七年级数学下学期期末试卷(含解析)新人教版 (2)

合集下载

2022-2023学年人教版七年级下册期末达标测数学试卷(二)(含详细解析)

2022-2023学年人教版七年级下册期末达标测数学试卷(二)(含详细解析)

期末达标测试卷(二)时间:90分钟 分值:120分 得分:__________分一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是( )2.下列各数中,是无理数的是( )A .-5B .12C .16D .3.143.若{x =1,y =2是关于x ,y 的方程x +ay =3的一个解,则a 的值为( )A .1B .-1C .3D .-34.下列计算正确的是( )A .9=±3B .3-27=-3C .(-4)2=-4D .32+22=55.如图,将三角形ABC 沿BC 所在的直线向右平移得到三角形DEF ,已知∠ABC =90°,则下列结论中,错误的是( )第5题图A .EC =CFB .∠A =∠DC .AC ∥DFD .∠DEF =90°6.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的扇形统计图,已知甲类书籍有30本,则丙类书籍的数量是( )第6题图A .200本B .144本C .90本D .80本7.已知|x+y+1|+2x-y=0,则x-y的值为( )A.-13B.-1C.13D.18.在平面直角坐标系中,点P(2x-6,x-5)在第三象限,则x的取值范围是( )A.x<5B.x<3C.x>5D.3<x<59.如图,两面平面镜OA,OB形成∠AOB,从OB上一点E射出的一条光线经OA上一点D反射后的光线DC恰好与OB平行,已知∠AOB=35°,∠ODE=∠ADC,则∠DEB的度数是( )第9题图A.35°B.60°C.70°D.85°10.如图,在平面直角坐标系中,A,B,C,D四点的坐标分别是A(1,3),B(1,1),C(3,1),D(3,3),动点P从点A出发,在正方形边上按照A→B→C→D→A→…的方向不断移动,已知P的移动速度为每秒1个单位长度,则第2 023秒,点P的坐标是( )第10题图A.(1,2)B.(2,1)C.(3,2)D.(2,3)二、填空题(本大题5小题,每小题3分,共15分)11.若8点时室外温度为2 ℃,记作(8,2),则21点时室外温度为零下3 ℃,记作__________.1216-|-52|=__________.13.小刚在期中测试中,数学得了95分,语文得了83分,要使三科的平均分不低于90分,则英语至少得__________分.14.如图,直线AB与CD相交于点O,∠AOC-2∠AOE=20°,射线OF平分∠DOE,若∠BOD =60°,则∠AOF=__________.第14题图15.定义:对于实数a,[a]表示不大于a的最大整数,例如:[5.71]=5,[5]=5,[-π]=-4.如果[x+12]=-2,那么x可取的整数值之和为__________.三、解答题(一)(本大题3小题,每小题8分,共24分)16.解方程组:{3x+4y=9,x+y=1.17.当x取何值时,代数式x+43与3x-12的差的值大于1?18.已知2a+1的平方根是±3,3a+2b+4的立方根是-2,求4a-5b+5的算术平方根.四、解答题(二)(本大题3小题,每小题9分,共27分)19.如图,AC∥EF,∠1+∠3=180°.(1)求证:AF∥CD;(2)若AC⊥EB于点C,∠2=40°,求∠BCD的度数.第19题图20.某校组织七年级学生参加汉字听写大赛,并随机抽取部分学生的成绩作为样本进行分析,绘制成如下不完整的统计图表:七年级抽取部分学生成绩的频数分布表成绩x/分频数百分比(%)第1段50≤x<6024第2段60≤x<70612第3段70≤x<809b第4段80≤x<90a36第5段90≤x≤1001530第20题图请根据所给信息,解答下列问题:(1)a=__________,b=__________,并补全频数分布直方图.(2)已知该年级有500名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?(3)请你根据学生的成绩情况提一条合理的建议.21.一家玩具店购进二阶魔方和三阶魔方共100个,花去1 800元,这两种魔方的进价、售价如下表:二阶魔方三阶魔方进价(元/个)1520售价(元/个)2030(1)求购进二阶魔方和三阶魔方的数量;(2)如果将销售完这100个魔方所得的利润全部用于公益捐赠,那么这家玩具店捐赠了多少钱?五、解答题(三)(本大题2小题,每小题12分,共24分)22.如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向向左平移3个单位长度,平移后的线段为CD.(1)点C的坐标为__________,线段BC与线段AD的位置关系是__________.(2)在四边形ABCD中,点P从点A出发,沿AB→BC→CD方向运动,到点D停止.若点P 的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,若在某一时刻四边形ABCP的面积为4,求此时点P的坐标.第22题图23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光线自AM顺时针旋转至AN便立即回转,灯B射出的光线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=__________,b=__________.(2)若灯B先转动20秒,灯A才开始转动,在灯B射出的光线到达BQ之前,灯A转动多长时间时,两灯射出的光线互相平行?第23题图期末达标测试卷(二)1.D2.A3.A4.B5.A6.D7.C8.B9.C 10.D 11.(21,-3) 12.-21 13.92 14.70° 15.-916.解:{3x +4y =9, ①x +y =1. ②②×3,得3x +3y =3.③①-③,得y =6.把y =6代入②,得x +6=1.解得x =-5.所以这个方程组的解为{x =-5,y =6.17.解:根据题意,得 x +43-3x -12>1.去分母,得2(x +4)-3(3x -1)>6.去括号,得2x +8-9x +3>6.移项,得2x -9x >6-8-3.合并同类项,得-7x >-5.系数化为1,得x <57.18.解:∵2a +1的平方根是±3,∴2a +1=9.解得a =4.∵3a +2b +4的立方根是-2,∴3a +2b +4=-8,即12+2b +4=-8.解得b =-12.当a =4,b =-12时,4a -5b +5=4×4-5×(-12)+5=81.∴4a -5b +5的算术平方根为9.19.(1)证明:∵AC ∥EF ,∴∠1+∠2=180°.又∠1+∠3=180°,∴∠2=∠3.∴AF ∥CD .(2)解:∵AC ⊥EB ,∴∠ACB =90°.又∠3=∠2=40°,∴∠BCD =∠ACB -∠3=90°-40°=50°.20.解:(1)18 18.补全频数分布直方图如答图所示.第20题答图(2)500×0.3=150(人).答:估计该年级成绩为优的有150人.(3)由统计图可知,有34%的学生的成绩低于80分,应鼓励学生多阅读书籍,增强学生识字能力.(答案不唯一,合理即可)21.解:(1)设购进二阶魔方x 个,三阶魔方y 个.依题意,得{x +y =100,15x +20y =1 800.解得{x =40,y =60.答:购进二阶魔方40个,三阶魔方60个.(2)(20-15)×40+(30-20)×60=800(元).答:这家玩具店捐赠了800元.22.解:(1)(-4,2) 平行.(2)①当0≤t <2时,P (-1,t );当2≤t ≤5时,P (-t +1,2);当5<t ≤7时,P (-4,7-t ).②由题意,得AB =2,AD =3,PD =7-t .∴S 四边形ABCP =S 四边形ABCD -S △ADP =AB ·AD -12AD ·PD =2×3-12×3(7-t )=4.解得t =173.∴7-t =7-173=43.∴此时点P 的坐标为(-4,43).23.解:(1)3 1.(2)设灯A 转动t 秒时,两灯射出的光线互相平行(记灯A 射出的光线为AM ′,灯B 射出的光线为BP ′).∵PQ ∥MN ,∠BAN =45°,∴∠MAB =∠ABP =135°.①当0<t ≤60时,此时BP ′在AB 右侧.若AM ′∥BP ′,则AM ′在AB 左侧,且∠M ′AB =∠P ′BA ,即135-3t=135-(20+t)×1.解得t=10.②当60<t<115时,此时BP′在AB右侧.若AM′∥BP′,则AM′在AB左侧,且∠M′AB=∠P′BA,即135-(3t-180)=135-(20+t)×1.解得t=100.③当115≤t≤120时,该情况不存在.④当120<t≤160时,BP′在AB左侧.若AM′∥BP′,则AM′在AB右侧,且∠M′AB=∠P′BA,即3t-360-135=(20+t)×1-135.解得t=190>160(不合题意,舍去).综上所述,当t=10秒或100秒时,两灯的光束互相平行.。

人教版数学七年级第二学期期末考试试卷及答案二

人教版数学七年级第二学期期末考试试卷及答案二

人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。

A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。

A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。

A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。

A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。

A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。

A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。

A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。

A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 若一个正方形的边长是a,则它的面积是__________。

