三相六拍步进电机PLC控制设计和调试

合集下载

三相六拍步进电机PLC控制设计和调试

三相六拍步进电机PLC控制设计和调试

三相六拍步进电机PLC控制设计和调试《机电⼀体化系统设计》课程设计三相六拍步进电机PLC控制设计和调试的设计⽬录第⼀章绪论 (4)1.1研究的现状 (4)1.2PLC控制步进电机发展的趋势 (5)1.3本设计的⽬的、意义 (5)1.4⼩结 (5)第⼆章三相六拍步进电机的PLC控制和要求 (6)2.1可编程控制器的⼯作原理 (6)2.2步进电机的⼯作原理及其控制要求 (9)2.2.1⼯作原理 (9)2.2.2控制要求 (11)2.2.3步距⾓的细分 (12)2.3PLC控制系统所需I/O点数的确定和存储器容量的估算 (13)2.4PLC控制系统所需机型的选择 (14)2.5PLC控制系统的设计思想 (15)第三章实验调试和结果分析 (15)3.1PLC控制系统中I/O端⼦接线图及I/O地址分配表 (15)3.1.1 步进电机I/O分配表 (15)3.1.2 I/O端⼦接线图 (16)3.1.3 步进电机控制流程图 (18)3.2梯形图 (19)3.3指令语句表 (22)3.4实验的时序图 (25)3.5实验调试中遇到的问题及解决⽅案 (27)3.6⼩结 (27)第四章.论⽂总结及展望 (29)4.1论⽂总结 (29)4.2⼯作展望 (30)致谢 (31)参考⽂献 (32)摘要充分发挥PLC的功能,最⼤限度地满⾜被控对象的控制要求,是设计PLC控制系统的⾸要前提,这也是设计中最重要的⼀条原则。

本设计是⽤PLC做三相六拍步进电机的控制核⼼,⽤按钮开关的通断来实现对步进电机正、反转控制,⽽且正、反转切换⽆须经过停车步骤。

其次可以通过对按钮的控制来实现对⾼、中、低速度的控制。

关键词:PLC控制三相六拍步进电机电机正反转第⼀章绪论1.1研究的现状⽬前对于对步进电机的控制存在精度和价格⽅⾯的⽭盾。

因为⾼精度的实时演算需要较⾼性能的DSP芯⽚,成本较⾼。

因此现在的控制⽅法是采⽤⼤量的硬件电路。

这种控制⽅法的精度不但较低,且成本较⾼。

三相六拍步进电动机控制程序的控制与调试

三相六拍步进电动机控制程序的控制与调试

江西理工大学应用科学学院西门子PLC 课程设计专 业: 自动化 班 级: 姓 名:学 号:设计报告格式20分设计内容60分10分 10分 总计得分封面 3页面布局 5目录格式 3图表质量 4间距、行距、字体6工艺过程分析 8系统控制要求 8 I/O 分配 5设备选型 5电气原理图 系统程序设计 10动手实践能力 10总印象评分 10主电路 8控制电路 8外围接线图 82011年06月21日目录第1章绪论 (1)1.1 课题介绍及研究意义 (1)1.3 课题内容 (2)1.4 课题要求 (2)1.5 分析工艺流程 (2)第2章系统方案设计 (4)2.1方案原理分析 (4)2.2可行性研究 (4)第三章控制系统的I/O及地址分配 (5)第四章电气控制系统原理图 (6)4.1主电路图 (6)4.2 控制电路图 (6)4.3 外端子接线图 (6)第五章系统程序 (7)第六章有关步进电机的使用 (12)第七章总结 (15)7.1总结 (15)7.2参考文献 (15)第1章绪论1.1 课题介绍及研究意义三相六拍步进电动机是一典型单定子、径向分组、反应式伺服电机。

它与普通电机一样,分为定子和转子两部分,其中定子又分为定子铁芯和定子绕组。

定子铁芯由电工钢片叠压而成。

定子绕组绕制在定子铁芯上,六个均匀分布齿上的线圈,在直径方向上相对的两个齿上的线圈串连在一起,构成一相控制绕组。

三相步进电机可构成三相控制绕组,若任一相绕组通电,便形成一组定子磁极。

在定子的每个磁极上,即定子铁芯上的每个齿上开了五个小齿,齿槽等宽,齿间夹角为9º,转子上没有绕组,只有均匀分布的40个小齿,齿槽等宽,齿间夹角为9º,与磁极上的小齿一致。

