中考数学——三角函数专题
中考数学考试知识点分析:三角函数

中考数学考试知识点分析:三角函数中考数学考试知识点分析:三角函数以下是小编带来的中考数学考试知识点分析:三角函数,欢迎阅读。
锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。
cscA=c/a互余角的三角函数间的关系sin(90°-α)=cosα, cos(90°-α)=sinα,tan(90°-α)=cotα, cot(90°-α)=tanα.平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)积的关系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1锐角三角函数公式两角和与差的三角函数:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB ?cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)三角和的'三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]ta nα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]推导公式:tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+c os[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边三角函数万能公式万能公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC万能公式为:设tan(A/2)=tsinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.三角函数关系倒数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
初三数学三角函数(含答案)

初中数学三角函数1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边c 的平方。
a 2b 2c 24、任意锐角的正切值等于它的余角的余切值; 任意锐角的余切值等于它的余角的正切值。
tan A cot B cot A tan Bcot-1 ~3~6、 正弦、余弦的增减性:当0°w < 90°时,sin 随 的增大而增大,cos 随 的增大而减小7、 正切、余切的增减性:当0° < <90°时,tan 随 的增大而增大,cot 随 的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)一所有未知的 边和角。
依据:①边的关系: a 2b 2c 2;②角的关系:A+B=90 °;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角(2)坡面的铅直高度 h 和水平宽度I 的比叫做坡度(坡比)。
用字母i 表示,即i y 。
坡度一 般写成1: m 的形式,如i 1:5等。
把坡面与水平面的夹角记作 (叫做坡角),那么h + i tan 。
l3、 从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图 3, OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、 指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30° (东北方向), 南 偏东45° (东南方向),南偏西60° (西南方向), 北偏西60° (西北方向)。
铅垂线*视线 ‘ 仰角水平线俯角1*视线初三数学三角函数综合试题一、填空题: 1、在 Rt △ ABC 中/C = 90°, a = 2, b = 3,则 cosA =_, sinB =_ , tanB = ___ 2、直角三角形 3、已知tan ABC 的面积为24cm 2,直角边AB 为6cm , / A 是锐角,则sinA = =—, 是锐角,贝U sin 12 + ) + cos 2(40 ° 4、 cos 2(50° — _______ ? 5、 如图1,机器人从A 点,沿着西南方向,行了个4,:2单位,至U 达 60°的方向上,贝U 原来 )—tan(30)tan(60 ° + 到原点O 在它的南偏东 保留根号).A 的坐标为B 点后观察 _ (结果 NMNC 0(2)10cm 周长为36cm 则一底角的正切值为_、3的山坡走了 50米,则他离地面 米高。
中考数学-锐角三角函数(解析版)

知识点一:锐角三角函数 1.三角函数定义 在 Rt△ABC 中,若∠C=90°
sin A A的对边 a
斜边
c
A的邻边
b
cos A
斜边
c
A的对边
a
tan A A的邻边 b
A的邻边
b
cot A A的对边 a
2.同角三角函数的关系
(1)平方关系: sin2 Acos2 A1
(1)三边之间的关系为 a2 b2 c2 (勾股定理)
(2)锐角之间的关系为∠A+∠B=90°
(3)30°角所对直角边等于斜边的一半。
(4)直角三角形斜边上的中线等于斜边的一半。
(5)边角之间的关系为:(三角函数定义)
2.其他有关公式
(1)
S
1 2
ab sin C
=
1 2
bc sin
A
=
1 2
ac sin
B
(2)Rt△面积公式:
S
1 2
ab
1 2
ch
(3)直角三角形外接圆的半径
R c 2
,内切圆半径
r abc 2
结论:直角三角形斜边上的高 h ab c
3.实际问题中术语的含义
(1)仰角与俯角
在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。
(2)坡度:如图,我们通常把坡面的铅直高度和水平宽度的比叫做坡度(或坡比),用字母 i 表示,即 i h . l
见问题,这也是以后中考命题的趋势。 5.解决实际问题的关键在于建立数学模型,要善于把实际问题的数量关系转化为解直角三角形的问题.在 解直角三角形的过程中,常会遇到近似计算,应根据题目要求的精确度定答案.