15. 下列各数中,是负数的是__________。

16. 若一个数的平方是16,则这个数是__________。

17. 下列各数中,是正整数的是__________。

18. 若一个数的绝对值是7,则这个数是__________。

19. 下列各数中,是偶数的是__________。

20. 若一个数的立方是27,则这个数是__________。

三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。

22. 已知一个数的平方是9,求这个数。

河北省保定十七中七年级数学下学期期末试卷(含解析)新人教版

河北省保定十七中七年级数学下学期期末试卷(含解析)新人教版

河北省保定十七中2015-2016学年七年级(下)期末数学试卷、选择题(共16小题,1-6每小题2分,7-16每小题2分,满分42分) 1 .下列运算正确的是()2 22、 36 2 3 66 2 3A. a?a =a B .( a ) =a C. a+a=a D. a 十 a =a2 .将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中米.将0.00000156用科学记数法表示应为(4 .下列事件为必然事件的是( )A. 任意买一张电影票,座位号是奇数B. 三根长度为4cm, 4cm, 8cm 的木棒能摆成三角形C. 打开电视机,正在播放纪录片D. 两边及其夹角对应相等的两个三角形全等. 5 .下列不能用平方差公式运算的是( )A .( x+3) ( x - 3) B. (- x - y ) (- x+y )C.( 2x - y )( y - 2x )D.(3b - 2a )6 .如图,将一块三角板的直角顶点放在直尺的一边上,当/6A . 1.56 X 10B . 1.56 X 10 -6C. 1.56 X 10-5D. 15.6 X 10-4(2a+3b )2=38° 时,/3 .一种细胞的直径约为0.00000156D. 60°7 .如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A .三边高的交点B •三条角平分线的交点 C.三边垂直平分线的交点D .三边中线的交点&若一个角的余角的两倍与这个角的补角的和210°,这个角的度数为()A . 70°B . 60°C . 50°D . 40° 9. 6月24日重庆南开(融侨)中学进行了全校师生地震逃生演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数后, 再沿原路匀速步行回教室,11.已知x+y - 3=0,则2y ?2x 的值是()1A. 6B.- 6C.豆D. 812•已知等腰三角形的两边长分别为 5和6,则这个等腰三角形的周长为()A. 11B. 16C. 17D. 16 或 1713.如图,点 D 、E 分别在AB AC 上,BE CD 相交于点 O, AE=AD 若要使△ ABE^A ACD 则添加的一个条件不能是()同学们离开教学楼的距离y 与时间x 的关系的大致图象是10.如图,在△ ABC 中,/ C=9C ° , AD 平分/BD=2CD 若点 D 至U AB14 .若x 2+mx+9是关于x 的完全平方式,则 m 的值为( )A. 3B. 3 或-3C. 6D. 6 或-615 .以下四种沿 AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是( )A. 如图1,展开后测得/仁/ 2B. 如图2,展开后测得/ 仁/ 2且/ 3=/ 4C. 如图3,测得/仁/2D. 如图4,展开后再沿 CD 折叠,两条折痕的交点为 0,测得0A=0B OC=OD16.如图所示,下列图案均是由完全相同的“太阳型”图案按一定的规律拼搭而成,第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律, 第6个图案需要图标的个数是()區1凰2基孑區4二、填空题(共 4小题,每小题3分,满分12分)17. _____________________________________________________________ 已知△ ABC 三个A . AB=ACB . BE=CD C.Z B=Z CD. / ADC M AEBA . 28 B. 33 C. 36 D. 38闔卜 圏] 隆3 图4内角满足:/ A: / B:/ C=1: 2: 3,则△ ABC是____________________________ 三角形.(填锐角、直角、钝角)18. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若2从中随机摸出一个球,它是白球的概率为可,则黄球的个数为________ .19. “三月三,放风筝”,如图是小明制作的风筝,他根据DE=DF EH=FH不用度量,就知道/ DEH=/ DFH小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是_____ (用字母表示).2 23 3 24 20 .观察:(x - 1)( x+1) =x - 1, (x - 1)( x +x+1) =x - 1,( x - 1)( x +x +x+1) =x-1,禾U用规律回答:如果(a- 1) ( a5+a4+a3+a2+a+1) =0,则a2017- a2016= ________ .三、解答题(共5小题,满分59分)21. ( 22 分)(2016 春?保定校级期末)(1)( - 2xy2) 3(-5x2y);(2)( 28a3- 14a2+7a)- 7a;(3)| - 3| -(n- 3.14 ) 0+2-3;2(4)( a+3) + (a+2)( 4 - a);(5)先化简,再求值:(x+y) ( x - y) - x (x+y) +2xy,其中x=- 1, y=2.22. 如图是4 X 4正方形网格,其中已有3个小方格涂成了阴影. 现在要从其余13个白色小备用圍备用圈备用圍23. 如图,在Rt△ ABC中,/ B=90°,分别以A、C为圆心,大于^AC长为半径画弧,两弧相交于点M N,作直线MN与AC BC分别交于点 D E,连接AE(1)请完成上述尺规作图.(2)/ ADE= ______(3) ________ AE ______________________________________ E C (填“=” “〉”或“v”)依据是__________(4) ____________________________________ 当AB=3 BC=4时,△ ABE的周长= .(5) 若/ C=30,则图中等于60°的角有___________ 个.24. 如图,C E分别在AB DF上,小华想知道/ ACE和/ DEC是否互补,但是他又没有带量角器,只带了一副三角板,于是他想了这样一个办法;首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO因此他得出结论: / ACE 和/ DEC互补,而且他还发现BC=EF以下是他的想法,请你补充完整;•••O是CF的中点,••• CO=F(中点的定义)在厶COB^D^ FOE中已证)T ZC0B=ZE0F()•••△ COB^A FOE ( _ )• BC=EF( _____ )/ BCO2 F ( ______ )•- ____ 〃_______ ( _____ )•••/ ACE和/ DEC互补( __ )25. ( 12分)(2015春?漳州期末)如图,△ ABC中,D为AB的中点,AD=5厘米,/ B=Z C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,①若点Q的速度与点P的速度相等,经1秒钟后,请说明厶BPD^A CQP②点Q的速度与点P的速度不相等,当点Q的速度为多少时,能够使厶BPD^A CPQ(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿厶ABC三边运动,则经过多长时间,点Q第一次在厶ABC的哪条边2015-2016学年河北省保定十七中七年级(下)期末数学试卷参考答案与试题解析一、选择题(共16小题,1-6每小题2分,7-16每小题2分,满分42 分)1 .下列运算正确的是()2 2 2、36 23 6 6 2 3A、a?a =a B.(a )=a C. a+a=a D. a 十a =a【考点】同底数幕的除法;合并同类项;同底数幕的乘法;幕的乘方与积的乘方.【分析】A、原式利用同底数幕的乘法法则计算得到结果,即可做出判断;B、原式利用幕的乘方运算法则计算得到结果,即可做出判断;C、原式不能合并,错误;D原式利用同底数幕的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D原式=a4,错误,故选B.2 .将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中部分展开后的平面图形是()【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直. 