天线增益相关知识
天线参数的度量单位

天线参数的度量单位天线参数是描述天线性能的指标,包括增益、方向性、频率响应等。
这些参数通常以特定的单位进行度量,以便对天线进行准确的评估和比较。
下面将介绍几个常用的天线参数及其度量单位。
一、增益(Gain)增益是衡量天线辐射电磁波能力的重要参数,它表示天线相对于理想点源天线的辐射能力。
增益是以分贝(dB)为单位进行度量,通常用dBi表示。
例如,一个天线的增益为3dBi,意味着它相对于一个理想点源天线具有3dB的辐射能力。
二、方向性(Directivity)方向性是指天线在特定方向上辐射或接收信号的能力,它描述了天线辐射或接收模式的空间分布。
方向性通常用无量纲的方向图来表示,其中最大增益处对应的方向被定义为主瓣方向。
方向性也可以用分贝(dB)来度量,称为定向性因子。
例如,一个天线的定向性因子为10dB,表示它在主瓣方向上的增益是无方向性天线的10倍。
三、频率响应(Frequency Response)频率响应是指天线在不同频率下的辐射或接收能力。
它通常用功率或电压的响应值来表示,单位可以是瓦特(W)或伏特(V)。
例如,一个天线的频率响应为100W,表示它在特定频率下的辐射功率为100瓦特。
四、驻波比(VSWR)驻波比是评估天线匹配性能的重要指标,它表示天线输入端的驻波功率与匹配负载时的最小功率之比。
驻波比是无量纲的,通常用比值表示。
例如,一个天线的驻波比为1.5:1,表示驻波功率是匹配负载时最小功率的1.5倍。
五、极化(Polarization)极化是指电磁波的电场矢量相对于地面的方向。
常见的极化方式有水平极化、垂直极化等。
极化通常用线性极化度量,单位可以是分贝(dB)或无量纲的极化度。
例如,一个天线的极化度为20dB,表示它的极化效果比无极化天线好20dB。
天线参数的度量单位包括分贝(dB)、瓦特(W)、伏特(V)等。
这些参数和单位的准确描述和度量,有助于科学家、工程师和无线通信领域的专业人士对天线性能进行准确的评估和优化。
天线增益及半功率角的定义

天线是将传输线中的电磁能量有效地转化成自由空间的电磁波能量或将空间电磁波有效地转化成传输线中的电磁能的设备。
天线是无源器件,所以仅仅起到能量转化作用而不能放大信号,那么我们所说的某天线的增益是18dBi,是指什么呢?天线增益:是指天线将发射功率往某一指定方向集中辐射的能力。
一般把天线在最大辐射方向上的场强E与理想各向同性天线(理想点源)均匀辐射场强E0相比,以功率密度增强的倍数定义为增益。
即:D=E2/E02半波振子:两臂长度相等的振子叫做对称振子.每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。
半波对称振子的增益为G=2。
15dBi,它是构成高增益天线的基本辐射单元。
增益的单位:dBd、dBi。
一般认为dBi和dBd表示同一个增益,用dBi表示的值比用dBd表示的要大2。
15 dBi。
dBi的参考基准为全方向性天线,dBi是天线方向性的一个指标;dBi是指天线相对于无方向天线的功率能量密度之比;i—isotropic[,aɪsə'trɑpɪk]dBd的参考基准为偶极子,dB是指相对于半波振子的功率能量密度之比,半波振子的增益为2.15dBi,因此0dBd=2.15dBi;d-Dipole['daipəul]双极化振子,它包括两对相互垂直的偶极子+金属安装板+两个馈电金属钩在方向图中通常都有两个瓣或多个瓣,其中最大的瓣称为主瓣,其余的瓣称为副瓣。
天线中心方向信号辐射最强,往两边信号逐渐减小。
半功率角:所谓半功率角就是主瓣上,功率下降到最强方向(主瓣方向)一半(3dB)的夹角,比方说90度,就是说从主方向往左右各45度,功率就下降一半。
半功率角反映了天线能量的集中程度。
有水平半功率角和垂直半功率角之分,常见的90/65都是水平半功率角。
波瓣宽度:主瓣两半功率点间的夹角定义为天线方向图的波瓣宽度,称为半功率(角)瓣宽.主瓣瓣宽越窄,则方向性越好,抗干扰能力越强。
水平波瓣宽度是指在水平面的半功率波瓣宽度。
天线接受能力增益计算公式