此外,三相定子磁极上的小齿在空间位置上依次错开1/3齿距。

当A相磁极上的小齿与转子上的小齿对齐时,B相磁极上的齿刚好超前或滞后转子齿轮1/3齿距角,C相磁极上的齿刚好超前或滞后转子齿轮2/3齿距角。

三相六拍步进电机PLC梯形图控制程序设计与调试

三相六拍步进电机PLC梯形图控制程序设计与调试

现代控制技术及PLC控制课程设计姓学班专院名号级业别机电机械电子工程机械工程学院指导教师2013年7月5日内容摘要步进电动机具有快速起停、精确步进和定位等特点,所以常用作工业过程控制及仪器仪表的控制元件。

目前,比较典型的控制方法是用单片机产生脉冲序列来控制步进电机。

但采用单片机控制, 不仅要设计复杂的控制程序和I/O 接口电路, 实现比较麻烦, 而且对工业现场的恶劣环境适应性差,可靠性不高。

使用PLC可编程控制器实现三相六拍步进电动机驱动,可使步进电动机东芝的抗干扰能力强,可靠性高,同时,由于实现了模块化结构,是系统结构十分灵活,而且编程语言简短易学,便于掌握,可以进行在线修改,柔性好,体积小,维修方便。

本设计是利用PLC做三相六拍步进电动机的控制核心,用按钮开关的通断来实现对步进电机正,反转控制,而且正,反转切换无须经过停车步骤。

其次可以通过对按钮的控制来实现对高,低速度的控制。

充分发挥PLC的功能,最大限度地满足被控对象的控制要求,是设计PLC控制系统的首要前提,这也是设计最重要的一条原则。

本设计更加便于实现对步进电机的制动化控制。

目录1引言 (1)2系统总体方案设计 (2)2.1系统硬件配置及组成原理 (2)2.2 方案原理分析 (3)2.3 可行性研究 (3)2.4 设计思想 (3)3 控制系统设计 (4)3.1 控制程序图及软件模块 (4)3.2 梯形图程序设计与梯形图 (5)3.3 三相六拍步进电机控制语句表 (9)3.4 PLC接线图与主电路图 (10)4 5心得体会 (11)参考文献 (12)引言课题内容用PLC控制三相六拍电动机,控制要求如下:1.三相步进电动机有三个绕组:A,B,C,正转通电顺序为:A→AB→B→BC→C→CA→A反转通电顺序为:A→CA→C→BC→B→AB→A2.要求能实现正,反转控制,而且正,反转切换无须经过停车步骤。

3.就有两种转速:1号开关合上,则转过一个步距角需0.5秒。

三相六拍步进电动机控制程序的设计与调试-PLC课程设计

三相六拍步进电动机控制程序的设计与调试-PLC课程设计

目录第一章分析题目要求 (2)1.1 课题内容 (2)1.2 课题要求 (2)1.3 分析工艺流程 (2)第二章控制系统的I/O及地址分配 (4)第三章电气控制系统原理图 (5)3.1主电路图 (5)3.2 控制电路图 (5)3.3 外端子接线图 (5)第四章系统程序 (6)第五章有关步进电机的使用 (11)第六章总结 (14)6.1总结 (14)6.2参考文献 (15)第一章分析题目要求1.1 课题内容用PLC控制三相六拍步进电机,其控制要求如下:1.三相步进电动机有三个绕组:A、B、C,正转通电顺序为:A→AB→B→BC→C→CA→A反转通电顺序为:A→CA→C→BC→B→AB→A2.要求能实现正、反转控制,而且正、反转切换无须经过停车步骤。

3.具有两种转速:1号开关合上,则转过一个步距角需0.5秒。

2号开关合上,则转过一个步距角需0.05秒。

1.2 课题要求1.按题意要求,画出PLC端子接线图、控制梯形图。

2.完成PLC端子接线工作,并利用编程器输入梯形图控制程序,完成调试。

3. 完成课程设计说明书。

1.3 分析工艺流程本课题要求步进电机是三相六拍运行三相六拍正转通电顺序为:A→AB→B→BC→C→CA三相六拍反转通电顺序为:A→CA→C→BC→B→AB所以我们可以根据通电的顺序,给相应的相序分配相应的地址,按照控制的要求我们就可以给出相应的控制程序。

