南京市高考数学总复习:三角函数及解三角形
高考数学(理)总复习:解三角形(解析版)

高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
2024届高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件

(5)tan (α-β)=1t+antαan-αttaannββ(T(α-β)). (6)tan (α+β)=1t-antαan+αttaannββ(T(α+β)).
2.二倍角公式 (1)基本公式 ①sin 2α=2sin αcos α. ②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
答案:C 【反思感悟】 理解数学文化内容,结合题目条件进行三角变换求值是关键.
【高分训练】
(2021 年泸州市模拟)《周髀算经》中给出了弦图,所谓弦图
是由四个全等的直角三角形和中间一个小正方形拼成
一个大的正方形,若图3-3-1中直角三角形两锐角分别
为α,β,且小正方形与大正方形面积之比为 9∶25,
答案:12
⊙三角变换与数学文化的创新问题 新高考数学考查的学科素养提炼为理性思维,数学应用,数 学探究和数学文化,其中数学文化作为素养考查的四大内涵之一, 以数学文化为背景的试题将是新高考的必考内容.
[例 4]公元前 6 世纪,古希腊的毕达哥拉斯学派研究过正五边 形和正十边形的作图方法,发现了黄金分割,其比值约为 0.618,
考向 2 公式的变形
[例
3](1)存在角
θ,已知
(1+sin θ∈(0,π),则
θ+cos θ)sin 2+2cos θ
2θ-cos
θ 2
=______.
解析:由 θ∈(0,π),得 0<2θ<π2, ∴cos 2θ>0,∴ 2+2cos θ= 4cos22θ=2cos2θ.
又(1+sin θ+cos θ)sin
解析:原式=1-cos22α-π3+1-cos 22α+π3-sin2α=1- 12cos2α-π3+cos 2α+π3-sin2α=1-cos2α·cos π3-sin2α=1- co2s2α-1-c2os 2α=12.
高考数学复习专题:三角函数、解三角形、向量 OK

高考专题:三角函数、解三角形及平面向量一、知识点1、三角函数的定义:设角α终边与单位圆相交于点),(y x P ,则____sin =α,_____cos =α,_____tan =α.2、特殊角的三角函数值3、三角函数在各象限的符号:αs i n αc o s αt a n4、同角三角函数的基本关系:(1) (2) 5、三角函数的诱导公式:(1)=+)2sin(παk ___________,=+)2cos(παk ___________,=+)2tan(παk ___________. (2)=-)sin(απ___________,=-)cos(απ___________,=-)tan(απ___________. (3)=+)sin(απ___________,=+)cos(απ___________,=+)tan(απ___________. (4)=-)sin(α___________,=-)cos(α___________,=-)tan(α___________.(5)=-)2sin(απ___________,=-)2cos(απ___________,=-)2tan(απ___________.(6)=-)2sin(απ_______,=-)2cos(απ_______.=+)2sin(απ_______,=+)2cos(απ_______.8、函数sin 0,0y x ωϕω=A +A >>:1)概念:①振幅:_______;②周期:________;③频率:________;④相位:________;⑤初相:________. 函数()sin y x ωϕ=A ++B ,最小值m in y =_________;最大值为max y =_________, 2)图像的平移伸缩 (1)先平移后伸缩sin sin ()sin (2)2sin (2)2sin (2)13333y x y x x x x ππππ=⇒=+⇒+⇒+⇒++(2)先伸缩后平移sin sin 2sin (2)2sin (2)2sin (2)1333y x y x x x x πππ=⇒=⇒+⇒+⇒++9、和角公式与差角公式sin()___________________A B += ___________________)sin(=-B A _________________)c o s (=+B A _________________)c o s (=-B A _________________)t a n (=+B A _________________)t a n (=-B A 倍角公式sin 2_______A =,cos 2_____________________A ===,____________2tan =A降幂公式:2sin α=______________.2cos α=______________. 10、归一公式: ;__________________cos sin =+A b A a 其中ab =ϕtan ,)2,2(ππϕ-∈如:(1)sin ___________x x += (2)sin ___________x x -= (3)sin ___________x x -+= (4)sin ___________x x --=11、解三角形(1)正弦定理:Aa sin =___________________________(R 为△ABC 外接圆半径)正弦定理的三种变形:①边化为角:_____________________________________②角化为边:_____________________________________ ③比例关系:_____________________________________(2)余弦定理: 2__________________a =⇔cos ____________________A =2__________________b =⇔cos ____________________B = 2__________________c =⇔cos ____________________C =(3)解三角形常用结论:1、三角形面积公式:______________________________ABC S ∆===2、在△ABC 中:︒=++180C B A , 即C B A -︒=+180,则sin()__________A B +=;cos()__________A B +=;tan()__________A B +=12、平面向量(1)设A 、B 两点的坐标分别为),(11y x ,),(22y x ,则=AB __________________.. (2)向量运算公式定义运算:(1) =∙b a __________,],0[πθ∈;(2)⇔⊥b a __________,(3)⇔b a //__________坐标运算:),(11y x a =,),(22y x b =,则(1) =∙b a __________________ (2)⇔⊥b a ______________ (3)⇔b a //________________ (4)=||a ______________二、巩固练习1、)629tan(π-的值得为( )A 、33- B 、33 C 、3 D 、3-2、7sin6π的值等于( )A 、21 B 、23 C 、-21 D 、-233、53sin -=α,α是第二象限角,则=αtan ( )A 、34-B 、34 C 、43-D 、434、已知3sin()5πα+=-,且α是第二象限角,则)cos(απ-的值是( ) A 、54 B 、54-C 、53 D 、53-5、2sin x y =是( )A 、周期为π4的奇函数B 、周期为π2的奇函数C 、周期为π4的偶函数D 、周期为π2的偶函数6、函数2sin(2)6y x π=-的一条对称轴为( )A 、12x π=B 、6x π=C 、3x π=D 、2x π=7、在A B C ∆中,若向量2cos ,sin 22A A m ⎛⎫= ⎪⎝⎭ , n = cos ,2sin 22A A ⎛⎫- ⎪⎝⎭,且1m n ⋅=- ,则A =( )A 、6π B 、56π C 、3πD 、23π8、已知A B C ∆的内角,,A B C 的对边分别为,,a b c ,若A =3π,a =3,b =1,则c =( )A 、1B 、2C 、3—1D 、39、已知tan 2,α=-且2παπ<<,则cos α=______________;10、已知312sin(),sin()5413παββ+=--=,3,(,),4παβπ∈则=+)4cos(πα______________;11、已知向量cos sin m x x = (,),],0[π∈x ,(1,n =,且||m n -=,则x =__________;12、将函数()sin 2f x x =的图像向左平移3π个单位,再将所得到的图像上各点的横坐标缩短为原来的12倍,纵坐标伸长为原来的2倍,那么最后所得图像的函数表达式为__________.13、已知向量)sin ,(cos αα=a, )sin ,(cos ββ=b , 552||=-b a .(1)求cos()αβ-的值; (2)若02πα<<, 02πβ-<<, 且5sin 13β=-, 求sin α.14、已知函数2()sin(2)sin(2)2sin 66f x x x x ππ=++-+,(1)若R x ∈,求)(x f 的单调递减区间;(2)若x ∈ [,]36ππ-,求函数)(x f 的值域。
高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
高考数学一轮总复习第四章三角函数与解三角形 6正弦定理余弦定理课件

(1)证明: .
