人教版七年级数学上册第一章 有理数近似数
人教版七上数学第一章有理数第5节《近似数》参考课件1(共21张PPT)

.
5、近似数86.350 的有效数字为 8,6,3,5,0 .
1、3.008是精确到百分位的数.
2、近似数3.80和近似数3.8 的精确度相同. 3、近似数6.090的有效数字是6、0、9、0.
( × )
( × ) ( √ )
4、近似数0..090360精确到百分位有4个有效数字. ( × )
三、选择: 1、下列各数中,不是近似数的是: ( B )
(5)
围棋盘上 有361个 交叉点
观察下列数据,说说哪些是精 确数,哪些是近似数?
(6)
《西游记》 中孙悟空的 本领真大, 一个跟斗翻 10万8千里。
• 请同学们以小组为单位,数一数 数学书(连封面)有多少页?估 计一下这本书大约有多少个字, 再分别以厘米和毫米为长度单位, 量一量书的长、宽、厚各是多少? 然后讨论一下,哪些数是精确数, 哪些是近似数?
解:⑴43.82,精确到 百分位(或精确到0.01) . 有四个有效数字 4,3,8,2 ⑵0.03086,精确到 十万分位(或精确到0.00001) . 有四个有效数字 3,0,8,6 (3)2.4万,精确到 千位 . 需要还原此数 24000 有二个有效数字2,4 精确到哪位,就以哪位止 (4)2.48亿,精确到 百万位 . 248000000
有三个有效数字 1,3,0
(8)2.00,精确到 百分位 . 有三个有效数字 2,0,0
例2.用四舍五入法,按要求对下列各数取近似数。
≈0.344 (1) 0.33448 (精确到千分位) ≈65 (2) 64.8 (精确到个位) ≈1.60 (3) 1.5952 (精确到0.01) ≈0.50 (4) 0.5039 (保留两个有效数字) ≈8.50×10 (5) 84960 (保留三个有效数字)
最新人教版七年级上册数学第一章有理数第19课时 近似数

4.下列说法正确的是( B ) A.将310万用科学记数法表示为3.1×107 B.用四舍五入法将1.097精确到百分位为1.10 C.近似数2.3与2.30的精确度相同 D.若一个数用科学记数法表示为2.01×105,则原数为20 100
返回目录
5.节约是一种美德.据统计,全国每年浪费食物的总量折合成 粮食可养活约3.5亿人,3.5亿精确到___千__万_____位.
返回目录
9.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜 FAST的反射面总面积为249 900 m2.将249 900精确到万位,并用 科学记数法表示为__2_._5_×__1_0_5____.
返回目录
谢谢
返回目录
返回目录
B组 6. 数-5.678用四舍五入法精确到0.01得到___-_5_._6_8___;近似数 2.40×104精确到____百______位. 7. 用四舍五入法对下列各数按括号中的要求取近似值: (1)2.768(精确到百分位); 解:2.768≈2.77.
返回目录
(2)9.403(精确到个位); 解:9.403≈9.
分层作业本
第一章 有理数
第19课时 近似数
A组
1. 用四舍五入法将数4.151 49精确到千分位,结果是(
)D A. 4.2
B. 4.15
C. 4.152
D. 4.151
2. 由四舍五入得到的近似数4.30万,精确到( A )
返回目录
3.用四舍五入法按要求对下列各数取近似值,其中描述错误的 是( C ) A.0.675 96≈0.68(精确到0.01) B.近似数169.8精确到个位,结果可表示为170 C.近似数9.60×106精确到百分位 D.近似数0.050 49精确到0.1,结果可表示为0.1
人教版七年级数学上册 各章节知识点梳理

人教版七年级数学上册 各章节知识点梳理第一章、有理数知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级上册数学:第一章《有理数》1.5.3《近似数》

1.5 有理数的乘方
1.5.3 近似数
学习目标
1.进一步认识准确数和近似数,并会根据要求用“四舍五入” 的方法省略一个数的尾数求近似数,会用“万”或“亿”作单 位求一个大数的近似数. 2.给一个近似数,会说出它精确到哪一位. 3.在认识、理解近似数的过程中感受大数目近似数的使用价 值,增强学生的应用意识,提高应用能力. 【学习重点】 近似数和精确度的意义. 【学习难点】 能在具体问题中正确进行四舍五入.
情境引入
北京地铁1号线是我国最早的地铁路线,全长31.04公理. “31.04”一定是准确的数据吗?它又是怎么来的?
