Optical Design fundamentals for Infrared Systems_ch9

合集下载

SPIE TOP 10 光学

SPIE TOP 10    光学

Microstructured design for light trapping in thin-film silicon solar cellsJian ChenQingkang WangHaihua LiShanghai Jiao Tong UniversityResearch Institute of Micro/Nano Science and TechnologyNational Key Laboratory of Micro/Nano Fabrication TechnologyKey Laboratory for Thin Film and Microfabrication Technology of Ministry of EducationShanghai200240ChinaE-mail:cjmelody@ Abstract.In thin-film silicon solar cells,aflexible optical design for light collection is developed that can lead to zero reflection loss and enhance the optical path length in the absorber layer.In this work,we demon-strate two-filling-factor asymmetric binary gratings on the top of the solar cells and metallic diffraction gratings as a back reflector.The potential of the structures in the solar cells is investigated by means of numerical simulations,i.e.,the rigorous coupled wave analysis enhanced by the modal transmission line theory.The impact of the structure parameters of the gratings on reflectivity is investigated.The results show that a close to zero reflection can be achieved by the two-filling-factor asym-metric binary gratings,and the path length of the transmitted light can be increased within the absorber layer by the metallic diffraction gratings.©2010Society of Photo-Optical Instrumentation Engineers.͓DOI:10.1117/1.3476334͔Subject terms:thin-film silicon solar cell;optical design;grating;rigorous coupled wave analysis.Paper100162RR received Mar.2,2010;revised manuscript received Jun.17, 2010;accepted for publication Jun.21,2010;published online Aug.4,2010.1IntroductionThe thin-film silicon͑TF-Si͒solar cell is a promising high-performance and low-cost approach that can be usually pro-duced by chemical deposition techniques.1Among all the thin-film materials,amorphous silicon͑a-Si͒is the most developed one.Efficient light management is essential to further improve the light confinement in the cells.Light trapping is the standard technique for improving TF-Si ef-ficiencies and for exploiting incoming sunlight.The design of novel optical concepts is important to increase the solar cell light-trapping capability.Since most common semiconductor materials have a high refractive index at optical wavelengths,considerable amount of light is reflected by the interface betweenfilms and air.Thefirst commonly used technique for optical en-hancement is to employ an antireflective structure placed on top of the absorber layer.In state of the art solar cells, indium tin oxides͑ITO,n ITO=2͒is used as both an antire-flective coating and a top contact.Diffraction gratings have been proposed as another alternative to improve efficiency. Submicron diffraction gratings can achieve low reflectivity when used in the illuminated face.2The second optical en-hancement technique is to use a high reflectivity mirror at the back that will prevent light escaping from the rear sur-face and increase the light path.Metallic diffraction grat-ings are utilized to reflect the incoming light at an oblique angle.As long as the light can deviate from the normal direction at an angle larger than the critical one,total inter-nal reflection can occur at the top surface,and the light path can be further increased.3In this work,simulations are utilized to investigate the concept of surface diffraction gratings in the role of reduc-ing light loss by reflections at the air/Si interface and me-tallic diffraction gratings as a back reflector.The wave-length range in our research is from0.3to1.2␮m.2Principle and Numerical ModelingIn our approach,the core algorithm,which is based on the rigorous coupled wave analysis͑RCWA͒4enhanced by the modal transmission line͑MTL͒theory,is a rigorous,fully vectorial solution of Maxwell’s equations.For2-D or3-D structures with arbitrary incident directions,the vectorial forms of these equations must be taken into account.By factoring out an assumed time harmonic factor exp͑−i␻t͒, Maxwell’s