天线接受能力增益计算公式在无线通信领域,天线是起到接收和发送无线信号的重要设备。
天线的性能直接影响到通信系统的传输质量和覆盖范围。
而天线的接收能力增益是评估天线性能的重要指标之一。
接下来我们将介绍天线接收能力增益的计算公式及其相关知识。
天线接收能力增益是指天线在接收信号时相对于理想点源天线的增益。
它是一个无量纲的值,通常用分贝(dB)来表示。
天线接收能力增益的计算公式如下:Gr = Ae / λ^2。
其中,Gr为天线接收能力增益,Ae为天线的等效有效面积,λ为接收信号的波长。
天线的等效有效面积Ae是一个描述天线接收能力的重要参数。
它是指天线在接收信号时所能够接收到的有效信号的面积。
通常情况下,天线的等效有效面积与天线的物理尺寸、方向性以及工作频率有关。
在实际应用中,我们可以通过天线的等效有效面积来评估天线的接收能力。
接收信号的波长λ是指信号在空间中传播一个完整波长所需要的距离。
它与信号的频率有关,通常情况下,频率越高,波长越短。
在天线接收能力增益的计算公式中,波长的平方是用来表示接收信号的能量分布情况的。
通过天线接收能力增益的计算公式,我们可以看出,天线的接收能力增益与天线的等效有效面积和接收信号的波长有关。
在实际应用中,我们可以根据天线的等效有效面积和接收信号的频率来计算天线的接收能力增益,从而评估天线的接收性能。
除了天线接收能力增益的计算公式外,我们还需要了解一些影响天线接收能力增益的因素。
首先是天线的方向性。
天线的方向性越强,其接收能力增益就越大。
其次是天线的工作频率。
天线在不同频率下的接收能力增益也会有所不同。
再次是天线的等效有效面积。
天线的等效有效面积越大,其接收能力增益也会越大。
在实际应用中,我们可以通过天线的接收能力增益来评估天线的接收性能。
通过计算天线的接收能力增益,我们可以选择合适的天线来满足通信系统的需求。
同时,我们也可以通过优化天线的设计来提高天线的接收能力增益,从而提升通信系统的性能。
天线的主要性能指标和相关知识

天线的主要性能指标1、方向图:天线方向图是表征天线辐射特性空间角度关系的图形。
以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。
一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。
平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。
描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。
一般地,GSM定向基站水平面半功率波瓣宽度为65°,在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。
2、方向性参数不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。
理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。
我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02。
3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。
增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。
由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。
一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。
另外,表征天线增益的参数有dBd和dBi。
DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。
相同的条件下,增益越高,电波传播的距离越远。
4、入阻输入阻抗输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。
天线效率 指标

天线效率指标
天线效率是指天线将输入的电能转化为辐射出去的电磁波能量的能效。
天线效率是一个重要的性能指标,因为它反映了天线系统在将电信号转换为无线电波时的效率,直接影响通信系统的性能。
以下是一些与天线效率相关的重要指标和概念:
1.天线增益:天线增益是指天线在某个方向上相对于理想全向天
线的辐射功率增益。
增益与效率之间存在一定关系,因为天线
增益越高,一般来说,其效率也越高。
2.辐射效率:辐射效率是指天线将输入的电能转化为辐射电磁波
的比率。
它是天线效率的一个组成部分。
辐射效率可以通过测
量天线辐射功率和输入功率来计算。
3.导电损耗:天线的导电损耗是由于电流在天线导体中产生的电
阻而导致的能量损耗。
这部分损耗会减少天线的效率。
4.辐射损耗:辐射损耗是由于天线辐射电磁波而失去的能量。
高
效的天线应该最大限度地将能量转化为辐射出去的电磁波,而
最小限度地将其损失为其他形式的能量。
5.天线匹配:天线与传输线之间的匹配对效率也有影响。
匹配不
良会导致传输线上的反射损耗,从而降低整个系统的效率。
6.频率范围:天线在设计上通常是为特定的频率范围优化的。
天
线在其设计频率范围内的效率通常更高。
7.设计和制造质量:天线的设计和制造质量也会对效率产生影响。
精密制造和精心设计的天线通常具有较高的效率。
天线效率是设计和评估天线性能时必须考虑的重要指标,特别是在需要高效通信系统中。
高效的天线设计可以提高通信系统的性能,减少能量浪费。
天线基础知识(馈电原理)

天线输入阻抗与特性阻抗不一致时,产生 的反射波和入射波在馈线上叠加形 成驻波,其相邻电压最大值和最小值之比就是电压驻波比。电压驻波比过 大,将 缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放 管,影响通信系统正常工作。
2. 前后比(F/B)
天线的后向180°±30°以内的副瓣电平与最大波束之差,用正值表示。一 般天线的前后比在18~45dB之间。对于密集市区要积极采用前后比大的天 线,如40dB。
天线知识
目录
目录
天线知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 天线基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 天线增益 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 方向图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 极化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 天线其它技术指标 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 天线的种类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 天线技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 天线分集技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 赋形波束技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 智能天线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 天线选型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 各种天线的应用原则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 各种无线环境下的天线选择原则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 天线倾角规划 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 天线倾角设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 实际运用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 天线的安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1 天线支架安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 天线安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
天线平均增益