故选C.6A. 1.56 X 10B. 1.56 X 10 -6C. 1.56 X 10 -5D. 15.6 X 10 -43.一种细胞的直径约为0.00000156 米.将0.00000156 用科学记数法表示应为(【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 a X 10- n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解:0.00000156=1.56 X10-6. 故选B.4. 下列事件为必然事件的是()A. 任意买一张电影票,座位号是奇数B. 三根长度为4cm, 4cm, 8cm的木棒能摆成三角形C. 打开电视机,正在播放纪录片D. 两边及其夹角对应相等的两个三角形全等.【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念对各选项分析判断后利用排除法求解.【解答】解:A、任意买一张电影票,座位号是奇数,是随机事件,故本选项错误;B、三根长度为4cm, 4cm, 8cm的木棒能摆成三角形,是不可能事件,故本选项错误;C、打开电视机,正在播放纪录片,是随机事件,故本选项错误;D两边及其夹角对应相等的两个三角形全等,是必然事件,故本选项正确.故选D.5. 下列不能用平方差公式运算的是()A.(x+3)(x-3)B.(- x- y)(- x+y)C.(2x-y)(y-2x)D. (2a+3b)(3b-2a)【考点】平方差公式.【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:(x+3 )(x - 3)=x2- 9 , (- x-y)(- x+y)=x2-y2,(2a+3b)(3b-2a)=9b2-4a2, 则不能利用平方差公式计算的是(2x-y)(y-2x),故选c.6 .如图,将一块三角板的直角顶点放在直尺的一边上,当/【分析】先求出/ 3,再由平行线的性质可得/ 1.•••/ 仁90°-/ 3=52°, 故选A.7 .如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的( ) A.三边高的交点 B .三条角平分线的交点C.三边垂直平分线的交点 D .三边中线的交点 【考点】 三角形的重心.【分析】根据题意得:支撑点应是三角形的重心. 根据三角形的重心是三角形三边中线的交 占 八、、♦【解答】 解:•••支撑点应是三角形的重心, •三角形的重心是三角形三边中线的交点, 故选D.2=38° 时,/D . 60°【考点】平行线的性质./ 3=7 2=38°° (两直线平行同位角相等),210°,这个角的度数为(&若一个角的余角的两倍与这个角的补角的和A. 70° B . 60° C . 50° D . 40° 【考点】余角和补角.【分析】设这个角为x ,则这个角的余角为 90°- x ,补角为180°- x ,然后根据这个角的 余角的两倍与这个角的补角的和210°列方程求解即可.【解答】 解:设这个角为x ,则这个角的余角为 90°- x ,补角为180°- x . 根据题意得:2 (90°- x ) +180°- x=210°, 解得:x=50°. 故选:C.9. 6月24日重庆南开(融侨)中学进行了全校师生地震逃生演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数后,再沿原路匀速步行回教室,根据在每段中,离教学楼的距离随时间的变化情况即可进行判断.离随时间的增大而增大;第二阶段:在操场停留了一段时间,这一阶段离教学楼的距离不随时间的变化而改变.故 错误; 第三阶段:沿原路匀速步行回教学楼, 这一阶段,离教学楼的距离随时间的增大而减小, A 错误;并且这段的速度小于于第一阶段的速度,则 C 正确.故选:C.10. 如图,在△ ABC 中,/ C=9C ° , AD 平分/ BAC 与 BC 边交于点 D, BD=2CD 若点D 到AB同学们离开教学楼【分析】【解答】解:图象应分离教学楼的距 的距离y 与时间x 的关系的大致图象是函数的图象.【考点】的距离等于5cm,贝U BC的长为()【分析】过D作DEL AB于E,根据角平分线性质得出CD=DE再求出BD长,即可得出的长. 【解答】解:如图,过D作DEL AB于E,••• CDL AC,•/ AD平分/ BAC• CD=DE•/ D到AB的距离等于5cm,• CD=DE=5cm又••• BD=2CD• BD=10cm• BC=5+10=15cm故选C.11. 已知x+y - 3=0 ,则2y?2x的值是()1A. 6B.- 6C.耳D. 8【考点】同底数幕的乘法.【分析】根据同底数幕的乘法求解即可.【解答】解:••• x+y - 3=0 ,• x+y=3,• 2y?2x=2x+y=23=8 ,BCD.无法确定【考点】角平分线的性质.故选:D.12 •已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A. 11B. 16C. 17D. 16 或17【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.13.如图,点D、E分别在AB AC上,BE CD相交于点O, AE=AD若要使△ ABE^A ACD则添加的一个条件不能是()A. AB=ACB. BE=CDC.Z B=Z CD. / ADC M AEB【考点】全等三角形的判定.【分析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等. 在厶ABE和△ ACD 中,已知了AE=AD公共角/ A,因此只需添加一组对应角相等或AC=AB即可判定两三角形全等.【解答】解:已知了AE=AD公共角/ A,A、如添加AB=AC利用SAS即可证明厶ABE^A ACDB、如添加BE=CD因为SSA不能证明厶ABE^A ACD所以此选项不能作为添加的条件;C 、如添/ B=Z C 利用AAS 即可证明厶ABE^A ACDD 如添加/ ADC=/ AEB 利用 ASA 即卩可证明厶ABE ^A ACD 故选:B.14 .若x 2+mx+9是关于x 的完全平方式,则 m 的值为( )A . 3B. 3 或-3C. 6D. 6 或-6【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可确定出 m 的值.【解答】 解:T x 2+mx+9是关于x 的完全平方式, ••• m=± 6, 故选D15 .以下四种沿 AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是(B. 如图2,展开后测得/ 仁/ 2且/ 3=/4C. 如图3,测得/ 1 = / 2【考点】平行线的判定;翻折变换(折叠问题) 【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A 、/仁/ 2,根据内错角相等,两直线平行进行判定,故正确; B 、:/ 1 = / 2 且/ 3=/ 4,由图可知/ 1+/2=180°,/ 3+/ 4=180°, • / 1 = / 2=/3=/ 4=90°,• a // b (内错角相等,两直线平行), 故正确; C 、测得/仁/2,•••/ 1与/ 2即不是内错角也不是同位角,D.如图4,展开后再沿CD 折叠,两条折痕的交点为 0,测得 0A=0B OC=ODA .如图1,展开后测得/仁/ 2•••不一定能判定两直线平行,故错误;心在厶人00和厶BOD中,ro&os匚ZA0B=ZC0D,,0C=0D•••△ AOCSA BOD•••/ CAO=/ DBO• a// b (内错角相等,两直线平行),故正确.故选:C.16•如图所示,下列图案均是由完全相同的“太阳型”图案按一定的规律拼搭而成,第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律, 第6个图案需要图标的个数是()療:療垃痣软总•戏牡呑送秦孫呑逐療gl 暑2 ^3 匿4A. 28B. 33C. 36D. 38【考点】规律型:图形的变化类.【分析】根据观察,可发现规律:第n个图形是n+2n「1,可得答案.【解答】解:由图形,得第n个图形是n+2n「1,第六个图形是6+25=38,故选:D.二、填空题(共4小题,每小题3分,满分12分)17.已知△ ABC三个内角满足:/ A:Z B:Z C=1: 2:3,则△ ABC是直角三角形.(填锐角、直角、钝角)【考点】三角形内角和定理.【分析】设/ A=x,则/ B=2x, / C=3x,再根据三角形内角和定理求出x的值即可得出结论. 【解答】解:•••△ ABC三个内角满足:/ A:Z B:Z C=1:2: 3,•••设/ A=x,则/ B=2x,/ C=3x,•••/ A+Z B+Z C=180,即x+2x+3x=180°,解得x=30°,• 3x=90°,•△ ABC是直角三角形.故答案为:直角.18•在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为一二,则黄球的个数为 4 .【考点】概率公式.【分析】根据白球个数除以小球总数进而得出得到白球的概率,进而得出答案.