中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析1.锐角三角函数锐角三角函数定义:锐角角A的正弦(si n),余弦(c o s)和正切(t a n),余切(c o t)以及正割(se c),余割(c sc)都叫做角A的锐角三角函数。
正弦(si n):对边比斜边,即si n A=a/c余弦(c o s):邻边比斜边,即c o sA=b/c正切(t a n):对边比邻边,即t a n A=a/b余切(c o t):邻边比对边,即c o t A=b/a正割(se c):斜边比邻边,即se c A=c/b余割(c sc):斜边比对边,即c s c A=c/a2.3.互余角的关系s i n(π-α)=c o sα,c o s(π-α)=si nα,t a n(π-α)=c o tα,c o t(π-α)=t a nα.4.平方关系sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)5.积的关系s i nα=t a nα·c o sαc o sα=c o tα·si nαt a nα=si nα·se cαc o tα=c o sα·c s cαs e cα=t a nα·c scαc s cα=se cα·c o tα6.倒数关系t a nα·c o tα=1s i nα·c scα=1c o sα·se cα=17.诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=si nαk∈zc o s(2kπ+α)=c o sαk∈zt a n(2kπ+α)=t a nαk∈zc o t(2kπ+α)=c o tαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-si nαc o s(π+α)=-c o sαt a n(π+α)=t a nα8.两角和差公式(1)si n(A+B)=si n A c o sB+c o sA si n B(2)si n(A-B)=si n A c o s B-si n B c o sA(3)c o s(A+B)=c o sA c o sB-si n A si n B(4)c o s(A-B)=c o sA c o sB+si n A si n B(5)t a n(A+B)=(t a n A+t a n B)/(1-t a n A t a n B)(6)t a n(A-B)=(t a n A-t a n B)/(1+t a n A t a n B)(7)c o t(A+B)=(c o t A c o t B-1)/(c o t B+c o t A)(8)c o t(A-B)=(c o t A c o t B+1)/(c o t B-c o t A)除了以上常考的三角函数公式外,掌握下面半角公式,积化和差和万能公式有利于快速解决选择题,达到事半功倍的效果哦!1.半角公式注:正负由α/2所在的象限决定。
中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。
九年级数学三角函数定义及三角函数公式大全

三角函数是数学中的重要概念之一,它在几何、物理、工程等领域都有广泛的应用。
本文将介绍三角函数的定义、性质及常用公式,希望能够帮助九年级的同学们更好地理解和掌握三角函数。
一、三角函数的定义在直角三角形中,我们定义了三个基本三角函数:正弦、余弦和正切。
它们分别表示一个角的正弦值、余弦值和正切值。
角的正弦值等于对边与斜边的比值,余弦值等于邻边与斜边的比值,而正切值等于对边与邻边的比值。
二、三角函数的性质1.正弦函数的定义域是实数集,值域在[-1,1]之间;余弦函数的定义域是实数集,值域在[-1,1]之间;正切函数的定义域是所有不等于90度的实数集,值域是所有的实数。
2.正弦函数和余弦函数是周期函数,周期为360度或2π弧度;正切函数也是周期函数,周期为180度或π弧度。
3.正弦函数和余弦函数是奇函数,即满足f(-x)=-f(x);而正切函数是奇函数。
4.正弦函数是周期为2π的函数,图像是一条连续的正弦曲线;余弦函数也是周期为2π的函数,图像是一条连续的余弦曲线;正切函数的图像有水平渐进线,当角趋近于90度时,正切的值趋近于正无穷或负无穷。
1.三角函数的诱导公式正弦函数和余弦函数之间有一个重要的关系:sin(α ± β) =sinαcosβ ± cosαsinβ。
通过这一关系,我们可以推导出其他的三角函数公式,例如:- cos(α + β) = cosαcosβ - sinαsinβ- cos(α - β) = cosαcosβ + sinαsinβ- tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)等等。
2.三角函数的和差化积公式正弦函数和余弦函数的和差化积公式是:- sin(α + β) = sinαcosβ + cosαsinβ- sin(α - β) = sinαcosβ - cosαsinβ- cos(α + β) = cosαcosβ - sinαsinβ- cos(α - β) = cosαcosβ + sinαsinβ这些公式可以用于将一个角的三角函数表示为两个角的三角函数的乘积或差。
中考数学三角函数压轴专题