该控制系统的控制原理图如下1-1:图1-1 系统控制原理图所以由以上控制系统的要求可以给出控制系统的程序流程图1-2:图1-2 程序控制流程图第二章控制系统的I/O及地址分配本控制系统的输入/输出信号的名称,代码及地址编号如表2-1第三章电气控制系统原理图3.1主电路图参照《电器与PLC控制技术试验指导书》实验16 三相步进电机的模拟控制,可以知道,我们可以用PLC直接去控制电机。

所以主电路是非常简单的,这里不再画出。

3.2 控制电路图控制电路由于用到的输入都是直接接在PLC上的,其控制过程相对比较简单。

三相六拍步进电动机控制程序的设计与调试

三相六拍步进电动机控制程序的设计与调试

课韪一基于PLC的三相六拍步进电动机控制程序设计一、课题内容:用PLC控制三相六拍步进电机,其控制要求如下:1.三相步进电动机有三个绕组:A、B、C,正转通电顺序为:A→AB→B→BC→C→CA→A反转通电顺序为:A→CA→C→BC→B→AB→A2.要求能实现正、反转控制,而且正、反转切换无须经过停车步骤。

二、课题要求:1.按题意要求,对PLC进行选型,画出PLC端子接线图。

2.完成梯形图控制程序设计,完成调试。

3. 完成课程设计书。

课韪二艺术彩灯造型的PLC控制某艺术彩灯造型演示板如图所示,图中A、B、C、D、E、F、G、H为八只彩灯,呈环形分布,控制要求如下(灯的点亮顺序)将启动开关S1合上,八只彩灯同时亮1s,即ABCDEFFH同时亮1s,接着八只彩灯按逆时针方向轮流各亮1s,即A亮1s→B亮1s→C亮1s→D亮1s→E亮1s→F亮1s→G亮1s →H亮1s;接下来八只彩灯又同时亮1s,即ABCDEFFH同时亮1s,然后八只彩灯按顺时针方向轮流各亮1s,即H亮1s→G亮1s→F亮1s→E亮1s→D亮1s→C亮1s→B亮1s→A亮1s。

然后按此顺序重复执行,按下停止开关S2,所有灯灭。

课题三全自动洗衣机PLC控制一、课题内容:全自动洗衣机运行框图及梯形图控制程序的编制,并画出硬件接线图。

二、控制要求:(1)按下启动按扭及水位选择开关,开始进水直到高(中、低)水位,关水(2)2秒后开始洗涤(3)洗涤时,正转30秒,停2秒,然后反转30秒,停2秒(4)如此循环5次,总共320秒后开始排水,排空后脱水30秒(5)开始清洗,重复(1)~(4),清洗两遍(6)清洗完成,报警3秒并自动停机(7)若按下停车按扭,可手动排水(不脱水)和手动脱水(不计数)课题四病床呼叫器的PLC控制一、任务描述某住院病房有14个房间,每个房间有4张床,病床编号由房间号和床号组成,分别为011、012、013、014、021、022、 (141)142、143、144。

步进电机的PLC控制系统设计

步进电机的PLC控制系统设计

一、引言随着微电子技术和计算机技术的发展,可编程序控制器有了突飞猛进的发展,其功能已远远超出了逻辑控制、顺序控制的范围,它与计算机有效结合,可进行模拟量控制,具有远程通信功能等。

有人将其称为现代工业控制的三大支柱(即PLC,机器人,CAD/CAM)之一。

目前可编程序控制器(Programmable Controller)简称PLC已广泛应用于冶金、矿业、机械、轻工等领域,为工业自动化提供了有力的工具。

二、PLC的基本结构PLC采用了典型的计算机结构,主要包括CPU、RAM、ROM 和输入/输出接口电路等。

如果把PLC看作一个系统,该系统由输入变量-PLC-输出变量组成,外部的各种开关信号、模拟信号、传感器检测的信号均作为PLC的输入变量,它们经PLC外部端子输入到内部寄存器中,经PLC内部逻辑运算或其它各种运算、处理后送到输出端子,它们是PLC的输出变量,由这些输出变量对外围设备进行各种控制。