【解答】解:•••在一个不透明的盒子中装有8个白球,从中随机摸出一个球,它是白球的概率为二设黄球有x个,根据题意得出:82S+x:= '解得:x=4.故答案为:4.19. “三月三,放风筝”,如图是小明制作的风筝,他根据DE=DF EH=FH不用度量,就知道Z DEH Z DFH小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是SSS (用字母表示).【考点】全等三角形的应用.【分析】根据题目中的条件DE=DF EH=FH再加上公共边DH=DH可利用SSS证明△ DE痒△ DFH再根据全等三角形的性质可得Z DEH Z DFH[DMFEH=PHDH二DH•••△ DEH^A DFH( SSS ,•••/ DEH=/ DFH故答案为:SSS2 23 3 24 20 .观察:(x - 1)( x+1) =x - 1, (x - 1)( x +x+1) =x - 1,( x - 1)( x +x +x+1) =x-1,禾U用规律回答:如果(a- 1) ( a5+a4+a3+a2+a+1) =0,则a2017- a2016= 0 或- 2 .【考点】平方差公式;多项式乘多项式.【分析】根据题目中的式子,可以发现其中的规律,求出a的值,从而可以解答本题.【解答】解:由题意可得,(a- 1)( a5+a4+a3+a2+a+1) =0,( a- 1)( a5+a4+a3+a2+a+1) =a6- 1,• a6-仁0,解得,a=± 1,2017 2016 “2017“2016•••当a=1 时,a - a =1 - 1 =1 -仁0,2017 2016 / 八2017 / 八2016当a=- 1 时,a - a = (- 1) -( - 1) =- 1- 1= - 2,故答案为;0或-2.三、解答题(共5小题,满分59分)21. ( 22 分)(2016 春?保定校级期末)(1)( - 2xy2) 3(-5x2y);(2)( 28a3- 14a2+7a)+ 7a;(3)| - 3| -(n- 3.14 ) 0+2-3;2(4)( a+3) + (a+2)( 4 - a);(5)先化简,再求值:(x+y) ( x - y) - x (x+y) +2xy,其中x=- 1, y=2.【考点】整式的混合运算一化简求值;零指数幕;负整数指数幕.【分析】(1)根据积的乘方和同底数幕的乘法可以解答本题;(2)根据有理数的除法可以解答本题;(3)根据绝对值、零指数幕、负整数指数幕可以解答本题;(4)根据完全平方公式、多项式乘多项式可以解答本题;(5)先化简所求的式子,再将x、y的值代入化简后的式子即可解答本题.【解答】解:(1)(- 2xy2) 3(- 5x2y)=(-8x3y6) ? (- 5xy)5 7=40x y ;3 2(2)( 28a - 14a+7a)+ 7a=4a2- 2a+1;0 -3(3)| - 3| -(n- 3.14 ) +2=二;2(4)( a+3) + (a+2)( 4 - a)2 2=a +6a+9 - a +2a+8 =8a+17;(5)( x+y) ( x - y)- x (x+y) +2xy=x2- y2- x2- xy+2xy2 ,=-y +xy,2当x=- 1 , y=2 时,原式=-2 + (- 1)X 2=- 4 - 2=- 6.22. 如图是4 X 4正方形网格,其中已有3个小方格涂成了阴影. 现在要从其余13个白色小方格中选出一个也涂成阴影,使整个涂成阴影的图形成为轴对称图形,请在图中补全图形,并画出它们各自的对称轴.(要求画出3种不同方法)备用圏【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念作图即可.【解答】解:如图所示:相交于点 M N,作直线 MN 与AC BC 分别交于点 D E ,连接AE (1)请完成上述尺规作图. (2)/ ADE= 90【分析】(1)根据线段垂直平分线的作法画出图形即可; (2)、( 3)根据线段垂直平分线的性质即可得出结论; (4)根据线段垂直平分线的性质得出 AE=CE 进而可得出结论;(5)先由三角形内角和定理得出/BAC 的度数,再由线段垂直平分线的性质及等腰三角形的性质即可得出结论. 【解答】解:(1)如图所示;(2)v 由图可知,MN 是线段AC 的垂直平分线, •••/ ADE=90 . 故答案为:90;23. 如图,在 Rt △ ABC 中,/ B=90,分别以 A 、C 为圆心,大于£ AC 长为半径画弧,两弧(3) AE = EC;(填“=”“>”或 “V”)依据是 段两端点的距离相等.(4)当 AB=3 BC=4时,△ ABE 的周长=7【考点】作图一基本作图;线段垂直平分线的性质;含 线段垂直平分线上任意一点,到线30度角的直角三角形.60°的角有 4 个.(3) T 由图可知,MN 是线段AC 的垂直平分线,••• AE=EC 故答案为: =,线段垂直平分线上任意一点,到线段两端点的距离相等;(4) v MN 是线段AC 的垂直平分线, • AE=CE• △ ABE 的周长=AB+ (AE+BE =AB+ ( CE+BE =AB+BC=3+4=7 故答案为:7;(5)vZ C=30,/ B=90°, •••/ BAO90°- 30° =60°.•/ AE=CE•••/ C=Z CAE=30 , •••/ AEB=/ C+Z CAE=30 +30° =60°; •••/ AEC=180 -/ C -Z CAE=180 - 30°- 30° =120°,•••图中等于 60° 的角有:Z BAC Z AEB Z AED Z CED 共 4 个.24 .如图,C E 分别在AB DF 上,小华想知道Z ACE 和Z DEC 是否互补,但是他又没有带 量角器,只带了一副三角板, 于是他想了这样一个办法;首先连接CF ,再找出CF 的中点O,然后连接EO 并延长EO 和直线AB 相交于点B,经过测量,他发现 EO=BO 因此他得出结论: Z ACE 和Z DEC 互补,而且他还发现 BC=EF 以下是他的想法,请你补充完整; •••O 是CF 的中点,AE=CE1• Z AED 玄 CED= _Z故答案为:4.••• CO=F(中点的定义)在厶COB^D^ FOE中fco=?o(已证)ZC0B=ZE0?()卫我《已知》•••△COB^A FOE( SAS )• BC=EF(对应边相等)Z BCO2 F (对应角相等)•AB // CF (内错角相等,两直线平行)•Z ACE和Z DEC互补(两直线平行,同旁内角互补)川 C ED E F【考点】全等三角形的判定与性质.【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【解答】解:I O是CF的中点,• CO=F(中点的定义)在厶COB^D A FOE中co^?o[Z COB=Z EOF(已知)■ '-:1 !,':i ,• △COB^A FOE( SAS• BC=EF(对应边相等)Z BCO Z F (对应角相等)• AB// DF (内错角相等,两直线平行)• Z ACE和Z DEC互补(两直线平行,同旁内角互补),故答案为:已知,已知,EQ BO SAS对应边相等,对应角相等,内错角相等,两直线平行,两直线平行,同旁内角互补.25. ( 12分)(2015春?漳州期末)如图,△ ABC中,D为AB的中点,AD=5厘米,/ B=Z C, BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C 向终点A运动,①若点Q的速度与点P的速度相等,经1秒钟后,请说明厶BPD^A CQP②点Q的速度与点P的速度不相等,当点Q的速度为多少时,能够使厶BPD^A CPQ(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿厶ABC三边运动,则经过多长时间,点Q第一次在厶ABC的哪条边上追上点P?【考点】全等三角形的判定与性质.【分析】(1)①根据等腰三角形的性质得到/ B=Z C,再加上BP=CQ=3 PC=BD=5则可判断厶BPD与△ CQF全等;②设点Q的运动速度为xcm/s,贝U BP=3t, CQ=xt, CP=8- 3t,当△ BPD^A CQP 贝U BP=CQ CP=BD然后分别建立关于t和v的方程,再解方程即可;(2)设经过x秒后,点Q第一次追上点P,由题意得5x - 3x=2X 10,解方程得到点P运动的路程为3 X 10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1 [①:BP=3X仁3, CQ=X仁3,••• BP=CQ•/ D为AB的中点,• BD=AD=5•/ CP=B—BP=5,• BD=CP在厶BPD与△ CQP中,r%o=cp匚ZB^ZC,tBP=CQ•••△ BPD^A CQP②设点Q运动时间为t秒,运动速度为vcm/s , •/△ BPD^ CPQ• BP=CP=4 CQ=5B P 4t=-',CQ 5 15v= ==;-- ?3(2)设经过x秒后,点Q第一次追上点P,由题意得5x - 3x=2X 10, 解得:x=10,•••点P运动的路程为3X 10=30,•/ 30=28+2,•此时点P在BC边上,•经过10秒,点Q第一次在BC边上追上点P.。