equations can be expressed as follows:ץץy E z−ץץz E y=i␻␮H x,͑1͒ץץz E x−ץץx E z=i␻␮H y,͑2͒ץץx E y−ץץy E x=i␻␮H z,͑3͒ץץy H z−ץץz H y=−i␻␧0␧r,x E x,͑4͒ץץz H x−ץץx H z=−i␻␧0␧r,y E y,͑5͒0091-3286/2010/$25.00©2010SPIEOptical Engineering49͑8͒,088001͑August2010͒ץץx H y −ץץyH x =−i ␻␧0␧r ,z E z ,͑6͒where t is the time,␻is the cyclical frequency,␧0is the vacuum permittivity,␮is magnetic permeability,E is elec-tric field intensity,and H is magnetic field intensity.The medium is characterized by a diagonal index tensor with respect to the principal axes with diagonal elements:␧r ,x ,␧r ,y ,␧r ,z .By substituting Eqs.͑3͒and ͑6͒into Eqs.͑1͒,͑2͒,͑4͒,and ͑5͒,we derive the following transverse format of Max-well’s equations:ץץz E x =−i ␻␧0ץץx 1␧r ,z ץץy H x +ͩi ␻␧0ץץx 1␧r ,z ץץx +i ␻␮ͪH y ,͑7͒ץץz E y =ͩ−i ␻␧0ץץy 1␧r ,z ץץy −i ␻␮ͪH x +i ␻␧0ץץy 1␧r ,z ץץx H y ,͑8͒ץץz H x =i ␻␮ץץx ץץy E x +ͩ−i ␻␮ץץx ץץx −i ␻␧0␧r ,y ͪE y ,͑9͒ץץz H y =ͩi ␻␮ץץy ץץy +i ␻␧0␧r ,x ͪE x +−i ␻␮ץץy ץץxE y .͑10͒For scattering problems,we want to calculate the reflected and transmitted light waves from the incident field.A direct solution in the spatial domain of Eqs.͑7͒–͑10͒with proper boundary conditions is computationally expensive.More-over,to calculate accurate diffraction efficiencies for all diffraction orders,fine simulation grids are essential.Since the RCWA and MTL methods are based on the Fourier domain,they are efficient solutions for the amplitude of each diffraction order.To solve these equations,we need to break the grating structure into simple building blocks with a vertically homogenous region,i.e.,a region with values of ␧r ,x ,␧r ,y ,and ␧r ,z ,which are independent of z .A compli-cated multilayer periodic structure can be decomposed into stacks of such basic building blocks.The device structure of a flat cell is shown in Fig.1͑a ͒.The periodic gratings with one filling factor have limita-tions in reducing the reflected light,because of the widewavelength range ͑0.3to 1.2␮m ͒.A two-filling-factorasymmetric binary grating has been proposed.5In Ref.5,the distance of the gratings is relatively small ͑560nm ͒and the application of the wavelength range is narrow ͑920to 1040nm ͒.Here we want to find the gratings,which have a large gap and a wide wavelength range.For the metallic diffraction gratings,our research starts from the reflectivity of the metallic diffraction gratings and the dif-fraction angle of the reflected light with different diffrac-tion orders.A solar cell with two-filling-factor and metallic diffrac-tion gratings is shown in Fig.1͑b ͒.In this work,we want to find out the optimal structure parameters for light collec-tion.These parameters are shown in Fig.1͑b ͓͒top:the distance of the dielectric grating ͑a ͒,the two filling factors ͑f 1,f 2,f 1+f 2=0.5͒,and the thickness of the grating ͑T g ͒;bottom:the distance of the metallic grating ͑p ͒,the filling factor ͑f ͒,and the height of the metallic grating ͑T Ag ͔͒.For simplicity,the absorption of light by the constituent mate-rial is ignored,as the optical absorption does not alter sig-nificantly the reflectivity results in our simulation.63Results and Discussion 3.1Top Antireflection GratingWe duplicate the results in Ref.5to verify the correctness of the algorithms and results in our work.The parameters of the two-filling-factor gratings are the same with Ref.5.Figure 2͑a ͒shows the the transmission efficiency of the TF-Si solar cell.There is a region of low transmittance within incident wavelengths of 910to 1030nm and inci-dent angles of −30to +30deg.As the incident angle in-creases,the wavelength range with low transmittance be-comes narrow.The results are the same with Ref.5.For a flat solar cell,Fig.2͑b ͒shows the reflectivity as a function of wavelength for normal incidence with different thickness of the ITO layer.Without the ITO layer,the re-flectivity could be 30.7%for normal incidence.When T ITO =50nm,reflectivity is reduced,especially at a wave-length of 400nm.According to the film theory,the wave-length with minimum reflectivity can be found by 7␭min =4ϫn ITO ϫT ITO ,͑11͒where ␭min is the wavelength at minimum reflectivity,and n ITO is the refractive index of the ITO layer.The ␭min ob-tained by Eq.