(2)若,,求 的周长.
解:(1)证明:因为 ,所以 .所以 .所以,即,所以 .(2)因为,所以由(1)得 .由余弦定理,得 ,则,所以 .故 ,所以.所以的周长为 .
考点二 判断三角形的形状
例3 对于 ,有如下命题:①若,则 为等腰三角形;②若,则 为直角三角形;③若,则 为钝角三角形.其中所有正确命题的序号是____.
A. B. C. D.
√
解:对于A,由正弦定理,有,原式仅当 时成立,故A错误.对于B,因为,故,原式仅当 时成立,故B错误.对于C,,由余弦定理 ,得,原式仅当 时成立,故C错误.对于D,由正弦定理,可得,即 ,故D正确.故选D.
2.在中,角,,的对边分别为,,,已知,, ,则角 ( )
第四章 三角函数与解三角形
4.6 正弦定理、余弦定理
掌握余弦定理、正弦定理,并能用它们解决简单的实际问题.
【教材梳理】
1.正弦定理、余弦定理 在中,若角,,所对的边分别是,,,为 外接圆的半径,则
类别
正弦定理
余弦定理
文字语言
在一个三角形中,各边和它所对角的_______的比相等
考点四 与三角形面积有关的问题
例5 (2023年全国甲卷)记的内角,,的对边分别为,,,已知
(1)求 ;
(2)若,求 的面积.
解:(1)因为 ,所以,解得 .(2)由正弦定理,可得 ,即 ,即 .因为,所以 .又 ,所以 .故的面积为 .
【点拨】三角形面积计算问题要选用恰当公式,其中 等公式比较常用,可以根据正弦定理和余弦定理进行边角互化.
A. B. C. D.
2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。
高考数学一轮总复习教学课件第四章 三角函数、解三角形第一课时 余弦定理和正弦定理
,
= =c=csin C,
判断三角形形状的两种途径
[针对训练] (2020·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为
2
a,b,c,已知 cos (+A)+cos A=.
(1)求A;
2
(1)解:由已知得 sin A+cos A=,
2
即 cos A-cos A+=0,
sin B=2× = ,
2
由余弦定理 a =b +c -2bccos A,
2
2
得 2= +c -2× c· ,即 2c -2c-3=0,解得 c=
+
综上,b= ,c=
+
.
或 c=
-
(舍去).
(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下
所以 sin B=
×
=
=
.
- = ,
(3)求sin(2A-B)的值.
解:(3)因为 cos A=- ,所以 <A<π,故 0<B< ,又 sin A=
2sin Acos A=2×
(-
,所以 c;
2.在△ABC中,已知a,b和A时,解的情况
项目
A为锐角
A为钝角或直角
图形
高考数学一轮总复习第四章三角函数与解三角形 2同角三角函数的基本关系及诱导公式课件
A.
5
π
6
3
5
− = ,则sin −
故选C.
=(
)
√
4
B.
5
解:依题意,知sin −
2π
3
2π
3
= sin[
3
C.−
5
π
π
− − ]
6
2
4
D.−
5
= −cos(
π
− )
6
= −cos
π
6
− =
3
− .
5
【巩固强化】
1
3
1.已知cos = ,且 为第四象限角,则sin =(
4
5
cos 2 = .则sin 2 = 2sin cos = −4cos2 = − .故选A.
(2)已知sin + cos =
A.−
3 5
,则tan
5
+
1
tan
B.
√
2
5
5
2
=(
C.−
)
4
5
5
4
D.
9
5
解:原式两边平方,得sin 2 + 2sin cos + cos 2 = .
A.−
√
1
2
1
2
B.
解:因为tan = −3,所以cos ≠
1
3
cos +sin
0.所以
cos −sin
)
C.−
1
3
1+ −3
1− −3
D.