三、控制方法及研究1、FP1的特殊功能简介(1) 脉冲输出FP1的输出端Y7可输出脉冲,脉冲频率可通过软件编程进行调节,其输出频率范围为360Hz~5kHz。

(2) 高速计数器(HSC)FP1内部有高速计数器,可同时输入两路脉冲,最高计数频率为10kHz,计数范围-~+。

(3) 输入延时滤波FP1的输入端采用输入延时滤波,可防止因开关机械抖动带来的不可靠性,其延时时间可根据需要进行调节,调节范围为1ms~128ms。

(4) 中断功能FP1的中断有两种类型,一种是外部硬中断,一种是内部定时中断。

2、步进电机的速度控制FP1有一条SPD0指令,该指令配合HSC和Y7的脉冲输出功能可实现速度及位置控制。

速度控制梯形图见图1,控制方式参数见图2,脉冲输出频率设定曲线见图3。

图1 速度控制梯形图图2 控制方式参数图3 脉冲输出频率设定曲线3、控制系统的程序运行图4 控制系统原理图图4是控制系统的原理接线图,图4中Y7输出的脉冲作为步进电机的时钟脉冲,经驱动器产生节拍脉冲,控制步进电机运转。

三相六拍步进电机PLC梯形图控制程序设计与调试

三相六拍步进电机PLC梯形图控制程序设计与调试

现代控制技术及PLC控制课程设计姓名学号班级机电专业机械电子工程院别机械工程学院指导教师2013年7月5日内容摘要步进电动机具有快速起停、精确步进和定位等特点,所以常用作工业过程控制及仪器仪表的控制元件。

目前,比较典型的控制方法是用单片机产生脉冲序列来控制步进电机。

但采用单片机控制, 不仅要设计复杂的控制程序和I /O 接口电路, 实现比较麻烦, 而且对工业现场的恶劣环境适应性差, 可靠性不高。

使用PLC可编程控制器实现三相六拍步进电动机驱动,可使步进电动机东芝的抗干扰能力强,可靠性高,同时,由于实现了模块化结构,是系统结构十分灵活,而且编程语言简短易学,便于掌握,可以进行在线修改,柔性好,体积小,维修方便。

本设计是利用PLC做三相六拍步进电动机的控制核心,用按钮开关的通断来实现对步进电机正,反转控制,而且正,反转切换无须经过停车步骤。

其次可以通过对按钮的控制来实现对高,低速度的控制。

充分发挥PLC的功能,最大限度地满足被控对象的控制要求,是设计PLC控制系统的首要前提,这也是设计最重要的一条原则。

本设计更加便于实现对步进电机的制动化控制。

目录1引言 (1)2系统总体方案设计 (2)2.1系统硬件配置及组成原理 (2)2.2 方案原理分析 (3)2.3 可行性研究 (3)2.4 设计思想 (3)3 控制系统设计 (4)3.1 控制程序图及软件模块 (4)3.2 梯形图程序设计与梯形图 (5)3.3 三相六拍步进电机控制语句表 (9)3.4 PLC接线图与主电路图 (10)4 心得体会 (11)5 参考文献 (12)引言课题内容用PLC控制三相六拍电动机,控制要求如下:1.三相步进电动机有三个绕组:A,B,C,正转通电顺序为:A→AB→B→BC→C→CA→A反转通电顺序为:A→CA→C→BC→B→AB→A2.要求能实现正,反转控制,而且正,反转切换无须经过停车步骤。

3.就有两种转速:1号开关合上,则转过一个步距角需0.5秒。

数电实验报告三相六拍步进电机控制设计

数电实验报告三相六拍步进电机控制设计

江汉大学物理与信息工程学院数电课程设计报告课题名称:三相六拍步进电机控制设计指导老师:***专业:电子信息工程专业学号:XXXXXXXx姓名:XX目录一、设计要求二、设计方案三、设计原理A、步进电机B、环形分配器C、步进电机驱动电路四、总电路图五、设计总结一、设计要求1、设计三相六拍环形分配器,使电机能正转、反转和保持;2、设计时钟电路(可使用手动),使时钟频率f=1—50连续可调;3、设计电机驱动电路,使电机在时钟脉冲和控制信号的控制下正常运转。

