抛物面天线增益计算
天线增益的计算公式

天线增益的计算公式骆驼发表于2008-01-09 02:34 ||阅读2,179 views天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G = 13 dB = 20的某定向天线作为发射天线时,输入功率只需100/20=5W。
换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为G=2.15dBi。
4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi(dBi这个单位表示比较对象是各向均匀辐射的理想点源)。
如果以半波对称振子作比较对象,其增益的单位是dBd。
半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。
)垂直四元阵,其增益约为G=8.15–2.15=6dBd。
天线增益的若干计算公式1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;32000是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:G(dBi)=10Lg{4.5×(D/λ0)2}式中,D为抛物面直径;λ0为中心工作波长;4.5是统计出来的经验数据。
3)对于直立全向天线,有近似计算式G(dBi)=10Lg{2L/λ0}式中,L为天线xx;λ0为中心工作波长;天线的增益的考量在无线通讯的实际应用中,为有效提高通讯效果,减少天线输入功率,天线会做成各种带有辐射方向性的结构以集中辐射功率,由此就引申出“天线增益”的概念。
天线增益的计算公式.doc

天线增益的计算公式天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
可以这样来理解增益的物理含义--一为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13dB = 20的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W。
换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为G=2.15dBi o4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi(dBi这个单位表示比较对象是各向均匀辐射的理想点源)o如果以半波对称振子作比较对象,其增益的单位是dBd o半波对称振子的增益为G=0dBd (因为是自己跟自己比,比值为1 , 取对数得零值。
)垂直四元阵,其增益约为G=8.15 - 2.15=6dBd。
天线增益的若干计算公式1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益:G (dBi) =10Lg{32000/ (2。
3dB,EX2。
3dB,H) }式中,2。
3dB,E与2 0 3dB,H分别为天线在两个主平面上的波瓣宽度; 32000是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:G (dBi) =10Lg(4.5X (D/XO) 2}式中,D为抛物面直径;入0为中心工作波长;4.5是统计出来的经验数据。
3)对于直立全向天线,有近似计算式G (dBi) =10Lg(2L/X0)式中,L为天线长度;入0为中心工作波长;天线的增益的考量在无线通讯的实际应用中,为有效提高通讯效果,减少天线输入功率,天线会做成各种带有辐射方向性的结构以集中辐射功率,由此就引申出“天线增益”的概念。
抛物面天线计算公式(二)

抛物面天线计算公式(二)抛物面天线计算公式1. 抛物面天线的基本结构•抛物面天线由一个抛物面反射器和一个接收天线组成。
•抛物面反射器通常由金属或导电材料制成,具有抛物曲面形状,用于将来自发射源的电磁波进行聚焦。
•接收天线通常用来接收到达天线的电磁波信号。
•通过合适的设计和调整,抛物面天线可以实现高增益、高方向性和低波束宽度,用于无线通信、雷达系统和卫星通信等领域。
2. 抛物面天线的主要参数焦距(f)•焦距表示抛物面天线反射器的焦点到曲面顶点的距离。
•焦距决定了抛物面天线的聚焦能力和波束宽度。
•计算公式:f=D/4曲面高度(h)•曲面高度表示抛物面曲面的最高点到顶点的距离。
•曲面高度决定了抛物面天线的波束形状和辐射特性。
•计算公式:ℎ=D2/(16f)开口直径(D)•开口直径表示抛物面反射器的直径,即反射器的宽度。
•开口直径决定了抛物面天线的增益和方向性。
•计算公式:D=√16fℎ3. 抛物面天线的例子无线通信天线•假设一抛物面天线用于无线通信系统,工作频率为10 GHz,要求实现最大增益和高方向性。
•根据计算公式,可以计算出焦距为 m。
•假设抛物面天线的曲面高度为 m,则可以计算出开口直径为 m。
•这样设计的抛物面天线具有高增益和方向性,可以实现远距离无线通信。
雷达系统天线•假设一抛物面天线用于雷达系统,工作频率为5 GHz,要求实现高精度的目标探测。
•根据计算公式,可以计算出焦距为 m。
•假设抛物面天线的曲面高度为 m,则可以计算出开口直径为 m。
•这样设计的抛物面天线具有高增益和较小的波束宽度,可以实现精确的目标探测。
结论•抛物面天线是一种常用的天线结构,用于实现高增益和方向性。
•通过合适的设计和调整,可以通过计算公式来确定抛物面天线的关键参数,如焦距、曲面高度和开口直径。
•抛物面天线广泛应用于无线通信、雷达系统和卫星通信等领域,发挥着重要的作用。
微波通信工程常用公式