=
1+tan
高三数学总复习——第三章三角函数、解三角形
第三章 三角函数、解三角形第一节任意角和弧度制及任意角的三角函数[知识能否忆起]1.任意角 (1)角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数 (1)任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=yx ,它们都是以角为自变量,以单位圆上点的坐标或坐标比值为函数值的函数.(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.[小题能否全取]1.-870°的终边在第几象限( ) A .一 B .二 C .三D .四解析:选C 因-870°=-2×360°-150°.-150°是第三象限角. 2.已知角α的终边经过点(3,-1),则角α的最小正值是( ) A.2π3 B.11π6 C.5π6D.3π4解析:选B ∵sin α=-12=-12,且α的终边在第四象限,∴α=116π.3.(教材习题改编)若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选C 由sin α<0,知α在第三、第四象限或α终边在y 轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限.4.若点P 在2π3角的终边上,且P 的坐标为(-1,y ),则y 等于________.解析:因tan 2π3=-3=-y ,∴y = 3.答案: 35.弧长为3π,圆心角为135°的扇形半径为________,面积为________. 解析:弧长l =3π,圆心角α=34π,由弧长公式l =α·r 得r =l α=3π34π=4,面积S =12lr =6π.答案:4 6π1.对任意角的理解(1)“小于90°的角”不等同于“锐角”“0°~90°的 角”不等同于“第一象限的角”.其实锐角的集合是{α|0° <α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°, k ∈Z }.(2)终边相同的角不一定相等,相等的角终边一定相同, 终边相同的角的同一三角函数值相等.2.三角函数定义的理解三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx .典题导入[例1] 已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2×180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4×180°+45°,k ∈Z ,判断两集合的关系. [自主解答] (1)所有与角α有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M N .由题悟法1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.以题试法1.(1)给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四角限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个(2)如果角α是第二象限角,则π-α角的终边在第________象限. 解析:(1)-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.(2)由已知π2+2k π<α<π+2k π(k ∈Z ),则-π-2k π<-α<-π2-2k π(k ∈Z ),即-π+2k π<-α<-π2+2k π(k ∈Z ),故2k π<π-α<π2+2k π(k ∈Z ),所以π-α是第一象限角. 答案:(1)C (2)一典题导入[例2] (1)已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1 B .2 C.12D. 2(2)(2012·大庆模拟)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π3D.11π6[自主解答] (1)根据已知条件得tan α=t 2+1t =t +1t ≥2,当且仅当t =1时,tan α取得最小值2.(2)由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.[答案] (1)B (2)D由题悟法定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.以题试法2.(1)(2012·东莞调研)已知角α的终边与单位圆的交点P ⎝⎛⎭⎫x ,32,则tan α=( ) A. 3 B .±3 C.33D .±33(2)(2012·潍坊质检)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114B.114 C .-4D .4解析:(1)选B 由|OP |2=x 2+34=1,得x =±12,tan α=±3.(2)选C 由题意可知,cos α=m m 2+9=-45,又m <0,解得m =-4.典题导入[例3] (1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? [自主解答] (1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +rθ=1012θ·r 2=4⇒⎩⎪⎨⎪⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12.(2)设圆心角是θ,半径是r , 则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r ) =-(r -10)2+100 ≤100,当且仅当r =10时,S max =100.所以当r =10,θ=2时,扇形面积最大.若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为R ,则圆内接正方形的对角线长为2R , ∴正方形边长为2R ,∴圆心角的弧度数是2RR= 2. 答案: 2由题悟法1.在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.2.记住下列公式:①l =αR ;②S =12lR ;③S =12αR 2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.以题试法3.若扇形的面积为定值,当扇形的圆心角为多少弧度时,该扇形的周长取到最小值? 解:设扇形的圆心角为α,半径为R ,弧长为l ,根据已知条件12lR =S 扇,则扇形的周长为:l +2R =2S 扇R +2R ≥4S 扇,当且仅当2S 扇R =2R ,即R =S 扇时等号成立,此时l =2S 扇,α=lR=2, 因此当扇形的圆心角为2弧度时,扇形的周长取到最小值.[典例] (2011·江西高考)已知角θ的顶点为坐 标原点,始边为x 轴的正半轴.若P (4,y )是角θ终 边上一点,且sin θ=25-y = .[尝试解题] r =x 2+y 2=16+y 2,且sin θ=-255,所以sin θ=y r =y 16+y 2=-255,所以θ为第四象限角,解得y =-8.[答案] -8——————[易错提醒]——————————————————————————— 1.误认为点P 在单位圆上,而直接利用三角函数定义,从而得出错误结果.2.利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.—————————————————————————————————————— 针对训练已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A .-12B .-32C.12D.32解析:选C 由点P (-8m ,-6sin 30°)在角α的终边上且cos α=-45,知角α的终边在第三象限,则m >0 ,又cos α=-8m(-8m )2+9=-45,所以m =12.1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6 C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1或4 B .1 C .4D .8解析:选A 设扇形的半径和弧长分别为r ,l ,则易得⎩⎪⎨⎪⎧l +2r =6,12lr =2,解得⎩⎪⎨⎪⎧ l =4r =1或⎩⎪⎨⎪⎧l =2,r =2.故扇形的圆心角的弧度数是4或1. 3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32C .-12D.12解析:选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.4.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选B ∵θ是第三象限角,∴θ2为第二或第四象限角.又∵⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0,知θ2为第二象限角.5.(2012·宜春模拟)给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan17π9,其中符号为负的是( )A .①B .②C .③D .