͑3͒agrees with the value in Fig.2.Figures 3͑a ͒–3͑c ͒show the reflectivity of the grating for normal incidence with different structure -pared with Figs.2and 3,the reflectivity of the TF-Si solar cell has been greatly reduced.When a =600nm and T g =100nm,the grating with two filling factors ͑f 1=0.1and f 2=0.4͒is better than that with one filling factor ͑f 1=0and f 2=0.5͒.In the wavelength range of 300to 550nm,the reflectivity of the grating with two filling factors is lower than that with one filling factor,and the wavelength range in which the reflectivity is less than 2%is wider ͑550to 1195nm ͒.When filling factor f 1is increased,the reflectivity is reduced in the wavelength range 300to 550nm,but reflectivity increases in the wavelength range 600to 1000nm.Fig.1Device structures for ͑a ͒a flat solar cell and ͑b ͒a solar cell with two-filling-factor and metallic diffraction gratings.Fig.2͑a͒Transmission efficiency of the TF-Si solar cell corresponding to the incident wavelength and incident angle.͑b͒The reflectivity of the interface between ITO and Si for normal incidence with different T ITO.Fig.3Reflectivity of gratings as a function of wavelength for normal incidence.When a =600nm and f 1=0.1,the reflectivity as a func-tion of the thickness of the grating is shown in Fig.3͑b ͒.When T g =50nm,reflectivity increases as the wavelength increases from 400to 1200nm.When T g =150nm,the re-flectivity fluctuates.When T g =100nm,reflectivity is kept less than 2%in a wide wavelength range.When f 1=0.1and T g =100nm,the effect of the distance is shown in Fig.3͑c ͒.When we change the distance to 1␮m,the reflectivity in the whole wavelength range is less than 5%and less than 2%in the wavelength range 550to 1200nm.In the semiconductor process,a distance of 1␮m is also easier to achieve.Figure 4shows the reflectivity with the same parameters ͑a =1␮m,f 1=0.1,and T g =100nm ͒but with different in-cident angles.The average reflectivity is less than 6%for light in the wavelength range 0.3to 1.2␮m and incident angles between −40and +40deg.Now we take into account the ͑air mass ͒AM 1.5-G solar energy spectrum and discuss how optimization of the grat-ing would differ.In Fig.5͑a ͒,the peak of AM 1.5-G solar energy spectrum is in the wavelength range 400to 600nm.Fig.4Reflectivity as a function of wavelength with the same struc-ture parameters ͑a =1␮m,f 1=0.1,T g =100nm ͒,but with different incidentangles.Fig.5͑a ͒Solar energy spectrum.͑b ͒Reflectivity as a function of wavelength with the same a =1␮m and f 1=0.1,but with different T g for normal incidence.͑c ͒Reflectivity as a function of wave-length with the same a =1␮m and T g =100nm,but with different f 1for normal incidence.We want to change the structure parameters of the grating to make ␭min in 400to 600nm and make the reflectivity have no evident change in the peak half-width of the spec-trum ͑400to 900nm ͒.Figure 5͑b ͒shows the reflectivity with the same a =1␮m and f 1=0.1,but with different T g for normal incidence.The ␭min reduces as T g reduces.When T g =60,70,and 80nm,␭min is in the wavelength range 400to 600nm,and reflectivity in the wavelength range 400to 900nm is kept to less than 2.9,2,and 3.1%,respectively.Figure 5͑c ͒shows the reflectivity with the same a =1␮m and T g =100nm,but with different f 1for normal incidence.We can see that ␭min has no obvious change and ␭min is around 670nm.So when the AM 1.5-G solar energy spectrum is considered,we should change T g to 70nm.The grating equation that be related with the diffraction angle of the transmitted light in the specific incident angle,wavelength,and material parameters is given by8Fig.6Relationship between diffraction angle of transmitted light ͑m =1,2͒and thewavelength.Fig.7Electric field E z for cells with top antireflection grating ͑a =1␮m,f 