与磁感应强度之间存在一个重要的关系,即B = μH。
其中,B代表磁感应强度,μ代表介质的磁导率,H表示磁场强度。
这个关系表明,磁感应强度等于磁场强度与磁导率的乘积。
磁导率是一个常数,具体取决于介质。
不同介质的磁导率有所不同,如真空的磁导率为μ0=4π×10^-7 特斯拉·米/安的二次方,气体、液体、固体等不同介质的磁导率会有一定的差异。
由此可见,磁感应强度与磁场强度之间的关系是通过介质的磁导率来联系起来的。
此外,在磁场中根据安培力的作用原理可以得到磁场强度的另一个表达式:H=NI/L。
其中,N代表线圈的匝数,I为线圈中的电流,L是线圈的长度。
这个表达式说明,磁场强度与电流和线圈的绕组参数有关,更深层次地揭示了磁场强度与磁感应强度的关系。
通过上述观察可知,磁场强度与磁感应强度之间的关系是复杂而丰富的。
磁感应强度是磁场的一个具体应用,它直接体现了磁场对物体的影响。
而磁场强度则是描述磁场本身特性的重要物理量。
磁感应强度与磁场强度之间的关系通过磁导率和电流来联系,是一个基本的物理规律。
进一步地,磁感应强度可以作为磁场强度的一种具体表现形式。
通过改变电流、线圈的参数、介质等因素,我们可以改变磁场强度,进而改变磁感应强度。
这对于很多实际应用来说具有重要意义。
磁感应强度与磁场强度的关系及计算

磁感应强度与磁场强度的关系及计算磁感应强度和磁场强度是磁学中两个重要的概念,它们之间存在着密切的关系。
磁感应强度是指单位面积上垂直于磁场方向的磁感线数目,通常用B表示;而磁场强度是指单位长度磁感线上的磁感应强度,通常用H表示。
本文将探讨磁感应强度与磁场强度之间的关系,并介绍如何计算它们。
首先,我们需要了解磁感应强度和磁场强度的定义。
磁感应强度B是指单位面积上垂直于磁场方向的磁感线数目,它用下式表示:B = Φ / A其中,Φ表示通过单位面积的磁通量,A表示单位面积。
磁场强度H是指单位长度磁感线上的磁感应强度,它用下式表示:H = B / μ其中,μ是磁导率,是介质对磁场的响应能力。
根据这两个定义,我们可以得到磁感应强度与磁场强度之间的关系:B = μH这个关系告诉我们,磁感应强度与磁场强度之间存在着线性关系,而磁导率μ则是两者之间的比例系数。
可以说,磁感应强度是磁场强度的一个体现,它描述了磁场的强弱程度。
在实际应用中,我们经常需要通过已知的磁场强度来计算磁感应强度。
这时,我们可以利用上述的关系式进行计算。
首先,我们需要知道磁场强度H的数值,然后根据磁导率μ的数值,就可以计算出磁感应强度B的数值。
例如,假设某个磁场强度为100 A/m,而磁导率为1.26 × 10^-6 H/m,我们可以通过上述关系式计算出磁感应强度的数值:B = μH = (1.26 × 10^-6 H/m) × (100 A/m) = 1.26 × 10^-4 T这样,我们就得到了磁感应强度为1.26 × 10^-4 T。
这个数值告诉我们,单位面积上垂直于磁场方向的磁感线数目为1.26 × 10^-4 条。
通过这个例子,我们可以看到,磁感应强度的数值是与磁场强度和磁导率共同决定的。
除了直接计算磁感应强度,我们还可以通过测量磁场强度来间接确定磁感应强度。
这时,我们需要借助一些仪器设备,如霍尔效应传感器、磁力计等。
浅析磁场强度H和磁感应强度B的区别

浅析磁场强度H和磁感应强度B的区别作者:凌燕来源:《湖南教育·D版》2017年第11期一、导言磁场强度和磁感应强度都可以用来描述磁场的大小,两者之间既有联系又有区别,在磁学中属于容易混淆的物理概念,理解难度较大。
磁场强度常用符号H表示,单位为安/米(A/ m)。
起初,人们认为自然界存在正负两种磁荷,并类比电学,提出磁荷的库仑定律。
单位正磁荷在磁场中所受的力被称为磁场强度H。
磁荷意义下,磁场强度的定义为:后来,安培提出分子电流假说,认为并不存在磁荷,磁现象的本质是分子电流。
在恒定磁场中磁场强度的闭合环路积分与环路所链环的电流有关,即安培环路定律:磁感应强度常用符号B表示,国际通用单位为特斯拉(符号为T)。
磁感应强度也被称为磁通量密度或磁通密度。
H和B经常在磁介质的磁化问题中同时出现。
在真空中,两者的关系:其中常数为真空磁导率。
在介质中,两者的关系为:M为磁化强度,为介质磁导率。
在电磁学的教学过程中,常常把磁学中的H和B,与电学中的电感应强度(电位移矢量)D和电场强度E相比较。
从名字上来看,H和E都是“场强度”,B和D都是“感应强度”,具有一定的相似性;但从物理意义上,H和D、B和E却更加相似,在物理實验中人们关注更多的也是B和E。
这一矛盾,增加了学生学习该知识点的难度。
要掌握它们真正的物理内涵,需要从它们在历史上的定义来理解。
二、辨析在历史上,人类对于H的研究早于对B的研究。
H的定义最初来源于磁荷观点,后来人们利用电流来定义H。
19世纪的物理学家安培发现,通过电流的长直导线外,“磁场的大小”与和导线的距离成反比。