④解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°) =cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0; sin7π10cos πtan 17π9=-sin 7π10tan17π9,sin 7π10>0,tan 17π9<0,∴原式>0. 6.已知sin θ-cos θ>1,则角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由已知得(sin θ-cos θ)2>1,1-2sin θcos θ>1,sin θcos θ<0,且sin θ>cos θ,因此sin θ>0>cos θ,所以角θ的终边在第二象限.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)8.若β的终边所在直线经过点P ⎝⎛⎭⎫cos 3π4,sin 3π4,则sin β=________,tan β=________. 解析:因为β的终边所在直线经过点P ⎝⎛⎭⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限.所以sin β=22或-22,tan β=-1. 答案:22或-22-19.如图,角α的终边与单位圆(圆心在原点,半径为1)交于第二象限的点A ⎝⎛⎭⎫cos α,35,则cos α-sin α=________. 解析:由题图知sin α=35,又点A 在第二象限,故cos α=-45.∴cos α-sin α=-75.答案:-7510.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解:设圆的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H .则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm).11.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝⎛⎭⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解:(1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 12.(1)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=24x ,求sin α与tan α的值;(2)已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.解:(1)∵r =x 2+5,∴cos α=xx 2+5, 从而24x =x x 2+5, 解得x =0或x =±3. ∵90°<α<180°, ∴x <0,因此x =- 3.故r =22,sin α=522=104,tan α=5-3=-153.(2)∵θ的终边过点(x ,-1), ∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22.1.(2012·聊城模拟)三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( )A .1B .-1C .3D .4解析:选B 因为三角形ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin (90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1.2.(2012·山东高考)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP ―→的坐标为________.解析:设A (2,0),B (2,1),由题意知劣弧 PA 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎫2-π2=2-sin 2,y =1+1×sin ⎝⎛⎭⎫2-π2=1-cos 2,∴OP的坐标为(2-sin 2,1-cos 2).答案:(2-sin 2,1-cos 2) 3.(1)确定tan (-3)cos 8·tan 5的符号;(2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号. 解:(1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan 5<0,cos 8<0,∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α,∴sin α+cos α=MP +OM >OP =1. 若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝⎛⎭⎫π2,π. 于是有sin α-cos α>0.1.已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 由已知sin α-cos α>0,tan α>0故⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4. 2.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 解:∵角α的终边在直线3x +4y =0上, ∴在角α的终边上任取一点P (4t ,-3t )(t ≠0), 则x =4t ,y =-3t ,r =x 2+y 2=(4t )2+(-3t )2=5|t |, 当t >0时,r =5t , sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,t =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34.综上可知,sin α=-35,cos α=45,tan α=-34;或sin α=35,cos α=-45,tan α=-34.3.已知0<α<π2,求证:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:如图,设α的终边与单位圆交于P 点,作PM ⊥x 轴,垂足为M ,过点A (1,0)作AT ⊥x 轴,交α的终边于T ,则sin α=MP ,cos α=OM ,tan α=AT .(1)在△OMP 中,∵OM +MP >OP , ∴cos α+sin α>1.(2)连接P A ,则S △OP A <S 扇形OP A <S △OTA , 即12OA ·MP <12OA ·α<12OA ·AT , 即sin α<α<tan α.第二节同角三角函数的基本关系与诱导公式[知识能否忆起]1.同角三角函数的基本关系式 (1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.六组诱导公式对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.[小题能否全取]1.sin 585°的值为( ) A .-22 B.22 C .-32D.32解析:选A sin 585°=sin(360°+225°) =sin 225°=sin(180°+45°)=-sin 45° =-22. 2.(教材习题改编)已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3解析:选D ∵sin(π+θ)=-3cos(2π-θ), ∴-sin θ=-3cos θ,∴tan θ= 3. ∵|θ|<π2,∴θ=π3.3.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=( )A .2B .-2C .0D.23解析:选B 原式=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.4.(教材习题改编)如果sin(π+A )=12,那么cos ⎝⎛⎭⎫3π2-A 的值是________. 解析:∵sin(π+A )=12,∴-sin A =12.∴cos ⎝⎛⎭⎫32π-A =-sin A =12. 答案:125.已知α是第二象限角,tan α=-12,则cos α=________.解析:由题意知cos α<0,又sin 2α+cos 2α=1, tan α=sin αcos α=-12.∴cos α=-255.答案:-255应用诱导公式时应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意 角的三角函数为锐角三角函数,其步骤:去负号—脱周期 —化锐角.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特 别注意判断符号.(3)注意求值与化简后的结果要尽可能有理化、整式化.典题导入[例1] (1)(2012·江西高考)若tan θ+1tan θ=4,则sin 2θ=( ) A.15 B.14 C.13D.12(2)已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,则sin α-4cos α5sin α+2cos α=________.[自主解答] (1)∵tan θ+1tan θ=4,∴sin θcos θ+cos θsin θ=4, ∴sin 2θ+cos 2θcos θsin θ=4,即2sin 2θ=4,∴sin 2θ=12.(2)法一:由sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α得tan α=2. 原式=tan α-45tan α+2=2-45×2+2=-16.法二:由已知得sin α=2cos α. 