一、准确数与近似数 辨一辨
下列语句中,那些数据是精确的,哪些数据是近似的? 1.我和妈妈去买水果,买了 8 个苹果,大约 3 千克. 2.小民与小李买了 2 瓶水,4 根黄瓜,6 袋香巴拉牛 肉干,约 20 元,然后骑车去大约 3.5 km外去郊游,大 约玩了 4.5 小时回家. 3.我国共有 56 个民族.
1.判断准确数与近似数. 2.按照要求取近似数.
四舍五入到某一位,就说这个数近似数精确到那一位. 3.由近似数判断精确度
(1) 600万 ; (2) 7.03万;
(3) 5.8亿
(4) 3.30×105.
解:(1)600万,精确到万位; (2)7.03万,精确到百位; (3)5.8亿,精确到千万位; (4)3.30×105,精确到千位.
先把数还原,再 看0所在的数位
做一做
下列结论正确的是 ( C ) A.近似数4.230和4.23的精确度是一样的 B.近似数89.0是精确到个位 C.近似数0.00510与0.0510的精确度不一样 D.近似数6万与近似数60 000的精确度相同
1.5.3 人教版七年级上册数学 第一章《有理数》近似数 专题训练含答案及解析

简单1、下列句子中的数,是近似数的是()A.某市有中学106所B.我国有34个省级行政单位C.七年级三班男生23人,女生21人D.一双没洗的手,带有各种细菌80000万个【分析】根据近似数的定义,它只是一个大约数据,根据答案直接得出即可.【解答】A.某市有中学106所,106,这是一个确切的数据,故此选项错误;B.我国有34个省级行政单位,34,这是一个确切的数据,故此选项错误;C.七年级三班男生23人,女生21人,23,21,这都是一个确切的数据,故此选项错误;D.一双没洗的手,带有各种细菌80000万个,这只是一个近似数,故此选项正确.故选D.2、由四舍五入法得到的近似数6.8×103,下列说法中正确的是()A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字【分析】103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a有关,与10的多少次方无关.【解答】个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.故选C.3、据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A.精确到万位B.有三个有效数字C.这是一个精确数D.用科学记数法表示为2.80×106【分析】根据近似数、有效数字的意义和科学记数法的计数方法逐一分析得出答案即可.【解答】A、280万精确到万位是正确的,此选项不合题意;B、280万有三个有效数字是正确的,此选项不合题意;C、280万是一个近似数,不是精确数,此选项符合题意;D、280万用科学记数法表示为2.80×106是正确的,此选项不合题意.故选:C.4、下列说法错误的是()A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D选项的说法正确.故选B.5、下列说法正确的是()A.近似数0.010只有一个有效数字B.近似数4.3万精确到千位C.近似数2.8与2.80表示的意义相同D.近似数43.0精确到个位【分析】一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位.【解答】A、近似数0.010的“1”后面有一个0,所以,它有两个有效数字;故本选项错误;B、近似数4.3万的3位于千位,所以近似数4.3万精确的了千位;故本选项正确;C、近似数2.8精确到了十分位,2.80精确到了百分位,所以它们表示的意义不一样;故本选项错误;D、近似数43.0的“0”位于十分位,所以它精确到了十分位;故本选项错误.故选B.6、我们的数学课本的字数大约是21.1万字,这个数精确到()位.A.千位B.万位C.十分位D.千分位【分析】根据近似数的精确度求解.【解答】21.1万精确到千位.故选A.7、0.00020080有效数字的个数为()A.9 B.8 C.4 D.5 【分析】根据有效数字的定义求解.【解答】0.00020080有效数字为2、0、0、8、0.故选D.8、森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.对于这个近似数,下列说法正确的是()A.精确到十分位,有3个有效数字B.精确到个位,有10个有效数字C.精确到千万位,有3个有效数字D.精确到千万位,有11个有效数字【分析】先把28.3亿用科学记数法表示出来,再找出有效数字和精确度即可.【解答】28.3亿=2.83×109,精确到千万位,有3个有效数字;故选C.9、有理数3.645精确到百分位的近似数为()A.3.6 B.3.64 C.3.7 D.3.65 【分析】把千分位上的数字5进行四舍五入即可.【解答】3.645≈3.65(精确到百分位).故选D.10、1.0149精确到百分位的近似值是()A.1.0149 B.1.015 C.1.01 D.1.0【分析】根据近似数的定义即最后一位数字所在的数位就是精确度,利用四舍五入法取近似值即可.