1.(10分)某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).2.(8分)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角∠CAB =67.5°,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)(=1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)3.(7分)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)4.(8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°,同时测得教学楼窗户D处的仰角为30°(A、B、D、E在同一直线上).然后,小明沿坡度i=1:1.5的斜坡从C走到F处,此时DF正好与地面CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若小明在F处又测得宣传牌顶部A的仰角为45°,求宣传牌的高度AB(结果精确到0.1米,≈1.41,≈1.73).5.(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD =2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.6.(8分)在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离;(2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.7.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)8.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.9.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).10.(6分)天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A﹣B﹣C路线对索道进行检修维护.如图:已知AB=500米,BC=800米,AB与水平线AA1的夹角是30°,BC与水平线BB1的夹角是60°.求:本次检修中,检修人员上升的垂直高度CA1是多少米?(结果精确到1米,参考数据:≈1.732)1.【分析】作DE⊥BC于E,根据矩形的性质得到FC=DE,DF=EC,根据直角三角形的性质求出FC,得到AF的长,根据正弦的定义计算即可.【解答】解:作DE⊥BC于E,则四边形DECF为矩形,∴FC=DE,DF=EC,在Rt△DBE中,∠DBC=30°,∴DE=BD=84,∴FC=DE=84,∴AF=AC﹣FC=154﹣84=70,在Rt△ADF中,∠ADF=45°,∴AD=AF=70(米),答:电动扶梯DA的长为70米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.【分析】(1)根据题意即可得到结论;(2)根据余角的定义得到∠BAO=22.5°,根据等腰三角形的性质得到∠BAO=∠ABO =22.5°,由三角形的外角的性质得到∠BOP=45°,解直角三角形即可得到结论.【解答】解:(1)阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围为:90°≤∠POB≤0°;(2)如图,∵∠CAB=67.5°,∴∠BAO=22.5°,∵OA=OB,∴∠BAO=∠ABO=22.5°,∴∠BOP=45°,∵OB=100,∴OE=OB=50,∴PE=OP﹣OE=100﹣50≈29.5cm,答:此时下水道内水的深度约为29.5cm.【点评】此题考查了考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.3.【分析】延长CD,交过A点的水平线AE于点E,可得DE⊥AE,在直角三角形ABC 中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=40m,∠EAD=45°,∴ED=AE tan45°=20m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40≈69.3m,则CD=EC﹣ED=AB﹣ED=40﹣20≈29.3m.答:这两座建筑物AB,CD的高度分别为69.3m和29.3m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.4.【分析】(1)过点F作FG⊥EC于G,依题意知FG∥DE,DF∥GE,∠FGE=90°;得到四边形DEFG是矩形;根据矩形的性质得到FG=DE;解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)过点F作FG⊥EC于G,依题意知FG∥DE,DF∥GE,∠FGE=90°;∴四边形DEFG是矩形;∴FG=DE;在Rt△CDE中,DE=CE•tan∠DCE;=6×tan30o=2(米);∴点F到地面的距离为2米;(2)∵斜坡CF i=1:1.5.∴Rt△CFG中,CG=1.5FG=2×1.5=3,∴FD=EG=3+6.在Rt△BCE中,BE=CE•tan∠BCE=6×tan60o=6.