原式=2cos α-4cos α5×2cos α+2cos α=-16.[答案] (1)D (2)-16在(2)的条件下,sin 2α+sin 2α=________.解析:原式=sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=85.答案:85由题悟法1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二(参阅本节题型技法点拨).3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.以题试法1.(1)(2012·长沙模拟)若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-1(2)已知sin α=2sin β,tan α=3tan β,则cos α=________. 解析:(1)由角α的终边落在第三象限得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.(2)∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β, ① tan 2α=9tan 2β,② 由①÷②得:9cos 2α=4cos 2β,③①+③得:sin 2α+9cos 2α=4, ∵cos 2α+sin 2α=1, ∴cos 2α=38,即cos α=±64.答案:(1)B (2)±64典题导入[例2] (1)tan (π+α)cos (2π+α)sin ⎝⎛⎭⎫α-3π2cos (-α-3π)sin (-3π-α)=________.(2)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[自主解答] (1)原式=tan αcos αsin ⎣⎡⎦⎤-2π+⎝⎛⎭⎫α+π2cos (3π+α)[-sin (3π+α)]=tan αcos αsin ⎝⎛⎭⎫π2+α(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.[答案] (1)-1 (2)C由题悟法利用诱导公式化简求值时的原则(1)“负化正”,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数.(2)“大化小”,利用k ·360°+α(k ∈Z )的诱导公式将大于360°的角的三角函数化为0°到360°的三角函数.(3)“小化锐”,将大于90°的角化为0°到90°的角的三角函数.(4)“锐求值”,得到0°到90°的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得.以题试法2.(1)(2012·滨州模拟)sin 600°+tan 240°的值等于( ) A .-32B.2C.3-12D.3+12(2)已知f (x )=a sin(πx +α)+b cos(πx -β),其中α,β,a ,b 均为非零实数,若f (2 012)=-1,则f (2 013)等于________.解析:(1)sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. (2)由诱导公式知f (2 012)=a sin α+b cos β=-1,∴f (2 013)=a sin(π+α)+b cos(π-β)=-(a sin α+b cos β)=1. 答案:(1)B (2)1典题导入[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.[自主解答] 由已知得sin A =2sin B ,3cos A =2cos B 两式平方相加得2cos 2A =1, 即cos A =22或cos A =-22. (1)当cos A =22时,cos B =32,又角A 、B 是三角形的内角, ∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)当cos A =-22时,cos B =-32, 又角A 、B 是三角形的内角,∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.由题悟法1.诱导公式在三角形中经常使用,常用的角的变形有:A +B =π-C,2A +2B =2π-2C ,A 2+B 2+C 2=π2等,于是可得sin(A +B )=sin C ,cos A +B 2=sin C2等; 2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.以题试法3.在三角形ABC 中, (1)求证:cos 2A +B 2+cos 2C2=1;(2)若cos ⎝⎛⎭⎫π2+A sin ⎝⎛⎭⎫32π+B tan (C -π)<0,求证:三角形ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,则A +B 2=π2-C2,所以cos A +B 2=cos ⎝⎛⎭⎫π2-C 2=sin C2, 故cos 2A +B 2+cos 2C2=1.(2)若cos ⎝⎛⎭⎫π2+A sin ⎝⎛⎭⎫32π+B tan (C -π)<0, 则(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0,∵在△ABC 中,0<A <π,0<B <π,0<C <π,∴sin A >0,⎩⎪⎨⎪⎧ cos B <0,tan C >0或⎩⎪⎨⎪⎧tan C <0,cos B >0,∴B 为钝角或C 为钝角,故△ABC 为钝角三角形.[典例] 已知-π2<x <0,sin x +cos x =15则sin x -cos x = .[常规解法] 由sin x +cos x =15,与sin 2x +cos 2x =1联立方程组⎩⎪⎨⎪⎧sin x +cos x =15,sin 2x +cos 2x =1,解得⎩⎨⎧sin x =45,cos x =-35或⎩⎨⎧ sin x =-35,cos x =45,∵-π2<x <0,∴⎩⎨⎧sin x =-35,cos x =45,∴sin x -cos x =-75.[答案] -75——————[高手支招]—————————————————————————— 1.上述解法易理解掌握,但计算量较大,很容易出错.若利用sin α+cos α,sin α·cos α,sin α-cos α三者之间的关系,即(sin α+cos α)2=1+2sin αcos α;(sin α-cos α)2=1-2sin αcos α;(sin α+cos α)2+(sin α-cos α)2=2,问题迎刃而解.2.对所求式子进行恒等变形时,注意式子正、负号的讨论与确定.—————————————————————————————————————— [巧思妙解] sin x +cos x =15,两边平方得,1+sin 2x =125,∴sin 2x =-2425.∴(sin x -cos x )2=1-sin 2x =4925,又∵-π2<x <0,∴sin x <0,cos x >0,∴sin x -cos x =-75.针对训练已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两根,则a =________. 解析:由题意知,原方程判别式Δ≥0, 即(-a )2-4a ≥0,∴a ≥4或a ≤0.∵⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a ,又(sin θ+cos θ)2=1+2sin θcos θ, ∴a 2-2a -1=0,∴a =1-2或a =1+2(舍去). 答案:1- 21.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0.∴cos θ<0.2.(2012·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.3.(2012·江西高考)若sin α+cos αsin α-cos α=12,则tan 2α=( )A .-34B.34 C .-43D.43解析:选B ∵sin α+cos αsin α-cos α=tan α+1tan α-1=12,∴tan α=-3.∴tan 2α=2tan α1-tan 2α=34. 4.(2012·淄博模拟)已知sin 2α=-2425,α∈⎝⎛⎭⎫-π4,0,则sin α+cos α=( ) A .-15B.15 C .-75D.75解析:选B (sin α+cos α)2=1+2sin αcos α=1+sin 2α=125,又α∈⎝⎛⎭⎫-π4,0,sin α+cos α>0,所以sin α+cos α=15.5.已知cos ⎝⎛⎭⎫π2-φ=32,且|φ|<π2,则tan φ=( ) A .-33B.33C .- 3D. 3解析:选D cos ⎝⎛⎭⎫π2-φ=sin φ=32, 又|φ|<π2,则cos φ=12,所以tan φ= 3.6.已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 7.cos ⎝⎛⎭⎫-17π4-sin ⎝⎛⎭⎫-17π4的值是________. 解析:原式=cos 17π4+sin 17π4=cos π4+sin π4= 2.答案: 28.若sin θ+cos θsin θ-cos θ=2,则sin(θ-5π)sin ⎝⎛⎭⎫3π2-θ=________. 解析:由sin θ+cos θsin θ-cos θ=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得:1+2sin θcos θ=4(1-2sin θcos θ),故sin θcos θ=310,∴sin(θ-5π)sin ⎝⎛⎭⎫3π2-θ=sin θcos θ=310. 