二、设计方案如上图所示整个电路分为三大模块:时钟电路、环形分配器、步进电机驱动电路。

通过EN、DR 信号来控制电机正转、反转、停转。

三、设计原理1、步进电机a、步进电机(三相六拍)结构及工作原理上图为(三相六拍)步进电机的结构图。

步进电机控制主要有三个重要参数即转速、转过的角度和转向。

由于步进电机的转动是由输入脉冲信号控制,所以转速是由输入脉冲信号的频率决定,而转过的角度由输入脉冲信号的脉冲个数决定。

转向由环形分配器的输出通过步进电机A、B、C相绕组来控制,环形分配器通过控制各相绕组通电的相序来控制步电机转向,步进电机的特点是来一个电脉冲,转一个步距角,控制脉冲频率可以控制电机转速,改变脉冲顺序来改变方向。

b、步进电机的工作方式步进电机A、B、C相绕组的通电顺序:正转(即RD为高电平)A→AB→B→BC→C→CA→AA、B、C绕组电平变化顺序:100→110→010→011→001→101→100反转(即RD为低电平)A→AC→C→CB→B→BA→AA、B、C绕组电平变化顺序:100→101→001→011→010→110→100每来一个cp脉冲,转子转过30度(360/12),改变三相线圈的通电顺序即可改变电机转动方向。

2、环形控制器根据三相六拍步进电机工作原理可以得到下图:令,可得到环形分配器的状态方程和驱动方程,其卡诺图如下所示:选用D触发器根据上图有:其逻辑图为:其仿真电路为:3、步进电机驱动电路如下图所示是步进电动机一相的驱动电路,L是电动机绕组,晶体管VT可以认为是一个无触点开关,它的理想工作状态应使电流流过绕组L的波形尽可能接近矩形波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《机电一体化系统设计》课程设计三相六拍步进电机PLC控制设计和调试的设计目录第一章绪论 (4)1.1研究的现状 (4)1.2PLC控制步进电机发展的趋势 (4)1.3本设计的目的、意义 (5)1.4小结 (5)第二章三相六拍步进电机的PLC控制和要求 (6)2.1可编程控制器的工作原理 (6)2.2步进电机的工作原理及其控制要求 (8)2.2.1工作原理 (8)2.2.2控制要求 (10)2.2.3步距角的细分 (10)2.3PLC控制系统所需I/O点数的确定和存储器容量的估算 (10)2.4PLC控制系统所需机型的选择 (12)2.5PLC控制系统的设计思想 (12)第三章实验调试和结果分析 (13)3.1PLC控制系统中I/O端子接线图及I/O地址分配表 (13)3.1.1 步进电机I/O分配表 (13)3.1.2 I/O端子接线图 (14)3.1.3 步进电机控制流程图 (15)3.2梯形图 (16)3.3指令语句表 (19)3.4实验的时序图 (22)3.5实验调试中遇到的问题及解决方案 (24)3.6小结 (24)第四章.论文总结及展望 (26)4.1论文总结 (26)4.2工作展望 (27)致谢 (28)参考文献 (29)摘要充分发挥PLC的功能,最大限度地满足被控对象的控制要求,是设计PLC控制系统的首要前提,这也是设计中最重要的一条原则。

本设计是用PLC做三相六拍步进电机的控制核心,用按钮开关的通断来实现对步进电机正、反转控制,而且正、反转切换无须经过停车步骤。

其次可以通过对按钮的控制来实现对高、中、低速度的控制。

关键词:PLC控制三相六拍步进电机电机正反转第一章绪论1.1研究的现状目前对于对步进电机的控制存在精度和价格方面的矛盾。

因为高精度的实时演算需要较高性能的DSP芯片,成本较高。

因此现在的控制方法是采用大量的硬件电路。

这种控制方法的精度不但较低,且成本较高。

国内为了省钱就大多数使用相对省资源的查表法,但是对于速度变化范围很大的控制来说,在低速时会由于表本身的精度原因造成稳定性变差,噪声变大的问题。

这仅仅是低速时的细分问题。

转速越低,对它控制时的细分就越严格。

此外还有扭矩的问题,当转动过慢时,即使细分也无法达到应有的扭矩,这都是控制时遇到的问题。

简单的说,目前普遍存在于步进电机控制中的问题就是低速运转和低速启动的问题。

当今是科学技术及仪器设备高度智能化飞速发展的信息社会,电子技术的进步,给现代工业带来了质的提升。

现代电子领域中,PLC的应用正在不断的走向深入,这必将导致传统控制的日益革新。

PLC的控制具有高可靠性、高性价比。

比如在机械手、液体混合罐、液压、气压等方面都得到了广泛的应用。

PLC在工业方面的应用水平已逐步成为一个国家工业发展水平的标志之一。

利用PLC采用程序设计方法来对步进电机进行控制,具有线路相对简单,结构紧凑,价格低廉,而且可以通过控制按钮实现对步进电机的正反转和步进电机转速的控制,用途广泛等优点。