∴AB=AD+DE﹣BE.=3+6+2﹣6=6﹣≈4.3 (米).答:宣传牌的高度约为4.3米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确标注仰角和俯角、熟记锐角三角函数的定义是解题的关键.5.【分析】设E关于O的对称点为M,由光的反射定律知,延长GC、F A相交于点M,连接GF并延长交OE于点H,根据GF∥AC得到△MAC∽△MFG,利用相似三角形的对应边的比相等列式计算即可.【解答】解:设E关于O的对称点为M,由光的反射定律知,延长GC、F A相交于点M,连接GF并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴,即:,∴,∴OE=32,答:楼的高度OE为32米.【点评】本题考查了相似三角形的应用.应用镜面反射的基本性质,得出三角形相似,再运用相似三角形对应边成比例即可解答.6.【分析】(1)作PC⊥AB于C,则∠PCA=∠PB=90°,由题意得:P A=120海里,∠A=30°,∠BPC=45°,由直角三角形的性质得出PC=P A=60海里,△BCP是等腰直角三角形,得出PB=PC=60海里即可;(2)求出救助船A、B所用的时间,即可得出结论.【解答】解:(1)作PC⊥AB于C,如图所示:则∠PCA=∠PB=90°,由题意得:P A=120海里,∠A=30°,∠BPC=45°,∴PC=P A=60海里,△BCP是等腰直角三角形,∴BC=PC=60海里,PB=PC=60海里;答:收到求救讯息时事故渔船P与救助船B之间的距离为60海里;(2)∵P A=120海里,PB=60海里,救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,∴救助船A所用的时间为=3(小时),救助船B所用的时间为=2(小时),∵3>2,∴救助船B先到达.【点评】本题考查了解直角三角形的应用、方向角、直角三角形的性质;正确作出辅助线是解题的关键.7.【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,求出DF,再求出DF﹣DE即可解决问题.【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10=3.2(cm).【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.【分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE 及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE 中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解答】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【点评】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.9.【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM﹣DE=500,∴BM=100,在Rt△CEM中,tan53°===,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.10.【分析】测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.【解答】解:如图,过点B作BH⊥AA1于点H.在Rt△ABH中,AB=500,∠BAH=30°,∴BH=AB=(米),∴A1B1=BH=250(米),在Rt△BB1C中,BC=800,∠CBB1=60°,∴,∴B1C==400(米),∴检修人员上升的垂直高度CA1=CB1+A1B1=400+250≈943(米)答:检修人员上升的垂直高度CA1为943米.【点评】本题考查了解直角三角形,熟练应用锐角三角函数关系是解题关键.。
初中三角函数知识点总结及典型习题含答案)

初中三角函数知识点总结及典型习题含答案)初三下学期锐角三角函数知识点总结及典型题1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2.2.在直角三角形ABC中,若∠C为直角,则∠A的三角函数为:正弦函数sinA=对边a/斜边c,取值范围为[0,1]。
余弦函数cosA=邻边b/斜边c,取值范围为[0,1]。
正切函数tanA=对边a/邻边b,取值范围为R(实数集)。
3.任意锐角的正弦值等于其余角的余弦值,余弦值等于其余角的正弦值,即sinA=cosB,cosA=sinB,其中A+B=90°。
4.特殊角的三角函数值:30°:sin30°=1/2,cos30°=√3/2,tan30°=1/√3.45°:sin45°=cos45°=√2/2,tan45°=1.60°:sin60°=√3/2,cos60°=1/2,tan60°=√3.6.正弦、余弦的增减性:当0°≤A≤90°时,XXX随A的增大而增大,cosA随A的增大而减小。
7.正切的增减性:当0°<A<90°时,XXX随A的增大而增大。
8.解直角三角形的方法:已知边和角(其中必有一边)→求所有未知的边和角。