天线平均增益天线平均增益是指天线在各个方向上所有水平方向(或垂直方向)的增益值的平均值。
在无线通讯领域,天线的性能是关键因素之一。
天线的性能评价除了评估其频率响应、阻抗匹配、直线度、角度误差等指标外,还需要考虑到天线的增益值,即天线将射出信号与收到信号转换的功率变化比例。
天线增益是指天线的辐射方向性和电子性能导致的被辐射功率相对于同一功率下的理想点源而言的对应值的比例。
天线平均增益是指在单个方向上的增益值取平均后的平均值。
天线增益的计算需要考虑到天线的方向性和电特性,以及噪声功率指数等因素。
直线度、失谐等因素常常带来天线的频率转移损失,进而影响到天线的性能。
根据定义,天线平均增益与天线本身的方向性、谐振频率、阻抗匹配以及天线与信号源之间的距离等因素息息相关。
天线的方向性是指天线在某个方向上的增益值相较于天线其它方向上的增益值有多少倍的变化。
有些天线具有极好的方向性,比如方向天线,可以希望在某个方向上获得高增益而在其它方向上获得较小增益。
另一方面,有些天线可以为多个方向提供同样的增益,比如圆形或全向天线。
天线的谐振频率也会影响到其增益值。
天线的谐振方式一般取决于其几何形状、材料插入损耗等因素,通常表现为天线本底噪声功率值在哪个频谱范围内具有较高的增益。
因此,对于指定的入射电磁波频率,选取合适的天线会使得信号被更好地捕获,从而达到更好地传播和接收效果。
阻抗匹配是指天线的输入电阻和传输线路(如同轴电缆)之间的匹配程度。
如果阻抗匹配较差,则会导致从转化器/发射机到天线的能量退回传输线路,从而引起大量信号损失。
做好阻抗匹配可以使天线获得良好的频率响应和谐振特性。
天线与信号源之间的距离也需要被考虑到。
在通讯中,近场是指天线和目标之间距离小于信号波长的一半。
天线的增益值与入射波的相对半角度有关,并且随着距离的逐渐增大而减小,因为在近场内,信号强度减少得会特别快,这种减少在远场区域将明显缓慢。
在远场区域,天线可以被看作是一个集所有方向上信号并指向一个方向的立体角体。
全向天线增益与垂直波瓣宽度10