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。

最新人教版七年级下册数学《期末检测试卷》(附答案)

最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。

人教版七年级数学下册期末测试卷 (2)

2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。

一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩①  ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。

新人教版七年级数学下册期末考试卷(加答案)

新人教版七年级数学下册期末考试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.59.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)181________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若+x x -有意义,则+1x =___________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2.甲、乙两名同学在解方程组5{213mx y x ny +=-=时,甲解题时看错了m ,解得7{22x y ==- ;乙解题时看错了n ,解得3{7x y ==-.请你以上两种结果,求出原方程组的正确解.3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D为边OB上一个动点,当AD⊥AC时,过点A的直线PF与∠ODA 的角平分线交于点P,∠APD=90°,问AF平分∠CAE吗?并说明理由;(3)如图2,当点D在线段OB上运动时,∠ADM=100°,M在线段BC上,∠DAO 和∠BMD的平分线交于H点,则点D在运动过程中,∠H的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、C5、C6、C7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()()2a b a b++.3、0.4、15、±46、48三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=-72、n = 3 , m = 4,2 {3 xy==-3、(1)6;(2)略;(3)略.4、20°5、(1)20%;(2)6006、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。

人教版2022学年度七年级下学期数学期末考试试卷含答案

2022学年人教版七年级下学期期末数学试卷含解析一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列实数中,最小的数是()A.0B.﹣C.2D.2.下列调查中适合采用全面调查的是()A.了解某小区内感染新冠病毒的人数B.了解某城市居民收看湖北卫视的时间C.调查某灯光厂一批灯泡的使用时间D.调查某市中小学生的课外阅读时间3.把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=25°,那么∠1的度数是()A.20o B.25o C.30o D.15o5.某校为了了解七年级750名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行统计,下列说法错误的是()A.样本容量是100B.每名学生的数学成绩是个体C.750名学生是总体D.100名学生的数学成绩是总体的一个样本6.如图,已知数轴上的点A、B、C、D、E分别表示数﹣2、0、1、2、3,则表示4﹣的点应落在线段()A.AB上B.BC上C.CD上D.DE上7.如果不等式组的解集是x>4,那么m的取值范围是()A.m<4B.m>4C.m≤4D.m≥48.如图,AD∥BC,∠B=∠D,延长BA至点E,连接CE,∠EAD和∠ECD的角平分线交于点P.下列三个结论:①AB∥CD;②∠AOC=∠EAD+∠ECD;③若∠E=60°,∠APC=70°,则∠D=80°.其中结论正确的个数有()A.0B.1C.2D.3二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分.请将结果直换填写在答题卡相应位置上)9.36的算术平方根是.10.已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是.11.一货船沿北偏西52°方向航行,后因避礁先向右拐28°,再向左拐28°,这时货船沿着方向前进.12.已知,且x﹣y=0,则k的值为.13.满足式子2≤3x﹣7<8成立的所有整数解的和为.14.平面直角坐标系中,已知点A(m,0),B(4,7),当线段AB有最小值时,m的值为.15.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2021的坐标为.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)(1)解方程组:;(2)解不等式组:.18.(8分)如图,在平面直角坐标系中,三角形A1B1C1是由三角形ABC平移得到的,若点(a,b)是三角形ABC内部的一点,平移后的对应点为P1.(1)分别写出各点的坐标:A1;B1;C1;P1.(2)在x轴上求一点E,使得三角形ABE的面积为3.19.(8分)武汉市旅游部门统计了今年“五一”放假期间A、B、C、D四个旅游景区的旅游人数,并绘制了如图所示的条形统计图和扇形统计图,根据图中信息解答下列问题:(1)今年“五一”放假期间四个旅游景区总人数为万人,扇形图中D所对应的圆心角的度数为,请直接补全条形统计图;(2)根据预测,明年“五一”放假期间将有120万游客选择到武汉的这个四个景点旅游,请你估计有多少人会选择去景点A旅20.(8分)如图,点E、F在直线AB上,且AB∥CD,DE∥MF,DA、FN分别是∠CDE、∠MFB的平分线,求证:DA∥FN.证明:∵DA、FN分别是∠CDE、∠MFB的平分线.∴∠3=∠CDE,∠2=(角平分线定义).∵AB∥CD,∴∠3=∠1,∠CDE=().∵DE∥MF,∴∠DEB=().∴∠CDE=∠MFB.∴∠3=∠2.∴∠1=().∴DA∥FN().21.(9分)(1)已知实数m,n满足|n﹣2|+=0,则m n的值为多少?(2)已知a,b互为倒数,c,d互为相反数,t的算术平方根为2,求2+﹣t的值.22.(10分)为了提高农田收益,某地由每年种植两季水稻改为先养殖小龙虾再种一季水稻的“虾稻”轮作模式.某农户有农田20亩,去年开始实施“虾稻”轮作,去年出售小龙虾每千克获得利润为22元(利润=售价﹣成本),由于成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降了25%,售价下降了10%,出售小龙虾每千克获得利润为21元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为20元/千克,该农户估计今年可获得“虾稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?23.(10分)如图所示的平面直角坐标系中,已知点A(a,0),点B(b,0),且a,b满足关系式a=+﹣1,现同时将点A、B向右平移1个单位长度,再向上平移2个单位长度,得到AB的对应点C、D,连接AC、CD、BD.(1)求C、D两点的坐标;(2)若点P是线段CD(与点C、D不重合)上的动点,①连接P A、PB,∠P AC与∠APB、∠PBD的数量关系为;②求出点P的坐标,使三角形APB的面积是三角形DPB面积的2倍.24.(13分)“绿水青山就是金山银山”,某村为了绿化荒山并创收,计划种植苹果树和梨树,经调查,购买2棵苹果树和3棵梨树共需要850元;购买3棵苹果树和2棵梨树共需900元.(1)求苹果树和梨树的单价各是多少元;(2)本次绿化荒山,需购买两种树共80棵,且苹果树的棵数不少于梨树的2倍,为了完成绿化任务,村里打算用不超过14800元去购树.①有几种具体的购买方案;②若一棵苹果树结的果可卖280元,一棵梨树结的果可卖190元,若果子可全部卖出,哪一种方案挣钱最多?2022七年级(下)期末数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列实数中,最小的数是()A.0B.﹣C.2D.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:=3,∵﹣<0<2<,∴所给的实数中,最小的数是﹣.故选:B.2.下列调查中适合采用全面调查的是()A.了解某小区内感染新冠病毒的人数B.了解某城市居民收看湖北卫视的时间C.调查某灯光厂一批灯泡的使用时间D.调查某市中小学生的课外阅读时间【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.了解某小区内感染新冠病毒的人数,适合采用全面调查,选项符合题意;B.了解某城市居民收看湖北卫视的时间,适合采用抽样调查,选项不符合题意;C.调查某灯光厂一批灯泡的使用时间,适合采用抽样调查,选项不符合题意;D.调查某市中小学生的课外阅读时间,适合采用抽样调查,选项不符合题意;故选:A.3.把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.【分析】根据解不等式组的方法,可得不等式组的解集,根据不等式组的解集在数轴上的表示方法,可得答案.【解答】解:,解得,故选:B.4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=25°,那么∠1的度数是()A.20o B.25o C.30o D.15o【分析】根据直角三角板的性质得出∠3的度数,再根据平行线的性质求出∠1的度数即可.【解答】解:由题可得,∠3=45°﹣∠2=20°,∵a∥b,∴∠1=∠3=20°,故选:A.5.某校为了了解七年级750名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行统计,下列说法错误的是()A.样本容量是100B.