依据:①边的关系:a^2+b^2=c^2;②角的关系:A+B=90°;③三角函数的定义。
9.应用举例:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
坡度:坡面的铅直高度h和水平宽度l的比,用i=h/l表示。
方位角:从某点的指北方向按顺时针转到目标方向的水平角。
方向角:指北或指南方向线与目标方向线所成的小于90°的水平角。
例1:在直角三角形ABC中,已知∠C=90°,sinA=3/5,求XXX的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数1一.解答题(共10小题)1.如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?2.一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm,(点A、B、C在同一条直线上),在箱体的底端装有一圆形滚轮⊙A,⊙A与水平地面切于点D,AE∥DN,某一时刻,点B距离水平面38cm,点C距离水平面59cm.(1)求圆形滚轮的半径AD的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C处且拉杆达到最大延伸距离时,点C距离水平地面73.5cm,求此时拉杆箱与水平面AE所成角∠CAE的大小(精确到1°,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).3.如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中=1.732,=4.583)4.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A 旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)5.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)6.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)7.某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米,∠DCF=40°.请计算停车位所占道路的宽度EF(结果精确到0.1米).参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.8.太阳能是可再生的绿色环保能源,太阳能热水器是最常见的一种太阳能应用方式,如图是某地一个屋顶太阳能热水器的安装截面图.房屋的金顶等腰△ABC中,屋面倾角∠B=21.8°,太阳能真空管MN=1.8m,可伸缩支架MA⊥BC,安装要求安装地区的正午太阳光线垂直照射真空管MN.已知该地正午时直立于水平地面的0.8m长测杆影长0.6m,求符合安装要求的支架MA的长度.(参考数据:tan21.8°=0.4,tan53.13°=,sin53.13°=,tan36.87°=,cos36.87°=)9.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,量得∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm.(1)求两支架落点E、F之间的距离;(2)若MN=60cm,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60°=,cos60°=,tan60°=≈1.73,可使用科学计算器)10.图1是小明利用废弃的钢条焊接成的创意书架,现将其结构简化成图2所示的图形,制作过程为:首先将两根钢条OA和OB焊接成∠AOB=45°,OB=70cm,BC=EF=HG=IJ=60cm,焊接点E、G、I分别为BC、EF、HG的中点,钢条KL、CD的长均为30cm,所有在点C,E,G,I,K焊接处的相邻两根钢条互相垂直.(1)求证:L,J所在直线与直线OA平行;(2)求书架的高度.(结果保留一位小数,)三角函数1参考答案与试题解析一.解答题(共10小题)1.如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?【分析】根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF﹣EF 求得汽车车头与斑马线的距离.【解答】解:如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=BC=1.5米;故x=BF﹣EF=1.5﹣0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.2.一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm,(点A、B、C在同一条直线上),在箱体的底端装有一圆形滚轮⊙A,⊙A与水平地面切于点D,AE∥DN,某一时刻,点B距离水平面38cm,点C距离水平面59cm.(1)求圆形滚轮的半径AD的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C处且拉杆达到最大延伸距离时,点C距离水平地面73.5cm,求此时拉杆箱与水平面AE所成角∠CAE的大小(精确到1°,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).