在这里,“磁场的大小”是通过小磁针的扭转力矩测量得到的。
安培定义了一个新的物理量H,对于长直导线满足:推广后可以得到安培环路定律,如(2)式所示。
H的大小和磁导率无关,只和电流有关。
B的定义来源于带电粒子的受力。
具有一定速度的带电粒子,在外加磁场中会受到力的作用,即洛伦兹力。
洛伦兹力和带电粒子所处的“磁场的大小”成正比。
什么是磁感应强度和磁场强度

什么是磁感应强度和磁场强度?磁感应强度和磁场强度是物理学中用来描述磁场特性的两个重要概念。
磁感应强度,也称为磁感应度或磁通量密度,是衡量磁场强度的物理量。
它表示单位面积内通过垂直于该面积的磁通量的大小。
磁感应强度的符号通常用B表示,单位是特斯拉(T)。
磁感应强度是一个矢量量,它的大小和方向都很重要。
磁场强度,也称为磁场强度矢量,是描述磁场强度的物理量。
它表示单位电流所产生的磁场的强度。
磁场强度的符号通常用H表示,单位是安培每米(A/m)。
磁场强度也是一个矢量量,它的大小和方向都很重要。
磁感应强度和磁场强度之间存在一定的关系。
根据安培定律,磁感应强度B与磁场强度H 之间的关系是B = μH,其中μ是磁导率,它是一个物质的属性,表示该物质中磁场传导的能力。
对于真空或空气等非磁性物质,磁导率μ为常数,通常用μ0表示,称为真空磁导率,其值约为4π×10^-7 H/m。
对于磁性材料,磁导率μ的值会受到材料的特性和外界条件的影响。
磁感应强度和磁场强度是描述磁场的两个重要参数。
磁感应强度表示磁场中磁力线的密度,它描述了磁场的强度和分布情况。
磁感应强度的大小取决于磁场中磁力线的密度,磁场越强,磁力线越密集,磁感应强度就越大。
磁场强度则表示产生磁场的电流的强度,它描述了磁场的产生源。
磁场强度的大小取决于产生磁场的电流的强度,电流越强,磁场强度就越大。
磁感应强度和磁场强度在物理学和工程学中都有广泛的应用。
它们在电磁学、电机、磁共振成像、电磁感应等领域都起着重要的作用。
例如,在电机中,磁场强度和磁感应强度的控制和调节对于电机性能的优化和效率的提高至关重要。
在磁共振成像中,磁感应强度和磁场强度的调节可以实现对人体内部结构的无损成像。
因此,深入理解磁感应强度和磁场强度的概念和相互关系对于理解和应用磁场现象具有重要意义。
磁感线与磁场强度知识点总结

磁感线与磁场强度知识点总结磁感线和磁场强度是研究磁场的重要概念和参数,它们在物理学中具有重要的意义。
以下是关于磁感线与磁场强度的知识点总结:1. 磁感线的定义磁场中磁感线是用来表示磁场分布的曲线,它是沿着磁场方向连续排列的线条。
磁感线的定义是指在空间中,磁感线上的任意一点上,磁感线的切线方向与该点处磁感应强度方向一致。
2. 磁感线的特点磁感线是闭合曲线或者无限延伸的曲线,它们总是形成闭合回路或者从北极到南极无限延伸。
在同一磁场中,磁感线的密度越大,表示该区域磁场强度越大。
3. 磁感线的分布规律在强磁场附近,磁感线比较密集,表示磁场强度较高;在弱磁场附近,磁感线比较稀疏,表示磁场强度较低。
磁感线在同向磁场中互相靠近,在反向磁场中互相远离。
4. 磁感线的特性在同一闭合磁感线上的各点,磁感应强度大小相等;不同闭合磁感线上的磁感应强度大小不等。
且磁感线没有交叉或者分离,不存在磁感线之间的穿插现象。
5. 磁场强度的定义磁场强度是描述磁场强弱的物理量,用H表示。
在真空中,磁场强度H的定义为单位长度磁感线上的磁通量与该长度之比,即H=Φ/l。
6. 磁场强度的计算磁场强度的计算需要根据磁场中的各种条件和参数,例如磁铁的形状、磁铁的极化、线圈的匝数等。
计算磁场强度可以使用比奥萨伐尔定律、安培定理等等方法。
7. 磁感应强度与磁场强度的关系磁感应强度B是指在磁场中单位面积上垂直于磁感线的磁通量。
磁感应强度B与磁场强度H之间的关系由麦克斯韦方程组中的磁场的高斯定理给出,即B=μH,其中μ为磁导率。
8. 磁场强度的单位国际单位制中,磁场强度的单位为安培每米(A/m)。
在SI单位制外,磁场强度的单位还可以使用奥斯特(Ae)和高斯(G)等。
总结:磁感线和磁场强度是描述磁场性质的两个重要概念。
磁感线是用来表示磁场分布的曲线,它具有闭合曲线或者无限延伸的特点。
磁感线的分布规律与磁场强度的大小有关,密集的磁感线表示磁场强度较大。
磁场强度是描述磁场强弱的物理量,其计算需要考虑各种条件和参数。
磁感应强度B与磁场强度H的区别,联系与物理意义

磁感应强度B与磁场强度H的区别,联系与物理意义从前学普物的时候,提到了磁感应强度B与磁场强度H这两个概念。
因为一直疏于思考,没有仔细想过两者的异同。
教材里说,H是人为引入的定义,没有物理意义,也没有多想,全盘接受。
至于教材提到的关于H与B谁更基本的争论,我只记住了这个事实,并没有想为什么,很是惭愧,更没有想过为什么这么称呼它们。
过去的一年里,逐渐理解固体里的故事,现在回想起来,才理顺清楚它们的意义。