1.2 PLC控制步进电机发展的趋势时至今日,软件以及电子设备等相关技术都有了长足发展。

虽然软件的发展速度比不上硬件的发展速度那么迅速,但已能满足现在的工业需求。

对步进电机的传统控制通常完全由硬件电路搭接而成。

随着PLC的普及,现在已普遍采用硬件与软件相结合的方式对其进行控制,这种控制方法有很多优点,比如:可以实现高精度的控制,降低成本,降低控制难度,简化控制电路等。

今后步进电机的总体发展趋势是向着低功耗、高频率精度、多功能、高度自动化和智能化的方向发展。

1.3 本设计的目的、意义本设计的主要研究内容是以三菱FX1N系列PLC(可编程逻辑控制器)为核心控制步进电机,及其相关外围电路组成的控制电路设计。

可以通过对几个开关按钮的控制来实现对步进电机的方向,以及对高、中、低速的控制。

比如用两个开关分别控制电机正反转,两个开关分别控制电机启动和停止,三个开关分别控制电机的高中低转速,使得步进电机的控制更加简便。

甚至还可以利用更少的开关来控制,但为了使得本设计更加直观和易读,故采用七个控制开关。

此外,本设计更加便于实现对步进电机的自动化控制。

1.4小结步进电机是一种将电脉冲信号变换成相应的角位移或直线位移的机电执行元件。

而PLC是一种便于对动作顺序进行控制的元件。

随着科学电子技术的发展,对步进电机的控制要求正朝向高精度、自动化控制的方向发展。

工业生产中运用PLC控制步进电机可以简便的实现控制,不需要复杂的控制电路,而且控制的时候只需要进行编程以及搭配少量相关硬件,即可实现控制。

第二章三相六拍步进电机的PLC控制和要求2.1可编程控制器的工作原理可编程控制器有两种基本的工作状态,即运行(RUN)状态与停止(STOP)状态。

在运行状态中,可编程控制器通过执行反应控制来实现用户的控制要求。

为了使可编程控制器的输出及时地响应随时可能变化的输入信号,用户程序不仅仅执行一次,而是反复不断地重复执行,直到可编程控制器停机或切换到STOP 工作状态。

下面用一个简单的例子来进一步说明可编程序控制器的扫描工作过程。

图2.11(a)所示的PLC的输入输出接线图,起动按钮SB1和停止按钮SB2的常开触点分加别接在编号为X000和X001的可编程控制器的输入端,接触器KM的线圈接在编号为YO00的可编程控制器的输出端。

图(b)是这3个输入/输出变量对应的I/O映像寄存器。

图(c)是可编程控制器的梯形图,它与图2.11所示的继电器电路的功能相同。

但是应注意,梯形图是一种程序,是可编程控制图形化的程序。

图中的X000等是梯形图中的编程元件,XO00与X001是输入继电器,Y000是输出继电器。

编程元件X000与接在输入端子XO00的SB1的常开触点和输入映像寄存器XO00相对应,编程元件Y000与输出映像寄存器Y000和接在输出端子Y000的可编程控制器内部的输出电路相对应。

(a) (b) (c) (d)图2.11 PLC的外部接线图与梯形图梯形图以指令的形成储存在可编程控制器的用户程序存储器中,梯形图与下面的4条指令对应“;”之后是该指令的注解。

LD X000 ;接在左侧母线上的X000的常开触点。

OR Y000 ;与X00O的常开触点并联的Y000的常开触点。

ANI X001 ;与并联电路串联的X001的常闭触点。

OUT Y000 ;Y000的线圈。

在输入处理阶段,CPU将SB1,SB2的常开触点的状态读入相应的输入映像寄存器,外部触点接通时存入寄存器的是二进制数“1”,反之存入“0”。

执行第一条指令时,从输入映像寄存器X000中取出二进制数并存入运算结果寄存器。

执行第二条指令时,从输出映像寄存器Y000中取出二进制数,并与运算结果寄存器中的二进制数相“或”(触点的并联对应“或”结算),然后存入运算结果寄存器。

执行第三条指令时,取出输入映像寄存器X001中的二进制数,因为是常闭触点,取反后与前面的运算结果相“与”(电路的串联对应“与”运算),然后存入运算结果寄存器。

在输出处理阶段,CPU将各输出映像寄存器中的二进制数传送给输出模块并锁存起来,如果输出映像寄存器Y000中存放的是二进制数“1”,外接的KM线圈将通电,反之将断电。