每名学生的数学成绩是个体C.750名学生是总体D.100名学生的数学成绩是总体的一个样本【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.【解答】解:A.样本容量是100,此选项正确,不符合题意;B.每名学生的数学成绩是个体,此选项正确,不符合题意;C.七年级750名学生期中数学考试成绩是总体,此选项错误,符合题意;D.100名学生的数学成绩是总体的一个样本,此选项正确,不符合题意;故选:C.6.如图,已知数轴上的点A、B、C、D、E分别表示数﹣2、0、1、2、3,则表示4﹣的点应落在线段()A.AB上B.BC上C.CD上D.DE上【分析】估算的近似值,再得出4﹣的近似值,进而得出答案.【解答】解:∵1<<2,∴﹣2<﹣<﹣1,∴2<4﹣<3,又点D在数轴上表示的数为2,点E在数轴上表示的数为3,∴4﹣在线段DE上,故选:D.7.如果不等式组的解集是x>4,那么m的取值范围是()A.m<4B.m>4C.m≤4D.m≥4【分析】先求出第一个不等式的解集,再根据不等式组的解集是x>4得出m的范围即可.【解答】解:,解不等式①,得x>4,∵不等式组的解集是x>4,∴m≤4,故选:C.8.如图,AD∥BC,∠B=∠D,延长BA至点E,连接CE,∠EAD和∠ECD的角平分线交于点P.下列三个结论:①AB∥CD;②∠AOC=∠EAD+∠ECD;③若∠E=60°,∠APC=70°,则∠D=80°.其中结论正确的个数有()A.0B.1C.2D.3【分析】①根据平行线的性质与判定即可判断;②∠AOC=∠EAP+∠E,而∠EAP==∠EAD,∠E=∠ECD,即可判断;③利用平行线的性质和角平分线定义即可判断.【解答】解:∵AD∥BC,∴∠BAD+∠B=180o,∵∠B=∠D,∴∠BAD+∠D=180o,∴AB∥CD,故①正确;∵AB∥CD,∴∠ECD=∠E,∵AP平分∠EAD,∴∠EAP=∠EAD∵∠AOC=∠EAP+∠E,∴∠AOC=∠EAD+∠ECD,故②正确;∴∠ECD=∠E=60o,∵CP平分∠ECD,∴∠ECP=∠ECD=30°,∵∠APC=70°,∠AOE=∠COP,∴∠EAP=40°,∵AP平分∠EAD,∴∠EAD=2∠EAP=80°,∵AB∥CD,∴∠D=∠EAD=80°,故③正确;故选:D.二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分.请将结果直换填写在答题卡相应位置上)9.36的算术平方根是6.【分析】根据算术平方根的定义,即可解答.【解答】解:36的算术平方根是6.故答案为:6.10.已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是5.【分析】频数分布直方图中,各小长方形的高比为2:3:4:1,则指各组频数之比为2:3:4:1,据此即可求出第四组的频数.【解答】解:∵频数分布直方图中,各小长方形的高比为2:3:4:1,样本容量为50,∴第四组的频数为50×=5.故答案为:5.11.一货船沿北偏西52°方向航行,后因避礁先向右拐28°,再向左拐28°,这时货船沿着北偏西52°方向前进.【分析】根据方向角的概念,先向右拐28°,再向左拐28°,实际上相当于拐回原来的方向.方向角指的是采用某坐标轴方向作为标准方向所确定的方位角.【解答】解:52°﹣28°+28°=52°,所以这时货船沿着北偏西52°方向前进.故答案为:北偏西52°.12.已知,且x﹣y=0,则k的值为1.【分析】将所给方程组中的两个方程直接相减即可求解.【解答】解:,②﹣①得,x﹣y=1﹣k,∵x﹣y=0,∴1﹣k=0,∴k=1,故答案为1.13.满足式子2≤3x﹣7<8成立的所有整数解的和为7.【分析】原不等式组可变形为:,解不等式组,得到关于x的解集,再找出符合x取值范围的整数解即可.【解答】解:解不等式3x﹣7≥2,得:x≥3,解不等式3x﹣7<8,得:x<5,则3≤x<5,∴满足式子2≤3x﹣7<8成立的所有整数解的和为3+4=7,故答案为:7.14.平面直角坐标系中,已知点A(m,0),B(4,7),当线段AB有最小值时,m的值为4.【分析】根据两点之间的距离得出A的坐标解答即可.【解答】解:∵点A(m,0),B(4,7),∴AB=,当线段AB有最小值时,m﹣4=0,解得:m=4,故答案为:4.15.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.【分析】分别利用大、小和尚一共100人以及馒头大和尚一人分3个,小和尚3人分一个,馒头一共100个分别得出等式得出答案.【解答】解:设大、小和尚各有x,y人,则可以列方程组:.故答案为:.16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2021的坐标为(4,3).【分析】按照反弹规律依次画图即可.【解答】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2021÷6=336…5,即点P2021的坐标是(4,3).故答案为:(4,3).三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)(1)解方程组:;(2)解不等式组:.【分析】(1)利用加减消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)②﹣①,得:x=6,将x=6代入①,得:6+y=10,解得y=4,∴方程组的解为;(2)解不等式①,得:x≥1,解不等式②,得:x<4,∴不等式组的解集为1≤x<4.18.(8分)如图,在平面直角坐标系中,三角形A1B1C1是由三角形ABC平移得到的,若点(a,b)是三角形ABC内部的一点,平移后的对应点为P1.(1)分别写出各点的坐标:A1(﹣4,1);B1(﹣3,4);C1(﹣1,3);P1(a﹣5,b+4).(2)在x轴上求一点E,使得三角形ABE的面积为3.【分析】(1)根据点的位置确定坐标即可,利用平移规律,判断出P1坐标.(2)设E(m,0).构建方程求出m即可.【解答】解:(1)A1(﹣4,1),B1(﹣3,4),C1(﹣1,3),P1(a﹣5,b+4).故答案为:(﹣4,1),(﹣3,4),(﹣1,3),(a﹣5,b+4).(2)设E(m,0).则有×3×|m﹣2|=3.解得m=4或0,∴E(4,0)或(0,0).19.(8分)武汉市旅游部门统计了今年“五一”放假期间A、B、C、D四个旅游景区的旅游人数,并绘制了如图所示的条形统计图和扇形统计图,根据图中信息解答下列问题:(1)今年“五一”放假期间四个旅游景区总人数为60万人,扇形图中D所对应的圆心角的度数为60°,请直接补全条形统计图;(2)根据预测,明年“五一”放假期间将有120万游客选择到武汉的这个四个景点旅游,请你估计有多少人会选择去景点A旅游?【分析】(1)根据条形统计图和扇形统计图中B所对应数据即可求出总人数,进而可得结果;(2)根据用样本估计总体的方法即可得结果.【解答】解:(1)根据题意可知:四个旅游景区总人数为18÷30%=60(万),扇形图中D所对应的圆心角的度数为×360°=60°,故答案为:60,60°;因为60﹣22﹣18﹣10=10,所以C所对应的人数为10,补全的条形统计图如下:(2)120×=44(万).答:估计有44万人会选择去景点A旅游.20.(8分)如图,点E、F在直线AB上,且AB∥CD,DE∥MF,DA、FN分别是∠CDE、∠MFB的平分线,求证:DA∥FN.证明:∵DA、FN分别是∠CDE、∠MFB的平分线.∴∠3=∠CDE,∠2=∠MFB(角平分线定义).∵AB∥CD,∴∠3=∠1,∠CDE=∠DEB(两直线平行,内错角相等).∵DE∥MF,∴∠DEB=∠MFB(两直线平行,同位角相等).∴∠CDE=∠MFB.∴∠3=∠2.∴∠1=∠2(等量代换).∴DA∥FN(同位角相等,两直线平行).【分析】根据平行线的判定与性质即可完成证明.【解答】证明:∵DA、FN分别是∠CDE、∠MFB的平分线.∴∠3=∠CDE,∠2=∠MFB(角平分线定义).∵AB∥CD,∴∠3=∠1,∠CDE=∠DEB(两直线平行,内错角相等).∵DE∥MF,∴∠DEB=∠MFB(两直线平行,同位角相等).∴∠CDE=∠MFB.∴∠3=∠2.∴∠1=∠2(等量代换).∴DA∥FN(同位角相等,两直线平行).故答案为:∠MFB;∠DEB,两直线平行,内错角相等;∠MFB,两直线平行,同位角相等;∠2,等量代换;同位角相等,两直线平行.21.(9分)(1)已知实数m,n满足|n﹣2|+=0,则m n的值为多少?(2)已知a,b互为倒数,c,d互为相反数,t的算术平方根为2,求2+﹣t的值.【分析】(1)先根据非负数的性质求出m、n的值,再计算m n的值;(2)根据倒数、相反数及算术平方根的意义,先求出ab、c+d、t的值,再计算2+﹣t的值.【解答】解:(1)∵|n﹣2|≥0,≥0,又∵|n﹣2|+=0,∴|n﹣2|=0,=0.∴n=2,m=﹣3.∴m n=(﹣3)2=9.∴m n的值为9.(2)∵a,b互为倒数,c,d互为相反数,t的算术平方根为2,∴ab=1,c+d=0,t=4.∴2+﹣t=2+0﹣4=﹣2.∴2+﹣t的值为﹣2.22.(10分)为了提高农田收益,某地由每年种植两季水稻改为先养殖小龙虾再种一季水稻的“虾稻”轮作模式.某农户有农田20亩,去年开始实施“虾稻”轮作,去年出售小龙虾每千克获得利润为22元(利润=售价﹣成本),由于成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降了25%,售价下降了10%,出售小龙虾每千克获得利润为21元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为20元/千克,该农户估计今年可获得“虾稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【分析】(1)设去年每千克小龙虾的养殖成本为x元,则去年每千克小龙虾的售价为(x+22)元,今年每千克小龙虾的养殖成本为(1﹣25%)x元,今年每千克小龙虾的售价为(1﹣10%)(x+22)元,利用今年小龙虾每千克的利润=今年每千克小龙虾的售价﹣今年每千克小龙虾的养殖成本,即可得出关于x的一元一次方程,解之即可得出结论;(2)设今年稻谷的亩产量为m千克,利用总收入=出售小龙虾每千克的利润×每亩收获小龙虾的数量×农田亩数+稻谷的亩产量×稻谷的售价×农田亩数﹣种植水稻的成本×农田亩数,结合该农户估计今年可获得“虾稻”轮作收入不少于8万元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设去年每千克小龙虾的养殖成本为x元,则去年每千克小龙虾的售价为(x+22)元,今年每千克小龙虾的养殖成本为(1﹣25%)x元,今年每千克小龙虾的售价为(1﹣10%)(x+22)元,依题意得:(1﹣10%)(x+22)﹣(1﹣25%)x=21,解得:x=8,∴x+22=8+22=30.