≥30dB 20 15
>70% >96.5%
<30% <3.5%
5、方向图
一个单一的对称振子具有“面包圈” 形的方向图
顶视
侧视
在地平面上,为了把信号集中到所需要的地方,要求 把“面包圈” 压成扁平的
对称振子组阵能够控制辐射,能构成“扁平的面包圈”
一个对称台振子
峰值
- 3dB点
Peak - 3dB
15° (eg)
Peak
10dB 波束宽度
- 10dB点
120° (eg)
峰值 - 10dB点 Peak - 10dB
32° (eg)
Peak
Peak - 3dB
俯仰面即垂直面方向图
Peak - 10dB
方向图旁瓣显示
上旁瓣抑制
下旁瓣抑制
8、方向图在移动组网中的应用
目的是有一个尽可能小的反向功率
7、波束宽度
在方向图中通常都有两个瓣或多个瓣,其中最大的瓣称为主瓣 ,其余的瓣称为副瓣。主瓣两半功率点间的夹角定义为天线方向图 的波瓣宽度。称为半功率(角)瓣宽。主瓣瓣宽越窄,则方向性越 好,抗干扰能力越强。
3dB 波束宽度
方位即水平面方向图
- 3dB点
60° (eg)
(1)水平方向图的波束宽度与覆盖区域面积有关
(2)垂直方向图的波束宽度决定区域内功率的分布
七.天线的增益
9、增益的定义
增益是指在输入功率相等的条件下, 实际天线与理想的辐射单元在空间 同一点处所产生的场强的平方之比, 即功率之比。增益一般与天线方向 图有关,方向图主瓣越窄,后瓣、 副瓣越小,增益越高。
反射面天线,则由于有效照射效率因素的影响, 故
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h t t p ://w
w w.
m s c
b s c
.c o m
h t t p ://w
w w.
m s c
b s c
.c o m
/a s k
p r o
/
本文档来源于移动通信网(mscbsc)技术问答,原文地址:/askpro/question5283
天线增益是什么意思?
对天线增益概念理解有点模糊,哪位给详解一下?
--------------- 提问者:chgfagy 提问时间:2009-05-19 18:14:00————————————————————————————
答:
1、增益是用来表示天线集中辐射的程度。
其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。
增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。
增益的单位用“dBi”或“dBd”表示。
2、天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。
一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。
天线增益对移动通信系统运行极为重要,因为它决定蜂窝边缘的信号电平。
增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。
可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。
换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为 G=2.15dBi。
4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。
如果以半波对称振子作比较对象,其增益的单位是 dBd 。
半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。
)垂直四元阵,其增益约为 G=8.15–2.15=6dBd 。
对于水平极化方式的天线来讲,通常以一个半波水平放置的偶极子天线为标准天线,其增益为0dB(实际指dBd)。
调频二偶极子反射板天线的增益通过计算和实验数据,其结果基本一致。
相对于半波偶极子天线的增益最高只能做到7.5dB。
当天线在进行组阵时,天线系统增益为7.5dB。
计算推论如下:总功率在一层四面分配时,天线功率将损失6dB,此时天线增益为7.5-6.5=1.5dB;再根据天线层数增
h t t p ://w
w w.
m s c
b s c
.c o m
h t t p ://w
w w.
m s c
b s c
.c o m
/a s k
p r o
/
加一倍时天线系统增益将增加3dB的原理,因此两层天线增益就为1.5+3=4.5dB;当天线层数为四层时,天线系统增益就为1.5+3+3=7.5dB,故四层四面调频二偶极子板天线系统增益也只能做到7.5dB。
若天线为全波长二偶极子板天线时,其单片天线增益可以做到8-8.5dB,四层四面分配组阵时,其单片天线增益为8-8.5dB。
目前使用的天线增益,一般在0dBi到20dBi之间
室内:一般采用0 - 8 dBi增益的天线
室外:一般采用9 - 18 dBi增益的天线
高速公路:一般采用20dBi增益的天线
天线增益的若干计算公式
1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益:
G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}
式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;
32000 是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:
G(dBi)=10Lg{4.5×(D/λ0)2}
h t t p ://w
w w.
m s c
b s c
.c o m
h t t p ://w
w w.
m s c
b s c
.c o m
/a s k
p r o
/
式中, D 为抛物面直径;
λ0为中心工作波长;
4.5 是统计出来的经验数据。
3)对于直立全向天线,有近似计算式
G(dBi)=10Lg{2L/λ0}
式中, L 为天线长度;
λ0 为中心工作波长。
--------------- 回答者:wangyuan072 回答时间:2009-05-19 18:38:09————————————————————————————
天线增益简单的说就是天线集中信号的能力(天线不会放大信号),定向天线增益一般大于全向,天线的半功率角越小天线增益越高,就像一个和手电筒聚光能力一样,把光线聚到一条线就是说增益高,如果不光能力不好则光线是一大片就是说增益低,
当然聚集信号的能力要有一个对比的参照物了,如果用dBd表示则表示天线与振子相比较,如果用dBi 表示与电源相对比。
不要想得太复杂了。
感性的理解一下就好了。
--------------- 回答者:liu_bin 回答时间:2009-05-19 22:50:54————————————————————————————
真正意义上的全向天线的方向图应该是球星
h t t p ://w
w w.
m s c
b s c
.c o m
h t t p ://w
w w.
m s c
b s c
.c o m
/a s k
p r o
/
但是现在使用中所说的全向天线其实都只是在水平面上是圆,在垂直面上是一个长条
从立体上理解就是个面包圈
定向天线是个大鸭梨
从能量守恒上解释就是把球星的能量压缩在面包圈里当然就会出现增益,天线是无源器件本身没有放大作用,就是因为天线内部的振子的排列使本来全方位的发射集中在一定区域内才会有叠加的作用,使得天线产生增益
所以压缩的越厉害的天线增益也就越高
--------------- 回答者:genius330 回答时间:2009-05-20 09:21:30————————————————————————————
可以理解为
起到一个放大信号的功能・・・・
--------------- 回答者:xiaoxiaoluo000 回答时间:2009-05-20 20:06:42————————————————————————————
天线增益G
我们也可用增益来表示天线集中辐射的程度。
天线在某一方向的增益定义为:在相同的输入功率下,天线在某一方向某一位置产生的电场强度的平方(E2)与无耗理想点源天线在同一方向同一位置产生的电场强度的平方(E02)的比值,通常以G表示。
G=E2/E02(同一输入功率)
h t t p ://w
w w.
m s c
b s c
.c o m
h t t p ://w
w w.
m s c
b s c
.c o m
/a s k
p r o
/
同样,增益也可以这样来确定:在某一方向向某一位置产生相同电场强度的条件下,无耗理想点源天线的输入功率(Pino)与天线的输入功率(Pin)的比值,即称为该天线在该点方向的增益。
G=Pino/Pin(同一电场强度)
通常是以天线在最大辐射方向的增益作为这一天线的增益。
增益通常用分贝表示。
即
:G=101gPino/Pin天线增益的计算:G=η4πS/λ2=η(π/λ)2D2式中,S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线 效率。
--------------- 回答者:chendaji 回答时间:2009-05-21 12:45:47————————————————————————————。