答案:3109.(2012·中山模拟)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 解析:sin ⎝⎛⎭⎫α-2π3=sin ⎣⎡⎦⎤-π2-⎝⎛⎭⎫π6-α =-sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. 答案:-2310.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 11.已知cos(π+α)=-12,且α是第四象限角,计算:(1)sin(2π-α);(2)sin [α+(2n +1)π]+sin [α-(2n +1)π]sin (α+2n π)cos (α-2n π)(n ∈Z ).解:∵cos(π+α)=-12,∴-cos α=-12,cos α=12.又∵α是第四象限角, ∴sin α=-1-cos 2α=-32. (1)sin(2π-α)=sin [2π+(-α)]=sin(-α) =-sin α=32; (2)sin [α+(2n +1)π]+sin [α-(2n +1)π]sin (α+2n π)·cos (α-2n π)=sin (2n π+π+α)+sin (-2n π-π+α)sin (2n π+α)·cos (-2n π+α)=sin (π+α)+sin (-π+α)sin α·cos α=-sin α-sin (π-α)sin α·cos α=-2sin αsin αcos α=-2cos α=-4.12.(2012·信阳模拟)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值.解:(1)∵|OP |=1, ∴点P 在单位圆上.由正弦函数的定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由余弦函数的定义得cos α=45.故所求式子的值为54.1.已知1+sin x cos x =-12,那么cos xsin x -1的值是( )A.12B .-12C .2D .-2解析:选A 由于1+sin x cos x ·sin x -1cos x =sin 2x -1cos 2x =-1,故cos x sin x -1=12. 2.若角α的终边上有一点P (-4,a ),且sin α·cos α=34,则a 的值为( ) A .4 3B .±4 3C .-43或-433D. 3解析:选C 依题意可知角α的终边在第三象限,点P (-4,a )在其终边上且sin α·cos α=34易得tan α=3或33,则a =-43或-433. 3.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根. (1)求角A ; (2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tan B .解:(1)由已知可得,3sin A -cos A =1.① 又sin 2A +cos 2A =1,所以sin 2A +(3sin A -1)2=1,即4sin 2A -23sin A =0, 得sin A =0(舍去)或sin A =32, 则A =π3或2π3,将A =π3或2π3代入①知A =2π3时不成立,故A =π3.(2)由1+2sin B cos Bcos 2B -sin 2B=-3,得sin 2B -sin B cos B -2cos 2B =0, ∵cos B ≠0,∴tan 2B -tan B -2=0, ∴tan B =2或tan B =-1.∵tan B =-1使cos 2B -sin 2B =0,舍去, 故tan B =2.1.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α等于( ) A .mB .-m C.1-m 2D .-1-m 2解析:选A ∵sin ⎝⎛⎭⎫π4-α=m , ∴cos ⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=m . 2.求证:sin θ(1+tan θ)+cos θ⎝⎛⎭⎫1+1tan θ=1sin θ+1cos θ. 证明:左边=sin θ⎝⎛⎭⎫1+sin θcos θ+cos θ⎝⎛⎭⎫1+cos θsin θ =sin θ+sin 2θcos θ+cos θ+cos 2θsin θ=⎝⎛⎭⎫sin θ+cos 2θsin θ+⎝⎛⎭⎫cos θ+sin 2θcos θ =sin 2θ+cos 2θsin θ+cos 2θ+sin 2θcos θ=1sin θ+1cos θ=右边. 3.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.求下列各式的值:(1)sin α-cos α;(2)sin 3⎝⎛⎭⎫π2-α+cos 3⎝⎛⎭⎫π2+α. 解:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方,得1+2sin α·cos α=29,故2sin α·cos α=-79.又π2<α<π,∴sin α>0,cos α<0. (1)(sin α-cos α)2=1-2sin α·cos α=1-⎝⎛⎭⎫-79=169,∴sin α-cos α=43. (2)sin 3⎝⎛⎭⎫π2-α+cos 3⎝⎛⎭⎫π2+α=cos 3α-sin 3α=(cos α-sin α)(cos 2α+cos α·sin α+sin 2α)=-43×⎝⎛⎭⎫1-718=-2227. 第三节三角函数图象与性质[知识能否忆起]1.周期函数 (1)周期函数的定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数.T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质[小题能否全取]1.函数y =tan ⎝⎛⎭⎫π4-x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4,x ∈R B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π4,x ∈R C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π-3π4,k ∈Z ,x ∈R D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+3π4,k ∈Z ,x ∈R 解析:选D ∵x -π4≠k π+π2,∴x ≠k π+3π4,k ∈Z .2.(教材习题改编)下列函数中,最小正周期为π的奇函数是( ) A .y =cos 2xB .y =sin 2xC .y =tan 2xD .y =sin ⎝⎛⎭⎫2x -π2 解析:选B 选项A 、D 中的函数均为偶函数,C 中函数的最小正周期为π2,故选B.3.函数y =|sin x |的一个单调增区间是( ) A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2D.⎝⎛⎭⎫3π2,2π解析:选C 作出函数y =|sin x |的图象观察可知,函数y =|sin x |在⎝⎛⎭⎫π,3π2上递增. 4.比较大小,sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10. 解析:因为y =sin x 在⎣⎡⎦⎤-π2,0上为增函数且-π18>-π10,故sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10. 答案:>5.(教材习题改编)y =2-3cos ⎝⎛⎭⎫x +π4的最大值为________.此时x =________. 解析:当cos ⎝⎛⎭⎫x +π4=-1时,函数y =2-3cos ⎝⎛⎭⎫x +π4取得最大值5,此时x +π4=π+2k π,从而x =34π+2k π,k ∈Z .答案:5 34π+2k π,k ∈Z1.求三角函数的单调区间时,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式,再根据三角函数的单调区间,求出 x 所在的区间.应特别注意,考虑问题应在函数的定义域内. 注意区分下列两种形式的函数单调性的不同:(1)y =sin ⎝⎛⎭⎫ωx -π4;(2)y =sin ⎝⎛⎭⎫π4-ωx . 2.周期性是函数的整体性质,要求对于函数整个定义 域内的每一个x 值都满足f (x +T )=f (x ),其中T 是不为零的 常数.如果只有个别的x 值满足f (x +T )=f (x ),或找到哪怕 只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x ) 的周期.典题导入[例1] (1)(2012·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1D.⎣⎡⎦⎤-1,54 [自主解答] (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z .(2)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎡⎦⎤-54,1. [答案] (1)⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z (2)C若本例(2)中x ∈⎣⎡⎦⎤0,π2,试求其值域. 