简言之,H是外场,B总场,它们单位不同仅仅是由于来源不同:前者通过电流的磁效应得到,后者通过带电粒子在磁场中的运动定义。
B比H更加基本,是由于电流本身就是带电粒子的运动产生,所以粒子模型比电流模型更加基本。
想我们处于19世纪,暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”的大小。
1.H来源于Ampere定律。
Ampere通做电流做实验,发现长直导线外,到导线距离相等的点,“磁场”大小相同;距离不同的点,“磁场”强度随着距离成反比。
这里所谓的“磁场”大小是通过小磁针扭转力矩等力学方式得到的。
这样,通过力学测量和已有的电流强度的定义,即可定义一个物理量H,满足2*pi*R*H=I。
推广后就是Ampere环路定律。
此时无需真空磁导率μ0,因为只要知道电流I就能定义H这个物理量。
2.B来源于带电粒子的受力。
对于一定速度的粒子,加上H磁场,通过轨道测量以及牛顿力学,你可以测出粒子受的力。
你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。
3.磁导率如何引入。
这样,H是电流外加给的磁场,通过粒子受力,直接定义一个粒子感受到的磁场,叫它B,为了使得F= qvⅹB成立。
即,外施H场,粒子运动感受到的却是B场,这就可以定义磁导率miu =B/H,“率”即比例的意思。
磁导率,就是粒子运动(受力)与外界磁的比例,描述前者随着后者的响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设想你暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。
有一天,你用电流做实验。
你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。
进一步,你通过力学(如平行电流线,扭转力矩等)的测量,你发现1.长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同2.距离不同的点,“磁场”强度随着距离成反比。
这样,你便想要通过力学测量和电流强度定义一个物理量H,2*pi*r*H=I。
对形状稍稍推广,你就得到了安培环路定理的一般积分形式。
注意这时候不需要用到真空磁导率μ0,因为你只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。
现在,你有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。
你心满意足,转移了研究兴趣,开始研究带电粒子的受力。
对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,你可以测出粒子受的力。
你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。
这个公式多了个外加因子,不好看。
现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。
现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。
你开始管这个磁导率叫μ,并且定义μ=B/H。
其中H是(通过电流)外来的,B是使得粒子偏转的响应。
这样,磁导率=粒子的响应/外加的场。
这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。
此外,你发现,粒子处于真空中的时候,这个μ是一个与任何你能想到的物理量都无关的常数,这正是真空磁导率。
目前你已经很有成就了:你通过得到了一个外磁场H,并在真空环境下,把这个磁场作用于带q电荷的粒子,你测量粒子受力F= qvⅹB,并且把测量力F和速度v得到的B值与测量电流I得到的H值相除,你便得到了真空磁导率。
现在你已经知道了,H与B单位的不同,仅仅是由于你最开始研究力学用的单位,和开始研究电荷、电流的单位的不同,导致的一种单位换算。
H从I得来,B从F 得来,所以看到的是“施H”与“受B”的关系。
(实际过程还要复杂些,因为先研究的是电场的情形,然后导出了磁场下的情况,所以你看到的μ0是个漂亮的严格值,而真空介电常数作为另一种线性响应确是一个长长的实验数字)。
既然知道了B与H单位不同只是由于电流和牛顿力学导致的,现在你为了简化,将二者单位化为相同单位:B=H;这样你就得到了电磁学里更常用的高斯单位制。
如果需要换算,随时添加磁导率即可。
你开始进一步研究了。
你已经研究了电流产生磁场的效应,以及单个粒子在磁场中的运动。
那么,有着大量粒子的各种材料介质,从铁块,到石墨,到玻璃,它们对于磁场的相应是如
何呢?