【解答】1.0149精确到百分位的近似值是1.01,故选C.11、有理数100 467保留三个有效数字后的近似数是()A.100 B.1.00×105C.100 000 D.1.0046×105【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,它的有效数字的个数只与a有关,而与n的大小无关.【解答】有理数100 467保留三个有效数字后的近似数是1.00×105.故选B.12、2014年6月止,高新区(滨江)实现地区生产总值279.8亿元,比去年增长11.5%.近似数279.8亿是精确到()位.A.十分B.千C.万D.千万【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】279.8亿中最后一位8表示8千万,则精确到千万位.故选:D.13、由四舍五入得到近似数8.01×10-2,精确到()A.0.0001 B.0.001 C.0.01 D.10【分析】数字1在万分位上,所以8.01×10-2精确到0.0001位.【解答】近似数8.01×10-2精确到0.0001位.故选A.14、下列说法正确的是()①近似数7.4与7.40是一样的;②近似数8.0精确到十分位;③近似数9.60精确到百分位;④由四舍五入得到的近似数6.96×104精确到百分位.A.4个B.3个C.2个D.1个【分析】①的精确度不一样,7.4精确到十分位,7.40精确到百分位;②近似数8.0精确到十分位;③近似数9.60精确到百分位;④近似数6.96×104精确到百位.【解答】①7.4精确到十分位,7.40精确到百分位,故错误;②③正确;④近似数6.96×104精确到百位,有3个有效数字,故错误.故选C.15、下列说法中正确的是()A.近似数3.10与近似数3.1的精确度一样B.近似数3.1×103与近似数3100的精确度一样C.近似数3.10与近似数0.310都有三个有效数字D.将3.145精确到百分位后,有四个有效数字【分析】根据有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关对各选项分析判断后利用排除法.【解答】A、近似数3.10的精确度时百分位,近似数3.1的精确度是十分位,不相同,故本选项错误;B、近似数3.1×103有2个有效数字,近似数3100有四个有效数字,故本选项错误;C、近似数3.10有三个有效数字,近似数0.310有三个有效数字,有效数字的个数相同,故本选项正确;D、3.145精确到百分位后,所得3.15近似数有三个有效数字,故本选项错误.故选:C.16、近似数12.30万精确到()A.千位B.百分位C.万位D.百位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】12.30万=123000,而3后的第一个0在百位上,则精确到了百位.故选D.难题1、我们知道地球的半径大约为6.4×103千米,下列对近似数6.4×103描述正确的是()A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字【分析】将近似数的科学记数法变形为普通计数法,找出4在百位上,且从左边第一个不为0的数字起,到精确的数位百位为止,数字的个数即为有效数字的个数.【解答】∵近似数6.4×103=6400,∴4在百位上,且有2个有效数字,则近似数6.4×103描述精确到百位,有2个有效数字.故选:C2、下列数据中,不是近似数的是()A.某次地震中,伤亡10万人B.吐鲁番盆地低于海平面155mC.小明班上有45人D.小红测得数学书的长度为21.0cm【分析】根据近似数与精确数的意义分别进行判断.【解答】A、某次地震中,伤亡10万人中的10为近似数,所以A选项错误;B、吐鲁番盆地低于海平面155m中的155为近似数,所以B选项错误;C、小明班上有45人中45为精确数,所以C选项正确.D、小红测得数学书的长度为21.0cm中的21.0为近似数,所以D选项错误;故选C.3、对于近似数3.07万,下列说法正确的是()A.精确到0.01 B.精确到百分之一C.有两个有效数字D.精确到百位【分析】近似数3.07万中3表示3万,是万位,因而最后一位7是百位.这个数的有效数字是3,0,7共三个.【解答】根据分析得:近似数3.07万精确到百位.故选D.4、0.3998四舍五入到百分位,约等于()A.0.39 B.0.40 C.0.4 D.0.400 【分析】把0.399 8四舍五入到百分位就是对这个数百分位以后的数进行四舍五入.【解答】0.399 8四舍五入到百分位,约等于0.40.故选B.5、对于由四舍五入法得到的近似数4.601万,下列说法正确的是()A.它精确到千分位B.它精确到0.01C.它精确到万位D.它精确到十位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】最后一10是十位,因而精确到十位.故选D.6、下列近似数有3个有效数字的是()A.0.033 B.0.20万C.1.60×102D.1.6×103【分析】根据有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,对各选项分析判断后利用排除法.