X000,X001和Y000的波形如图2.11(D)所示,高电平表示按下按钮或KM线圈通电,当T<T1时,读入输入映像寄存器X000和X001的均为二进制数“0”此时输出映像寄存器Y000中存入的亦为“0”在程序执行阶段,经过上述逻辑运算过程之后,运算结果仍为Y000=0,所以KM的线圈处于断电状态.在T<T1区间,虽然输入/输出信号的状态没有变化,用户程序确在一直反复不断地执行着。

T=T1时按下起动按钮SB1,X0变为“1”状态,经逻辑运算后Y000变为“1”状态,在输出处理阶段,将Y000对应的输出映像寄存器中的“1”送到输出模块,将可编程控制器内Y000对应的物理继电器的常开触点接通,使接触器KM的线圈通电。

2.2步进电机的工作原理及其控制要求2.2.1工作原理步进电机是将给定的电脉冲信号转变为角位移或线位移的开环控制元件。

给定一个电脉冲信号,步进电机转子就转过相应的角度,这个角度就称作该步进电机的步距角。

目前常用步进电机的步距角大多为1.8度(俗称一步)或0.9度(俗称半步)。

以步距角为0.9度的进步电机来说,当我们给步进电机一个电脉冲信号,步进电机就转过0.9度;给两个脉冲信号,步进电机就转过1.8度。

以此类推,连续给定脉冲信号,步进电机就可以连续运转。

由于电脉冲信号与步进电机转角存在的这种线性关系,使得步进电机在速度控制、位置控制等方面得到了广泛的应用。

步进电机的使用至少需要三个方面的配合,一是电脉冲信号发生器,它按照给定的设置重复为步进电机输送电脉冲信号,目前这种信号大多数由可编程控制器(PLC)或单片机来完成;二是驱动器(信号放大器),它除了对电脉冲信号进行放大、驱动步进电机转动以外,还可以通过它改善步进电机的使用性能,事实上它在步进电机系统中起着重要的作用,一般一种步进电机可以根据不同的工况具有多种驱动器;三是步进电机,它有多种控制原理和型号,现在常用的有反应式、感应子式、混合式等。

步进电机的速度控制是通过改变输入脉冲的频率高低实现的。

当发生脉冲的频率减小时,步进电机的速度就下降;当频率增加时,速度就加快。

还可以通过频率的改变来提高步进电机的位置精度。

步进电机的位置控制是靠给定的脉冲数量控制的。

给定一个脉冲,转过一个步距角,当停止的位置确定以后,也就决定了步进电机需要给定的脉冲数。

其工作原理如下:设A相首先通电,转子齿与定子A、A′对齐(图2.21a)。

然后在A相继续通电的情况下接通B相。

这时定子B、B′极对转子齿2、4产生磁拉力,使转子顺时针方向转动,但是A、A′极继续拉住齿1、3,因此,转子将转到两个磁拉力平衡为止。

这时转子的位置如图(2.21b)所示,即转子从图(a)位置顺时针转过了15°。

接着A相断电,B相继续通电。

这时转子齿2、4和定子B、B′极对齐(图c),转子从图(b)的位置又转过了15°。

其位置如图3d所示。

这样,如果按A→A、B→B→B、C→C→C、A→A…的顺序轮流通电,则转子便顺时针方向一步一步地转动,步距角15°。

电流换接六次,磁场旋转一周,转子前进了一个齿距角。

如果按A→A、C→C→C、B→B→B、A→A…的顺序通电,则电机转子逆时针方向转动。

图 2.21 步进电机通电方式原理图2.2.2控制要求(1)三相步进电动机有三个绕组: A、B、C正转通电顺序为:A→AB→B→BC→C→CA反转通电顺序为:A→CA→C→BC→B→AB(2)用7个开关控制其工作#1开关控制其运行 ( 启 )。

相关文档
最新文档