【分析】(1)作BH⊥AF于点G,交DM于点H,则△ABG∽△ACF,设圆形滚轮的半径AD的长是xcm,根据相似三角形的对应边的比相等,即可列方程求得x 的值;(2)求得CF的长,然后在直角△ACF中,求得sin∠CAF,即可求得角的度数.【解答】解:(1)作BH⊥AF于点G,交DM于点H.则BG∥CF,△ABG∽△ACF.设圆形滚轮的半径AD的长是xcm.则=,即=,解得:x=8.则圆形滚轮的半径AD的长是8cm;(2)CF=73.5﹣8=65.5(m).则sin∠CAF==≈0.77,则∠CAF=50°.【点评】此题考查了三角函数的基本概念,主要是正弦概念及运算,关键把实际问题转化为数学问题加以计算.3.如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中=1.732,=4.583)【分析】过点A′作A′D⊥BC′,垂足为D,先在△ABC中,由勾股定理求出BC=3cm,再解Rt△A′DC′,得出A′D=2cm,C′D=2cm,在Rt△A′DB中,由勾股定理求出BD=cm,然后根据CC′=C′D+BD﹣BC,将数据代入,即可求出CC′的长.【解答】解:过点A′作A′D⊥BC′,垂足为D.在△ABC中,∵AC⊥BC,AB=5cm,AC=4cm,∴BC=3cm.当动点C移动至C′时,A′C′=AC=4cm.在△A′DC′中,∵∠C′=30°,∠A′DC′=90°,∴A′D=A′C′=2cm,C′D=A′D=2cm.在△A′DB中,∵∠A′DB=90°,A′B=5cm,A′D=2cm,∴BD==cm,∴CC′=C′D+BD﹣BC=2+﹣3,∵=1.732,=4.583,∴CC′=2×1.732+4.583﹣3≈5.故移动的距离即CC′的长约为5cm.【点评】此题考查了解直角三角形的应用,难度适中,关键是把实际问题转化为数学问题加以计算.4.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)【分析】(1)利用锐角三角函数关系得出sin24°=,进而求出即可;(2)利用锐角三角函数关系得出sin12°=,进而求出DE,AE的长,即可得出AD的长.【解答】解:(1)∵∠BAC=24°,CD⊥AB,∴sin24°=,∴CD=ACsin24°=30×0.40=12cm;∴支撑臂CD的长为12cm;(2)过点C作CE⊥AB,于点E,当∠BAC=12°时,∴sin12°==,∴CE=30×0.20=6cm,∵CD=12,∴DE=,∴AE==12cm,∴AD的长为(12+6)cm或(12﹣6)cm.【点评】此题主要考查了解直角三角形的应用,熟练利用三角函数关系是解题关键.5.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.6.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD 和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)【分析】作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,先在Rt△BFH中,利用∠FBH的正弦计算出BF≈48.28,则BC=BF+CF=≈90.3(cm),再分别在Rt △BDQ和Rt△ADQ中,利用正切定义用DQ表示出BQ和AQ,得BQ=,AQ=,则利用BQ+AQ=AB=43得到+=43,解得DQ≈56.999,然后在Rt△ADQ中,利用sin∠DAQ的正弦可求出AD的长.【解答】解:作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,在Rt△BFH中,∵sin∠FBH=,∴BF=≈48.28,∴BC=BF+CF=48.28+42≈90.3(cm);在Rt△BDQ中,∵tan∠DBQ=,∴BQ=,在Rt△ADQ中,∵tan∠DAQ=,∴AQ=,∵BQ+AQ=AB=43,∴+=43,解得DQ≈56.999,在Rt△ADQ中,∵sin∠DAQ=,∴AD=≈58.2(cm).答:两根较粗钢管AD和BC的长分别为58.2cm、90.3cm.【点评】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.7.某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米,∠DCF=40°.请计算停车位所占道路的宽度EF(结果精确到0.1米).参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.【分析】在直角三角形中,利用三角函数关系,由已知角度和边求得ED和DF,而求得EF的长.【解答】解:由题意知∠DFC=90°,∠DEA=90°∠DCF=40°又∵ABCD是矩形∴AB=CD=5.4米BC=AD=2.2米且∠ADC=90°∵∠DCF+∠CDF=90°且∠ADE+∠CDF=90°∴∠DCF=∠ADE=40°在Rt△DCF中,sin∠DCF=DF=CDsin∠DCF=5.4×sin40°≈5.4×0.64=3.456在Rt△DAE中,COS∠ADE=DE=ADcos∠ADE=2.2×cos40°≈2.2×0.77=1.694EF=DE+DF≈3.456+1.694=5.2∴停车位所占道路宽度EF约为5.2米.