【解答】A、0.033有3、3共2个有效数字,故本选项错误;B、0.20万有2、0共2个有效数字,故本选项错误;C、1.60×102有1、6、0共3个有效数字,故本选项正确;D、1.6×103有1、6共2个有效数字,故本选项错误.故选C.7、把0.697按四舍五入法精确到0.01的近似值是()A.0.6 B.0.7 C.0.67 D.0.70 【分析】首先确定精确到哪一位,然后按要求四舍五入即可得到答案;【解答】∵0.697中0.01是指9所表示的数位,且7>5∴把0.697按四舍五入法精确到0.01的近似值是0.70,故选D.8、下列说法:①任何一个有理数的绝对值都是正数;②绝对值等于它的相反数的数一定是非正数;③3.804用四舍五入精确到百分位是3.80;④单项式2a2b的系数是2,次数也为2;⑤有理数可以分为正有理数、负有理数和零.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据绝对值的意义对①②进行判断;根据近似数的精确度对③进行判断;根据单项式的系数与次数的定义对④进行判断;根据有理数的分类对⑤进行判断.【解答】任何一个有理数的绝对值都是非负数,所以①错误;绝对值等于它的相反数的数一定是非正数,所以②正确;3.804用四舍五入精确到百分位是3.80,所以③正确;单项式2a2b的系数是2,次数为3,所以④错误;有理数可以分为正有理数、负有理数和零,所以⑤正确.故选C.9、如果a是b的近似值,那么我们把b叫做a的真值.若用四舍五入法得到的近似值是32,则下列各数不可能是其真值的是()A.32.01 B.31.51 C.31.99 D.31.49 【分析】把四个数进行四舍五入精确到个位即可得到答案.【解答】32.01≈32;31.51≈32;31.99≈32;31.49≈31.故选D.10、近似数1.30所表示的准确数A的范围是()A.1.25≤A<1.35 B.1.20<A<1.30C.1.295≤A<1.305 D.1.300≤A<1.305【分析】近似值是通过四舍五入得到的:精确到哪一位,只需对下一位数字进行四舍五入.【解答】根据取近似数的方法,得1.30可以由大于或等于1.295的数,0后面的一位数字,满5进1得到;或由小于1.305的数,舍去1后的数字得到,因而1.295≤A<1.305.故选C.11、近似数6.00×105精确到()A.十分位B.百分位C.百位D.千位【分析】科学记数法的数,要看一下a中的最后一个数字实际在什么位,即精确到了什么位.【解答】6.00×105=600 000,原数中的最后一位有效数字0,在600 000中处于千位,即精确到了千位.故选D.12、用四舍五入法得到的a的近似数为4.60,则这个数a的范围是()A.4.60≤a≤4.64B.4.55≤a≤4.65C.4.595≤a<4.605 D.4.595<a<4.605【分析】近似值是通过四舍五入得到的:精确到哪一位,若下一位数字大于或等于5,则应进1;若下一位数字小于5,则应舍去.【解答】根据取近似数的方法,得4.60可以由大于或等于4.595的数,9后面的一位数字,满5进1得到;或由小于4.605的数,舍去1后的数字得到.因而4.595≤a<4.605.故选C.13、下列各选项正确的是()A.0.10(精确到0.1)B.0.05(精确到十分位)C.5.5万(精确到千位)D.1.205×107(精确到0.001)【分析】根据近似数和有效数字的定义分别对每一项进行分析即可.【解答】A、0.10(精确到0.01),故本选项错误;B、0.05(精确到百分位),故本选项错误;C、5.5万(精确到千位),故本选项正确;D、1.205×107(精确到万位),故本选项错误;故选C.14、资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】∵27.39亿末尾数字9是百万位,∴27.39亿精确到百万位.故选:D.15、近似数4.80所表示的精确数n的范围是()A.4.795≤n<4.805 B.4.70≤n<4.90C.4.795<n≤4.805D.4.800≤n<4.805【分析】利用四舍五入法并根据近似数的定义可进行判断.【解答】由于近似数4.80精确到了百分位,所以它所表示的准确数必须至少精确到千分位,且符合四舍五入法的要求,则需4.795≤n<4.805.故选A.16、小惠测量一根木棒的长度,由四舍五入得到的近似数为2.8米,则这根木棒的实际长度的范围是()A.大于2米,小于3米B.大于2.7米,小于2.9米C.大于2.75米,小于2.84米D.大于或等于2.75米,小于2.85米【分析】根据四舍五入的定义即可求解.【解答】当原数的十分位是7时,则百分位上的数一定大于或等于5;当原数的十分位上的数字是8时,百分位上的数字一定小于5.因而这根木棒的实际长度的范围是大于或等于2.75米,小于2.85米.故选D.17、有下列说法:①任何无理数都是无限小数;②数轴上的点与有理数一一对应;③绝对值等于本身的数是0;④0除以任何数都得0⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A.1 B.2 C.3 D.4 【分析】根据无理数的定义对①进行判断;根据实数与数轴上点的一一对应关系对②进行判断;根据绝对值的意义对③进行判断;根据近似数的精确度对⑤进行判断.【解答】无理数都是无限不循环小数,所以①正确;数轴上的点与实数一一对应,所以②错误;绝对值等于本身的数是0或正数,所以③错误;0除以任何非0的数都得0,所以④错误;近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,所以⑤正确.故选B.。