答:去年每千克小龙虾的养殖成本为8元,售价为30元.(2)设今年稻谷的亩产量为m千克,依题意得:21×100×20+20×20m﹣600×20≥80000,解得:m≥125.答:稻谷的亩产量至少会达到125千克.23.(10分)如图所示的平面直角坐标系中,已知点A(a,0),点B(b,0),且a,b满足关系式a=+﹣1,现同时将点A、B向右平移1个单位长度,再向上平移2个单位长度,得到AB的对应点C、D,连接AC、CD、BD.(1)求C、D两点的坐标;(2)若点P是线段CD(与点C、D不重合)上的动点,①连接P A、PB,∠P AC与∠APB、∠PBD的数量关系为∠APB=∠P AC+∠PBD;②求出点P的坐标,使三角形APB的面积是三角形DPB面积的2倍.【分析】(1)根据二次根式的性质和平移的性质解答即可;(2)①根据平行线的性质解答即可;②根据三角形面积公式解答即可.【解答】解:(1)∵a=,∴b﹣3≥0且3﹣b≥0,∴b≥3且b≤3,∴b=3,∴a=0+0﹣1=﹣1,∴点A(﹣1,0),点B(3,0),∵点A、B向右平移1个单位长度,再向上平移2个单位长度,得到AB的对应点C、D,∴C(0,2),D(4,2);(2)①∠APB=∠P AC+∠PBD,理由如下:由题意知,AC∥BD,过点P作PE∥AC,∴PE∥BD,∴∠P AC=∠APE,∠PBD=∠EPB,∴∠P AC+∠PBD=∠APE+∠EPB=∠APB,故答案为:∠APB=∠P AC+∠PBD;②设点P(m,2),0<m<4,则∵S△APB=2S△DPB,∴,∴AB=2DP,∴4=2(4﹣m),∴m=2,∴P(2,2).24.(13分)“绿水青山就是金山银山”,某村为了绿化荒山并创收,计划种植苹果树和梨树,经调查,购买2棵苹果树和3棵梨树共需要850元;购买3棵苹果树和2棵梨树共需900元.(1)求苹果树和梨树的单价各是多少元;(2)本次绿化荒山,需购买两种树共80棵,且苹果树的棵数不少于梨树的2倍,为了完成绿化任务,村里打算用不超过14800元去购树.①有几种具体的购买方案;②若一棵苹果树结的果可卖280元,一棵梨树结的果可卖190元,若果子可全部卖出,哪一种方案挣钱最多?【分析】(1)设苹果树的单价是x元,梨树的单价是y元,根据“购买2棵苹果树和3棵梨树共需要850元;购买3棵苹果树和2棵梨树共需900元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①设购买苹果树m棵,则购买梨树(80﹣m)棵,根据“苹果树的棵数不少于梨树的2倍,且购树资金不超过14800元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案;②利用总收入=每棵苹果树的收入×植树棵树+每棵梨树的收入×植树棵树,可分别求出选择各方案可获得的总收入,再比较后即可得出结论.【解答】解:(1)设苹果树的单价是x元,梨树的单价是y元,依题意得:,解得:.答:苹果树的单价是200元,梨树的单价是150元.(2)①设购买苹果树m棵,则购买梨树(80﹣m)棵,依题意得:,解得:53≤m≤56.又∵m为正整数,∴m可以为54,55,56,∴共有3种购买方案,方案1:购买苹果树54棵,梨树26棵;方案2:购买苹果树55棵,梨树25棵;方案3:购买苹果树56棵,梨树24棵.②选择方案1可获得的利润为280×54+190×26=15120+4940=20060(元);选择方案2可获得的利润为280×55+190×25=15400+4750=20150(元);选择方案3可获得的利润为280×56+190×24=15680+4560=20240(元).∵20060<20150<20240,∴方案3挣钱最多.第 21 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)期末数学试卷一、选择题(本大题共30分,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D. +1>+12.下列运算正确的是()A.x2•x3=x6B.a2+a3=a5C.y3÷y=y2D.(﹣2m2)3=﹣6m63.将3x﹣2y=1变形,用含x的代数式表示y,正确的是()A.x=B.y=C.y=D.x=4.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体 B.总体 C.样本容量 D.总体的样本5.如图,直线AB,CD被直线EF所截,交点分别为点E,F.若AB∥CD,下列结论正确的是()A.∠2=∠3 B.∠2=∠4 C.∠1=∠5 D.∠3+∠AEF=180°6.下列命题的逆命题为真命题的是()A.对顶角相等B.如果x=1,那么|x|=1C.直角都相等D.同位角相等,两直线平行7.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与)A.20,20 B.20,25 C.30,25 D.40,208.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不确定9.不等式组的整数解为()A.0,1,2,3 B.1,2,3 C.2,3 D.310.已知2m=3,4n=5,则23m+2n的值为()A.45 B.135 C.225 D.675二、填空题(本共18分,每小题3分)11.分解因式:﹣m2+4m﹣4═.12.一个角的补角比这个角大20°,则这个角的度数为°.13.将x2+6x+4进行配方变形后,可得该多项式的最小值为.14.如图,在长方形网格中,四边形ABCD的面积为.(用含字母a,b的代数式表示)15.现定义运算“*”,对于任意有理数a,b,满足a*b=.如5*3=2×5﹣3=7, *1=﹣2×1=﹣,计算:2*(﹣1)= ;若x*3=5,则有理数x的值为.16.观察等式14×16=224,24×26=624,34×36=1224,44×46=2024,…,根据你发现的规律直接写出84×86= ;用含字母的等式表示出你发现的规律为.三、计算题(本题共8分,每小题4分)17.﹣6ab(2a2b﹣ab2)18.已知a﹣2b=﹣1,求代数式(a﹣1)2﹣4b(a﹣b)+2a的值.四、分解因式(本题共6分,每小题6分)19.分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.五、解方程(组)或不等式(组)(本题共10分,每小题5分)20.解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21.解方程组:.六、读句画图(本题共4分)22.已知:线段AB=3,点C为线段AB上一点,且AB=3AC.请在方框内按要求画图并标出相应字母:(1)在射线AM上画出点B,点C;(2)过点C画AB的垂线CP,在直线CP上取点D,使CD=CA;(3)联结AD,BD;(4)过点C画AD的平行线CQ,交BD于点E.七、解答题(本题共24分,每小题5分)23.已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.24.小明同学在做作业时,遇到这样一道几何题:已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:请问小坚的提示中①是∠,④是∠.理由②是:;理由③是:;∠CMD的度数是°.25.列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?26.为弘扬中国传统文化,今年在北京园博园举行了“北京戏曲文化周”活动,活动期间开展了多种戏曲文化活动,主办方统计了4月30日至5月3日这四天观看各种戏剧情况的部分相关数据,绘制统计图表如下:93人,则a= ;(2)请计算4月30日至5月3日接待观众人数的日平均增长量;(3)根据(2)估计“北京戏曲文化周”活动在5月4日接待观众约为人.27.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.2015-2016学年北京市石景山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D. +1>+1【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出正确的不等式是哪个即可.【解答】解:∵a>b,∴3a>3b,∴选项A不正确;∵a>b,∴m<0时,ma<mb;m=0时,ma=mb;m>0时,ma>mb,∴选项B不正确;∵a>b,∴﹣a<﹣b,∴﹣a﹣1<﹣b﹣1,∴选项C不正确;∵a>b,∴>,∴+1>+1,∴选项D正确.故选:D.2.下列运算正确的是()A.x2•x3=x6B.a2+a3=a5C.y3÷y=y2D.(﹣2m2)3=﹣6m6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘分别进行计算即可.【解答】解:A、x2•x3=x5,故原题计算错误;B、a2和a3不能合并,故原题计算错误;C、y3÷y=y2,故原题计算正确;D、(﹣2m2)3=﹣8m6,故原题计算错误;故选:C.3.将3x﹣2y=1变形,用含x的代数式表示y,正确的是()A.x=B.y=C.y=D.x=【考点】解二元一次方程.【分析】把x看做已知数表示出y即可.【解答】解:3x﹣2y=1,解得:y=,故选B4.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体 B.总体 C.样本容量 D.总体的样本【考点】总体、个体、样本、样本容量.【分析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【解答】解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选:C.5.如图,直线AB,CD被直线EF所截,交点分别为点E,F.若AB∥CD,下列结论正确的是()A.∠2=∠3 B.∠2=∠4 C.∠1=∠5 D.∠3+∠AEF=180°【考点】平行线的性质.【分析】利用平行线的性质逐项分析即可.【解答】解:∵AB∥CD,∴∠1=∠2,∠3=∠4,∠3+∠AEF=180°,∵∠3=∠5,∴∠4=∠5,所以D选项正确,故选D.6.