解:令t =sin x ,则t ∈[0,1]. ∴y =t 2+t -1=⎝⎛⎭⎫t +122-54. ∴y ∈[-1,1].∴函数的值域为[-1,1].由题悟法1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).以题试法1.(1)函数y =2+log 12x +tan x 的定义域为________.(2)(2012·山西考前适应性训练)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332D.⎣⎡⎦⎤-332,3 解析:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z ⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z ). 利用数轴可得函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4.(2)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 答案:(1)⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4 (2)B典题导入[例2] (2012·华南师大附中模拟)已知函数y =sin ⎝⎛⎭⎫π3-2x ,求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.[自主解答] 由y =sin ⎝⎛⎭⎫π3-2x 可化为y =-sin ⎝⎛⎭⎫2x -π3. (1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z . 从而x ∈[-π,0]时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为⎣⎡⎦⎤-π,-7π12,⎣⎡⎦⎤-π12,0.由题悟法求三角函数的单调区间时应注意以下几点:(1)形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间,基本思路是把ωx +φ看作是一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )求得函数的增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k∈Z )求得函数的减区间.(2)形如y =A sin(-ωx +φ)(A >0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y =-A sin(ωx -φ),由-π2+2k π≤ωx -φ≤π2+2k π(k ∈Z )得到函数的减区间,由π2+2k π≤ωx -φ≤3π2+2k π(k ∈Z )得到函数的增区间.(3)对于y =A cos(ωx +φ),y =A tan(ωx +φ)等,函数的单调区间求法与y =A sin(ωx +φ)类似.以题试法2.(1)函数y =|tan x |的增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析:(1)作出y =|tan x |的图象,观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z .(2)f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因为函数f (x )在⎣⎡⎦⎤0,π6上单调递增,所以f ⎝⎛⎭⎫π7<f ⎝⎛⎭⎫π6,而c =f ⎝⎛⎫π3=2sin 2π3=2sin π3=f (0)<f ⎝⎛⎭⎫π7, 所以c <a <b .答案:(1)⎣⎡⎭⎫k π,k π+π2,k ∈Z (2)B典题导入[例3] (2012·广州调研)已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),给出下面四个命题: ①函数f (x )的最小正周期为π;②函数f (x )是偶函数;③函数f (x )的图象关于直线x =π4对称;④函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4[自主解答] 函数f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,则其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由f (x )的图象易知函数f (x )在⎣⎡⎦⎤0,π2上是增函数,故④正确.综上可知,选C. [答案] C由题悟法1.三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法 (1)利用周期函数的定义.(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(3)利用图象. 3.三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.以题试法3.(1)(2012·青岛模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2 (2)(2012·遵义模拟)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B .(0,0) C.⎝⎛⎭⎫-18,0D.⎝⎛⎭⎫18,0解析:(1)选A 对于选项A ,注意到y =sin ⎝⎛⎭⎫2x +π2=cos 2x 的周期为π,且在⎣⎡⎦⎤π4,π2上是减函数.(2)选C 由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa =1,∴a =2π,故f (x )=2sin ⎝⎛⎭⎫2πx +π4.将x =-18代入得函数值为0.含有参数的三角函数问题,一般属于逆向型思 维问题,难度相对较大一些.正确利用三角函数的 性质求解此类问题,是以熟练掌握三角函数的各 条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参 数问题进行策略性的分类解析. 1.根据三角函数的单调性求解参数[典例1] 已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ),单调递减区间为⎣⎡⎦⎤k π+π12,k π+7π12(k ∈Z ),则ω的值为________. [解析] 由题意,得⎝⎛⎭⎫k π+7π12-⎝⎛⎭⎫k π-5π12=π,即函数f (x )的周期为π,则ω=2. [答案] 2[题后悟道] 解答此类问题时要注意单调区间的给出方式,如“函数f (x )在⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )上单调递增”与“函数f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )”,二者是不相同的.针对训练1.(2012·荆州模拟)若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( )A .2 B.12 C .3D.13解析:选B 由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎫ω×2π3=1, 即cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 2.根据三角函数的奇偶性求解参数[典例2] 已知f (x )=cos ()3x +φ-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6D .-π3[解析]f (x )=2⎣⎡⎦⎤12cos (3x +φ)-32sin (3x +φ)=2cos ⎣⎡⎦⎤(3x +φ)+π3=2cos ⎣⎡⎦⎤3x +⎝⎛⎭⎫φ+π3,由f (x )为偶函数,知φ+π3=k π(k ∈Z ),即φ=k π-π3(k ∈Z ),由所给选项。
江苏省高考数学总复习:三角函数及解三角形
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
29小正周期为3π.
(1)求ω的值;
(2)当x∈[ ]时,求函数f(x)的最小值.
30.设函数 ,a,b,c分别为△ABC内角A,B,C的对边,已知f(A)=0,b=2.
(1)若 ,求B;
(2)若a=2c,求△ABC的面积.
31.在锐角△ABC中,角A,B,C对应的边分别是a,b,c,且cos2A+sin( A)+1=0.
(1)求角A的大小;
(2)若△ABC的面积S=3 ,b=3.求sinC的值.
32.在△ABC中,角A、B、C所对的边分别为a、b、c,且﹣2sin2C+2 cosC+3=0.
(2)若a=4,且b+c=6,求△ABC的面积.
12.在△ABC中,角A,B,C的对边分别为a,b,c(a,b,c互不相等),且满足bcosC=(2b﹣c)cosB.
(1)求证:A=2B;
(2)若 ,求cosB.
13.已知△ABC中内角A、B、C所对的边分别为a、b、c,且bcosC+ccosB=﹣4cosA,a=2.
2021年江苏省新高考数学总复习:三角函数及解三角形
1.在三角形ABC中,已知tanC ,cosB .
(1)求tanA的值;
(2)若△ABC的面积为 ,求边BC的长.
2.已知锐角△ABC的三个内角A、B、C满足sinBsinC=(sin2B+sin2C﹣sin2A)tanA.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的外接圆的圆心是O,半径是1,求 •( )的取值范围.