【点评】本题考查三角函数关系的利用,正弦和余弦的灵活利用,而求得.8.太阳能是可再生的绿色环保能源,太阳能热水器是最常见的一种太阳能应用方式,如图是某地一个屋顶太阳能热水器的安装截面图.房屋的金顶等腰△ABC 中,屋面倾角∠B=21.8°,太阳能真空管MN=1.8m,可伸缩支架MA⊥BC,安装要求安装地区的正午太阳光线垂直照射真空管MN.已知该地正午时直立于水平地面的0.8m长测杆影长0.6m,求符合安装要求的支架MA的长度.(参考数据:tan21.8°=0.4,tan53.13°=,sin53.13°=,tan36.87°=,cos36.87°=)【分析】如图,DE=0.8,EF=0.6,则DF=1,作DQ⊥DF交EF于Q,即使太阳光线垂直于DQ,利用等角的余角相等得到∠Q=∠EDF,在Rt△EDF中,利用三角函数的定义得到cos∠EDF=0.8,sin∠EDF=0.6,再根据相似的判定易得△MNH∽△DQE,则∠MNH=∠Q,在Rt△MNH中,根据三角函数的定义可计算出NH=1.44,MH=1.08;则在Rt△ANH中,利用正切的定义计算出AH=0.576,然后利用MA=MH ﹣AH进行计算即可.【解答】解:如图,DE=0.8,EF=0.6,则DF=1,作DQ⊥DF交EF于Q,∴∠Q=∠EDF,在Rt△EDF中,cos∠EDF===0.8,sin∠EDF==0.6,∵△MNH∽△DQE,∴∠MNH=∠Q,在Rt△MNH中,∵cos∠MNH==0.8,sin∠MNH==0.6,∴NH=0.8×1.8=1.44,MH=0.6×1.8=1.08,在Rt△ANH中,∵tan∠ANH=tan21.8°=,∴AH=1.44×0.4=0.576,∴MA=MH﹣AH=1.08﹣0.576=0.504(m).答:符合安装要求的支架MA的长度为0.504米.【点评】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.9.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB 与DM交于点N,量得∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm.(1)求两支架落点E、F之间的距离;(2)若MN=60cm,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60°=,cos60°=,tan60°=≈1.73,可使用科学计算器)【分析】(1)利用平行线分线段成比例定理得出,利用平行四边形的判定与性质进而求出即可;(2)利用四边形ONHE是平行四边形,进而得出NH=OE=50cm,∠MHF=∠E=60°,利用MP=110sin60°求出即可.【解答】解:(1)连接EF.∵CD平行于地面,∴GD∥EF.∴.又∵AB∥EF,∴AB∥CD.而OE∥DM,则四边形OGDN是平行四边形.∴OG=DN,GD=ON.∵ON=40cm,∠EOF=90°,∠ODC=30°,∴GD=40cm,OG=GD=20cm,又EG=30cm,即,得EF=100cm.(2)延长MD交EF于点H,过点M作MP⊥EF于点P.∵四边形ONHE是平行四边形,∴NH=OE=50cm,∠MHF=∠E=60°.由于MN=60cm,∴MH=110cm.在Rt△MHP中,MP=MH•sin∠MHP,即MP=110sin60°=110×=55≈95(cm).答:躺椅的高度约为95cm.【点评】此题主要考查了解直角三角形以及平行四边形的判定与性质等知识,熟练应用锐角三角函数关系是解题关键.10.图1是小明利用废弃的钢条焊接成的创意书架,现将其结构简化成图2所示的图形,制作过程为:首先将两根钢条OA和OB焊接成∠AOB=45°,OB=70cm,BC=EF=HG=IJ=60cm,焊接点E、G、I分别为BC、EF、HG的中点,钢条KL、CD 的长均为30cm,所有在点C,E,G,I,K焊接处的相邻两根钢条互相垂直.(1)求证:L,J所在直线与直线OA平行;(2)求书架的高度.(结果保留一位小数,)【分析】(1)连接ED,先求得∠CED=45°,根据内错角相等求得OA∥ED,同理BG∥ED,IF∥BG,HK∥IF,LJ∥HK,即可证得L,J所在直线与直线OA平行;(2)延长JI交直线OA于点M,根据已知求得∠HIJ=∠HGF=∠BEF=90°,求得JM ∥EF,进而求得,∠M=45°,BM=OB=70cm,JB=90cm,进而得出JM=160cm,然后通过解正弦函数即可求得书架的高度.【解答】解:(1)连接ED,∵焊接点E为BC的中点,BC=60cm,∴EC=CD=30cm,∵CD⊥EC,∴∠CED=45°,∴∠AOB=∠CED,OA∥ED,同理BG∥ED,IF∥BG,HK∥IF,LJ∥HK,∴LJ∥OA;(2)延长JI交直线OA于点M,∵所有在点C,E,G,I,K焊接处的相邻两根钢条互相垂直,∴∠HIJ=∠HGF=∠BEF=90°,∴JM∥EF,∵BE=IG=IK=KJ=30cm,∴JM过点B,∠M=45°,BM=OB=70cm,JB=90cm,∴JM=160cm,∴书架的高度为:JM•sin45°=80≈113.1(cm).【点评】本题考查了平行线的判定和性质,解直角三角函数,把实际问题转化成为解直角三角形的问题是解题的关键.。