下列命题的逆命题为真命题的是()A.对顶角相等B.如果x=1,那么|x|=1C.直角都相等D.同位角相等,两直线平行【考点】命题与定理.【分析】分别写出四个命题的逆命题,然后利用对顶角的定义、绝对值的意义、直角的定义和平行线的性质判断它们的真假.【解答】解:A、逆命题为:相等的角为对顶角,此逆命题为假命题.B、逆命题为:若|x|=1,则x=1,此逆命题为假命题;C、逆命题为:相等的角为直角,此逆命题为假命题;D、逆命题为:两直线平行,同位角相等,此逆命题为真命题.故选D.7.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与)A.20,20 B.20,25 C.30,25 D.40,20【考点】众数;统计表;中位数.【分析】根据表格中的数据可以得到这组数据的众数和中位数,本题得以解决.【解答】解:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A.8.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不确定【考点】垂线;余角和补角.【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【解答】解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.9.不等式组的整数解为()A.0,1,2,3 B.1,2,3 C.2,3 D.3【考点】一元一次不等式组的整数解.【分析】先解不等式组得到<x≤3,然后找出此范围内的整数即可.【解答】解:,解①得x>,解②得x≤3,所以不等式组的解集为<x≤3,不等式组的解为1,2,3.故选B.10.已知2m=3,4n=5,则23m+2n的值为()A.45 B.135 C.225 D.675【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先将23m+2n变形为(2m)3•(22)n,然后带入求解即可.【解答】解:原式=(2m)3•(22)n=33•5=135.故选B.二、填空题(本共18分,每小题3分)11.分解因式:﹣m2+4m﹣4═﹣(m﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取﹣1,再利用完全平方公式分解即可.【解答】解:原式=﹣(m2﹣4m+4)=﹣(m﹣2)2,故答案为:﹣(m﹣2)212.一个角的补角比这个角大20°,则这个角的度数为80 °.【考点】余角和补角.【分析】设这个角的度数为n°,根据互补两角之和等于180°,列出方程求解即可.【解答】解:设这个角的度数为n°,根据题意可得出,﹣n=20,解得:n=80.所以这个角的度数为80°.故答案为:80.13.将x2+6x+4进行配方变形后,可得该多项式的最小值为﹣5 .【考点】解一元二次方程-配方法.【分析】将x2+6x+4利用配方法转化为(x+3)2﹣5,然后根据(x+3)2≥0可得多项式x2+6x+4的最小值.【解答】解:∵x2+6x+4=(x+3)2﹣5,∴当x=﹣3时,多项式x2+6x+4取得最小值﹣5;故答案为﹣5.14.如图,在长方形网格中,四边形ABCD的面积为10ab .(用含字母a,b的代数式表示)【考点】整式的混合运算.【分析】根据图形可以表示出四边形ABCD的面积,然后化简合并同类项即可解答本题.【解答】解:由图可知,四边形ABCD的面积是:4a•4b﹣=10ab.15.现定义运算“*”,对于任意有理数a,b,满足a*b=.如5*3=2×5﹣3=7, *1=﹣2×1=﹣,计算:2*(﹣1)= 5 ;若x*3=5,则有理数x的值为 4 .【考点】有理数的混合运算.【分析】因为2>﹣1,故2*(﹣1)按照a*b=2a﹣b计算;x*3=5,则分x≥3与x<3两种情况求解.【解答】解:∵2>﹣1,∴根据定义a*b=得:2*(﹣1)=2×2﹣(﹣1)=4+1=5.而若x*3=5,当x≥3,则x*3=2x﹣3=5,x=4;当x<3,则x*3=x﹣2×3=5,x=11,但11>3,这与x<3矛盾,所以种情况舍去.即:若x*3=5,则有理数x的值为4故答案为:5;4.16.观察等式14×16=224,24×26=624,34×36=1224,44×46=2024,…,根据你发现的规律直接写出84×86= 7224 ;用含字母的等式表示出你发现的规律为(10n+4)(10n+6)=100n(n+1)+24 .【考点】规律型:数字的变化类.【分析】仔细观察后直接写出答案,分别表示出两个因数后即可写出这一规律.【解答】解:84×86=7224;(10n+4)(10n+6)=100n(n+1)+24(n为正整数),故答案为:7224;(10n+4)(10n+6)=100n(n+1)+24三、计算题(本题共8分,每小题4分)17.﹣6ab(2a2b﹣ab2)【考点】单项式乘多项式.【分析】根据单项式与多项式相乘的运算法则计算即可.【解答】解:原式=﹣6ab•2a2b+6ab•ab2=﹣12a3b2+2a2b3.18.已知a﹣2b=﹣1,求代数式(a﹣1)2﹣4b(a﹣b)+2a的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=a2﹣2a+1﹣4ab+4b2+2a=(a﹣2b)2+1,当 a﹣2b=﹣1时,原式=2.四、分解因式(本题共6分,每小题6分)19.分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.【解答】解:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.五、解方程(组)或不等式(组)(本题共10分,每小题5分)20.解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.【解答】解:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21.解方程组:.【考点】解二元一次方程组.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:②×6得:6x﹣2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=﹣2,则方程组的解为.六、读句画图(本题共4分)22.已知:线段AB=3,点C为线段AB上一点,且AB=3AC.请在方框内按要求画图并标出相应字母:(1)在射线AM上画出点B,点C;(2)过点C画AB的垂线CP,在直线CP上取点D,使CD=CA;(3)联结AD,BD;(4)过点C画AD的平行线CQ,交BD于点E.【考点】作图—复杂作图.【分析】(1)直接利用AB=3AC,线段AB=3,进而得出B,C点位置;(2)首先作出PC⊥AB,再截取CD=CA;(3)利用D、D′点位置进而得出答案;(4)利用平行线的作法进而得出符合题意的图形.【解答】解:(1)如图所示:点B,C即为所求;(2)如图所示:点D,D′即为所求;(3)如图所示:AD,AD′即为所求;(4)如图所示:EC,CE′即为所求.七、解答题(本题共24分,每小题5分)23.已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.【考点】平行线的判定.【分析】先根据垂直的定义得出∠APQ+∠2=90°,再由∠1+∠2=90°得出∠APQ=∠1,进而可得出结论.【解答】证明:∵PM⊥EF(已知),∴∠APQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠APQ=∠1(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).24.小明同学在做作业时,遇到这样一道几何题:已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:请问小坚的提示中①是∠ 2 ,④是∠AMD .理由②是:两直线平行,内错角相等;理由③是:角平分线定义;∠CMD的度数是21 °.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠1=∠AMD=28°,∠2=∠DMB=70°,进而可得∠AMB,再根据角平分线定义可得∠BMC的度数,然后可得答案.【解答】解:∵l1∥l2∥l3,∴∠1=∠AMD=28°,∠2=∠DMB=70°(两直线平行,内错角相等),∴∠AMB=28°+70°=98°,∵MC平分∠AMB,∴∠BMC=∠AMB=98°×=49°(角平分线定义),∴∠DMC=70°﹣49°=21°,故答案为:2;AMD;两直线平行,内错角相等;角平分线定义;21.25.列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?【考点】二元一次方程组的应用.【分析】设生产帽子x件,生产T恤y件,根据“两种纪念品共生产6000件,且T恤比帽子的2倍多300件”列方程组求解可得.【解答】解:设生产帽子x件,生产T恤y件.根据题意,得:,解得:答:生产帽子1900件,生产T恤4100件.26.为弘扬中国传统文化,今年在北京园博园举行了“北京戏曲文化周”活动,活动期间开展了多种戏曲文化活动,主办方统计了4月30日至5月3日这四天观看各种戏剧情况的部分相关数据,绘制统计图表如下:93人,则a= 775 ;(2)请计算4月30日至5月3日接待观众人数的日平均增长量;(3)根据(2)估计“北京戏曲文化周”活动在5月4日接待观众约为801 人.【考点】扇形统计图;用样本估计总体;统计表;加权平均数.【分析】(1)用当天看豫剧的人数除以看豫剧人数占当天总人数的百分比即可得;(2)用4月30日至5月3日增加的人数除以天数即可得;(3)根据(2)中日均增加的人数,估计5月4日在5月3日基础上也大约增加26人,即可得答案.【解答】解:(1)若5月3日当天看豫剧的人数为93人,则a==775(人),故答案为:775;(2)4月30日至5月3日接待观众人数的日平均增长量为=26;(3)由(2)知,接待观众人数的日平均增长量为26人,∴估计该活动在5月4日接待观众约为775+26=801人,故答案为:801.27.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.【考点】二元一次方程组的解.【分析】根据题意得出关于a、b的方程组,求出方程组的解即可.【解答】解:由题意可得:,解之,,所以a=6,b=.。

相关文档
最新文档