3.在△ABC中,内角A,B,C的对边分别为a,b,c,若b=c,2sinB sinA,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若 ,且△ABC的面积为6,求△ABC的周长.
16.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,满足sin2A﹣sin2B﹣sin2C+sinBsinC面积的取值范围.
17.在△ABC中,内角A,B,C的对边分别是a,b,c,满足条件c=2b ,C .
(1)求角A;
(2)若△ABC边AB上的高为 ,求AB的长.
18.在△ABC中,已知内角A,B,C所对的边分别为a,b,c,向量 ,向量 ,且 ,角B为锐角.
(1)求角B的大小;
(2)若b=2,求△ABC面积的最大值.
19.△ABC的内角A,B,C的对边分别为a,b,c,已知a=1,B ,△ABC的面积为 .
(1)求B;
(2)若a=2 ,b ,求△ABC的面积.
8.已知△ABC的内角A,B,C的对边分别为a,b,c.满足2c=a+2bcosA.
(1)求B;
(2)若a+c=5,b=3,求△ABC的面积.
9.△ABC的内角A,B,C的对边分别为a,b,c且满足a=2,acosB=(2c﹣b)cosA.
(1)求角A的大小;
(2)求△ABC周长的范围.
10.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足acosB+bcosA=2ccosC.
(1)求C;
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
11.在△ABC中,角A,B,C所对的边分别为a,b,c.已知4c=b+4acosB.
(1)求sinA;
(1)若 ,求B;
(2)若a=2c,求△ABC的面积.
31.在锐角△ABC中,角A,B,C对应的边分别是a,b,c,且cos2A+sin( A)+1=0.
(1)求角A的大小;
(2)若△ABC的面积S=3 ,b=3.求sinC的值.
32.在△ABC中,角A、B、C所对的边分别为a、b、c,且﹣2sin2C+2 cosC+3=0.
(Ⅰ)求角A的大小;
(Ⅱ)求b+2c的取值范围.
14.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 .
(1)求sinAsinC;
(2)若cosAcosC ,b=3,求a+c的值.
15.已知△ABC的内角A,B,C的对边分别为a,b,c,且13acosA﹣5ccosB=5bcosC.
(Ⅱ)求cos(2A﹣C)的值.
3.在△ABC中,内角A,B,C的对边分别为a,b,c,若b=c,2sinB sinA,
(1)求sinB的值;
(2)求 的值.
4.设函数f(x) a的最小值是﹣1.
(1)求a的值及f(x)的对称中心;
(2)将函数f(x)图象的横坐标压缩为原来的一半(纵坐标不变),再向右平移 个单位,得到g(x)的图象.若 ,求x的取值范围.
(1)求角C的大小;
(2)若b a,△ABC的面积为 sinAsinB,求sinA及c的值.
33.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=2,b ,B=2A.
(1)求cosA;
(2)求c的值.
(2)若c=6 ,且AB边上的高等于 AB,求sinC的值.
22.函数f(x)=(sinx+cosx)2 cos(2x+π).
(1)求函数f(x)的最小正周期;
(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若 ,且a=2,求△ABC的面积.
23.在△ABC中,内角A,B,C满足 .
(1)求内角A的大小;
2021年南京市高考数学总复习:三角函数及解三角形
1.在△ABC中,内角A,B,C满足 .
(1)求内角A的大小;
(2)若AB=5,BC=7,求BC边上的高.
2.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若△ABC的面积为 ,a﹣b=1, acosC﹣csinA=0.
(Ⅰ)求c及cosA;
(2)若a=4,且b+c=6,求△ABC的面积.
12.在△ABC中,角A,B,C的对边分别为a,b,c(a,b,c互不相等),且满足bcosC=(2b﹣c)cosB.
(1)求证:A=2B;
(2)若 ,求cosB.
13.已知△ABC中内角A、B、C所对的边分别为a、b、c,且bcosC+ccosB=﹣4cosA,a=2.
(1)若a=1,求c;
(2)若△ABC的周长为18,求△ABC的面积S.
27.在△ABC中,内角A,B,C的对边分别为a,b,c,已知 .
(1)求 的值;
(2)若 ,b=2,求△ABC的面积S.
28.已知a,b,c分别是△ABC内角A,B,C的对边,sin2A+sin2C sinAsinC=sin2B.
(2)若AB=5,BC=7,求BC边上的高.
24.已知在△ABC中,角A、B、C对应的边分别为a、b、c, .
(1)求A;
(2)若b=4,c=6,求sinB的值.
25.在△ABC中, .
(Ⅰ)求B;
(Ⅱ)若c=5____,求a.
从①b=7,② 这两个条件中任选一个,补充在上面问题中并作答.
26.△ABC的角A、B、C的对边为a、b、c,已知a、b、c成等差数列, .
(1)求sinB的值;
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
29.已知f(x) sinωx﹣2sin2 (ω>0)的最小正周期为3π.
(1)求ω的值;
(2)当x∈[ ]时,求函数f(x)的最小值.
30.设函数 ,a,b,c分别为△ABC内角A,B,C的对边,已知f(A)=0,b=2.
(1)求△ABC的周长;
(2)求cos(B﹣C)的值.
20.在△ABC中,角A,B,C的对边分别为a,b,c,已知B=2C,3b=4c.
(1)求cosC;
(2)若c=3,求△ABC的面积.
21.在△ABC中,角A,B,C的对边分别是a,b,c,已知a(2 cos2 )=b•cosC+c•cosB.
(1)求角A的大小;
5.在△ABC中,设边a,b,c所对的角分别为A,B,C,且 .
(Ⅰ)若 ,求tanA的值.
(Ⅱ)若△ABC的面积为 ,求a+b的值.
6.在△ABC中, , .
(1)求tanB;
(2)若△ABC的面积 ,求△ABC的周长.
7.在△ABC中,角A,B,C的对边分别为a,b,c.已知bsinA=a(2 cosB).