现在你通过电流I,把磁场H加到某种材料当中,你所要研究的粒子,不再活在真空,而在材料里活动,它可以是金属里本身自带的电子,也可以是通过外界射束打入的。
这都无妨,只需记住现在你要研究的粒子不再在真空,而在介质里。
一个粒子受到的力学上的响应,当然是与这个点的总磁场有关。
因此,B的意义就变得丰富了,它代表在该点处的总磁场。
为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。
现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。
受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。
我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。
我们管产生的额外磁场大小叫做M。
与磁导率一样,为了研究这个额外的磁场M与外加场H的关系,我们定义磁化率χ=M/H. 磁化率大,说明同样大的外磁场,能产生更多的内在额外磁场;磁化率为很小,说即使外加磁场很大,里面的材料也“懒得理它”,只有微弱的响应。
这里要注意两点。
这是你不难发现,磁化率也是线性响应的过程。
所谓线性响应,好比我们有五块钱,就能从售货机里买一罐可乐,我们有十块,根据线性响应,就能买两罐,15块买三罐;如果买得多给打折,20块给五罐,那么输入(钱)和输出(可乐瓶数)就不符合线性响应了。
磁场情形也一样,太强的外加场H(输入),感生场M作为输出,就不符合现行响应了。
此外还要注意一点,磁化率可正可负。
所谓正磁化率χ>0,就是说产生的内部磁场M方向与外加磁场H相同;负磁化率χ<0,就是材料内部由于H产生的额外磁场M和外场H方向相反。
进一步,χ>0但是数值不太大的,你命名他为顺磁介质,它顺从的跟着磁场方向嘛;χ>0数值比较大的,就是铁磁介质,由于其他机制(超过深度不加以介绍),外加的磁场产生了很大的内磁场,比用用电流制造永磁铁的过程;χ<0,就是H给材料产生的外加磁场M与H 方向相反,所以就是反磁介质,或叫抗磁介质;如果是第一类超导体,它所谓的完全抗磁性,就是这个意思:外加场H,总有感生的内场M,把外场抵消,使得超导体内部磁场为零。
物理上看,好像磁场穿不进来一样。
这样,总场B在某点的值,应该是该处的外场值H,与H的感生下产生的额外场M在该点的值的和。
写成B(r)=H(r)+M(r),r表示空间处注意这是对任何一点都成立;实际上,如果使用高斯单位制,由于需要考虑了麦克斯韦方程电和磁的对称性,以及球面的立体角,正确的式子是B(r)=H(r)+4πM(r)。
如果要换成SI单位制,则是B=μ0[H(r)+M(r)].
这个式子的正确解释是:总磁场等于外加磁场和感生的磁场(就叫它磁化)的矢量和。
既然B表示总场,已经考虑了感应产生的磁化M,就叫做B为磁感应强度;H 来源于外场,就叫它磁场强度;M是H磁化感生的,就叫它磁化强度。
注意这个式子是普遍的。
在线性响应的额外前提下,我们有M=χH成立。
这样,H表示电流产生的外场,B表示总场。
它们都有物理意义。
物理学家之所以争吵哪个物理量更加基本,也在于此。
因为电流和电荷受力,分别产生了H和B,那么谁更加基本的确是个问题。
后来电流的微观机制发现,原来电流本质也是电子受力产生的漂移(注意这里是受电场力)。
因此受力图像里的B就比电流得来的H更加基本了。
有些人说H没有意义,试想,物理学家怎么会定义没有物理意义的物理量呢?。