微波通信工程常用公式
①抛物面天线增益
G= =20logf(GHZ)+20logD(m)+20.4+10log η dB
其中f 为频率,D 为天线口径,η 为天线效率,一般为50-60%
② 抛物面天线的半功率角
其中λ是波长,D
③ 自由空间的损耗
其中f 为工作频率,d 为站间距
④ 馈线损耗
对7/8GHZ 频段,椭圆馈线损耗一般为:
6dB/100m
对13GHZ 频段,软波导损耗为:0.59dB/m
对15GHZ 频段,软波导损耗为:0.99dB/m
对2GHZ 频段,馈线损耗为
LDF4P-50A(1/2”)11.3dB/100m
LDF5P-50A(7/8”)6.46dB/100m
⑤ 收信电平
设备入口收信电平为:
其中P O 为发端设备的出口发信功率,G T ,G R 为发,收端天线增益,L K1,L K2 为两端馈线损耗,L S 为自由空间损耗
⑥ 雨雾损耗
在10GHZ 以上频段,中继间隔主要受降雨损耗的限制,如对13GHZ 以上频段,100mm/小时的降雨会引起5dB/km 的损耗,所以在13GHZ ,15GHZ 频段,一般最大中继距离在10km 左右
P P G G L L L r T R k k s
=++---012
⑦ 余隙的计算
地球凸起高度:
其中K 为大气折射因子,余隙得大于一阶费涅尔半径。
路径余隙的计算公式如下:
一般情况余隙都要保证一个一阶费涅尔半径(7/8GHZ) h。
天线增益 - 含义介绍概要

天线增益 - 含义介绍天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。
换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为 G=2.15dBi。
4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源。
如果以半波对称振子作比较对象,其增益的单位是 dBd 。
半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。
)垂直四元阵,其增益约为 G=8.15 – 2.15=6dBd 。
天线增益 - 计算公式天线增益的若干计算公式1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;32000 是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:G(dBi)=10L g{4.5×(D/λ0)2}式中, D 为抛物面直径;λ0为中心工作波长;4.5 是统计出来的经验数据。
3)对于直立全向天线,有近似计算式G(dBi)=10Lg{2L/λ0}式中, L 为天线长度;λ0 为中心工作波长;。
天线增益的计算公式

天线增益的计算公式骆驼发表于 2008-01-09 02:34 | 来源: | 阅读 2,179 views天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。
换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为 G=2.15dBi。
4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。
如果以半波对称振子作比较对象,其增益的单位是 dBd 。
半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。
)垂直四元阵,其增益约为 G=8.15 – 2.15=6dBd 。
天线增益的若干计算公式1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;32000 是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:G(dBi)=10Lg{4.5×(D/λ0)2}式中, D 为抛物面直径;λ0为中心工作波长;4.5 是统计出来的经验数据。
3)对于直立全向天线,有近似计算式G(dBi)=10Lg{2L/λ0}式中, L 为天线长度;λ0 为中心工作波长;天线的增益的考量在无线通讯的实际应用中,为有效提高通讯效果,减少天线输入功率,天线会做成各种带有辐射方向性的结构以集中辐射功率,由此就引申出“天线增益”的概念。
天线增益的计算

天线增益的计算增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G=13dB=20的某定向天线作为发射天线时,输入功率只需100/20=5W。
换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为G=2.15dBi。
4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi(dBi这个单位表示比较对象是各向均匀辐射的理想点源)。
如果以半波对称振子作比较对象,其增益的单位是dBd。
半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。
)垂直四元阵,其增益约为G=8.15–2.15=6dBd。
天线增益的若干计算公式1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;32000是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:G(dBi)=10Lg{4.5×(D/λ0)2}式中,D为抛物面直径;λ0为中心工作波长;4.5是统计出来的经验数据。
3)对于直立全向天线,有近似计算式G(dBi)=10Lg{2L/λ0}式中,L为天线xx;λ0为中心工作波长;关于天线的db,dBi,dBd等单位有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。
(1)dB,这单纯是一个相对值,也就是说A比B的值的对数。
抛物面天线

抛物面天线的几何关系
抛物面天线的 主要几何参数: 焦距 f 口径 D
最大半张角 0
其中只有两个是独立的, 第三个已知的两个导出
f
0
D
抛物面天线的几何关系
x sin
z f cos
x2 z 变换可得
2f f 1 cos cos2 ( / 2)
由图易知
• 抛物线的定义: • 若有一点M(z,x),在
运动中一直保持与F和 准线的距离相等,则M 点的轨迹为抛物线。F 称为焦点,f称为抛物 线的焦距。
由定义得,MF=MQ 可得抛物线的一般方程:
抛物面天线的几何关系
由抛物线的性质可得
因此,若FM为入射线, 则MP必为反射线。 抛物面的特性: 可将焦点发出的任意方向的 波经其反射后变换成平行与 轴线的波。
• 因此,抛物面天线的口径场可以表示为
EA
60Pr D0 F ()e j (hL)
口径场分析
• 抛物面天线的口径场计算公式: L
EA
60Pr D0 F ()e j (hL)
• 用不同馈源的方向性函数代入式 即可求出抛物面天线的口径场
口径场分析
辐射场分析
设某天线的口径面上的
• 口径面最大半张角0 越小,
口径面上的场强也就越均 匀,所以口径面积利用系 数v也就越大。
方向性与增益
G AD
4 2
AvA
4 2
Ag
g vA
A 为抛物面天线的截获效率,g为天线的增益因子
增益因子与抛物面半张角关系曲线
• n一定时获得最大增益 的半张角称为最优张
角 opt
将抛物面天线口径场计算公式:EA