人教版七年级数学上册知识点总结

人教版七年级数学上册知识点总结第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 例:把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,76正整数集{ …}; 非负整数集{ …}; 自然数集{ …}; 非负数集{ …} 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 例:数轴上与表示-2的点的距离为三个单位的点有_ _个, 他们分别表示的有理数是 _和_ _。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
[初中数学+]近似数课件+人教版数学七年级上册
![[初中数学+]近似数课件+人教版数学七年级上册](https://img.taocdn.com/s3/m/1fccae42a66e58fafab069dc5022aaea998f41c1.png)
知识点 3 科学记数法与近似数的综合 【例3】数3.838×105精确到万位是 ( B )
A. 3.9万 B. 38万 C. 3.84×105 D. 4.0×105
【变式3】按要求对159 897 000 000取近似值(用科学记 数法表示): (1)精确到千万位:_1_._5_9_9_0_×__1011 (2)精确到亿位:_1_.5_9_9_×__1_0_11 (3)精确到百亿位:1_._6_×__1_0_1_1 _
D. 精确到个位
3. 用四舍五入法对下列各数取近似数: (1)0.026 9≈__0_._0_2_7___(精确到0.001); (2)30.435≈__3_0______(精确到个位); (3)3.704≈__3_.7_0_____(精确到百分位).
4. 用四舍五入法对下列各数取近似数: (1)2.953≈___3_._0____(保留1位小数); (2)0.964 2≈__0_.9_6_____(精确到百分位); (3)5.627 9≈__5_.6_2_8____(精确到0.001). (4)56 869 99≈_5_6_9_万_____(精确到万位).
课堂练习
1.用四舍五入法对2 020.89(精确到十分位)取近似数的结
果是
( C)
A. 2 020
B. 2 020.8
C. 2 020.9
D. 2 020.89
2. 今年某市参加中考的学生人数约为6.01×104人,对于
这个近似数,下列说法正确的是
(B )
A. 精确到百分位
B. 精确到百位
C. 精确到十位
谢谢 观看
【变式2】用四舍五入法对下列各数取近似值: (1)0.632 8≈_0_._6_3_____(精确到0.01); (2)2.768≈__2_.7_7_____(精确到百分位); (3)0.348 2≈__0_.3_4_8____(精确到0.001); (4)29.634≈__3_0______(精确到个位); (5)0.050 72≈__0_.0_5_1____(精确到千分位); (6)8.965≈__9_.0______(精确到0.1).
初中数学人教七年级上册第一章有理数-近似数

⑵0.03086,精确到 十万分位(或精确到0.00001) .
(3)0.4070,精确到 万分位(即精确到
.
(4)2.00,精确到 百分0.位00(01即) 精确到0.01
.
)
2.我国的国土面积约为9596960平方千米,按四舍五入精确
到万位,则我国的国土面积约为 ( C )
A.9597万平方千米
准确数--与实际完全符合的数 。近似数--与实际接近的数。
答一答:看谁答得准
精确度—— 近似数与准确数的接 下列各数,哪些是近似数?
近程度可以用精确度表示.
哪些是准确数?
⑴ 1 小时有60分;
利用四舍五入法得到的近似数, ⑵绿化队今年植树约2棵;
四舍五入到哪一位,就说这个 近似数精确到哪一位.
⑶小明到书店买了10本书; ⑷一次数学测验中,有2
学习目标: •1.能指明近似数的精确度及有效 数字; •2.能按要求写出近似值.
学习重点:能给出由四舍五入得到 的近似数及精确度
学习难点:合理地对一个数四舍五 入取近似值
在许多情况下,很难取得准确数,或者
不必使用准确数,而可以使用近似数
1.宇宙现在的年龄约为200亿年 2.长江长约6300千米 3.圆周率π约为3.14 4.小明的身高约为1.6米
人得100分;
⑸某区在校中学生近75人;
⑹七年级二班有56人.
按四舍五入法对圆周率π取近似值时,有 π≈3(精确到个位), π≈3.1(精确到0.1,或叫做精确到十分位), π≈3.14(精确到0.01,或叫做精确到百分位), π≈3.142(精确到 0.001,或叫做精确到 千分位), π≈3.141 6(精确到 0.000 ,1或叫做精确到 万分位), ·······