1=0.1,f 2=0.4,and T g =100nm ͒for ␭=400,800,and 1000nm.n inc sin ␪inc −n Si sin ␪diff =m ␭0a,͑12͒where m is the diffraction order of the transmitted light in integers,␭0is the incident wavelength,n is the refractive index of the material through which the incident light passes,a is the distance of grating,and ␪inc and ␪diff are theincidence and the diffraction angles of the transmitted light,respectively.The relationship between the diffraction angle of the transmitted light and the wavelength is given in Fig.6.The first-order diffraction angle of the transmitted light in-creases from 5to 20deg in the wavelength range 0.3to 1.2␮m.Fig.8Reflectivity as a function of the incident angle with different parameters:͑a ͒f =0.4,T Ag =100nm,͑b ͒f =0.5,T Ag =100nm,͑c ͒f =0.6,T Ag =100nm,͑d ͒f =0.5,T Ag =50nm,and ͑e ͒f =0.5,T Ag =120nm.Figure7shows the distribution of the electricfield E z inside and outside of the designed solar cell with top anti-reflection grating for normal incidence.Thefield strength in the cell is more strong than outside.We can also see that the diffraction angle of the transmitted light increases with wavelength,which agrees with Fig.6.3.2Back ReflectorThe back reflector is a metal͑Ag͒reflection grating.The grating equation states that9,10m␭=np͑sin␣+sin␪͒,͑13͒where m is the diffraction order of the reflected light in integers,␭is the incident wavelength,n is the refractive index of the material,p is the distance of the grating,and␪and␣are the incidence angles and the diffraction angles ofthe reflected light,respectively.When p=␭/n,for normal incidence,m can take values of0,Ϯ1.For the convenience of our study,we chose the center wavelength͑␭0͒of800nm.The results of the simulations for this wavelength are presented.In our design,p =250nm,a little higher than␭/n Si.The zero-order reflection will be strongly suppressed with the appropriate height of the metallic diffraction grat-ing,so that theϮ1-order diffractions are left and the Ϯ1-order reflected light can be bent by angles.8,9Because of the absorption of silver,the thickness of the Agfilm should not be too thick.We mustfind out the best param-eters,which are thefilling factor͑f͒and the height of the metallic diffraction grating͑T Ag͒,to have low zero-order reflectivity and highfirst-order reflectivity.Thus,the energy is transferred toϮ1-order diffractions.Figure8shows the reflectivity with various diffraction orders as a function of the incident angle.In Figs.8͑a͒–8͑c͒,when f=0.5and T Ag=100nm,the metallic dif-fraction grating has lower zero-order reflectivity and higher first-order reflectivity than that when f=0.4and T Ag =100nm.The zero-order reflectivity with the incident angles between−50and+50deg is less than40%,and the first-order reflectivity with incident angles ofϮ30deg is more than95%.With the increase of f,the zero-order and first-order reflectivities are decreased.Here thefirst-order reflectivity is more important,so we take f=0.5.From Figs. 8͑b͒,8͑d͒,and8͑e͒,when T Ag is larger or smaller than 100nm,the zero-order reflectivity is increased and the first-order reflectivity is decreased.So we choose T Ag =100nm.Figure9gives the reflectivity as a function of the inci-dent angle with different incident wavelengths.When␭=400and600nm,thefirst-order reflectivity is reduced by 30%,but the zero-order reflectivity is reduced by2.5times, and the second-order reflectivity is increased by3times. The zero-order reflection is strongly suppressed,and the energy is transferred toϮ1-order andϮ2-order diffrac-tions.The higher the diffraction order,the larger the dif-fraction angle of the reflected light.So the metallic diffrac-tion grating with p=250nm,f=0.5,and T Ag=100nm can also gives good performance in other wavelengths.The transmitted light with the diffraction angles in Fig.6 can be reflected by the metallic diffraction grating.The diffraction angle of the reflected light is shown in Fig.10.The smallest diffraction angle is17deg,just exceeding the critical angle of total internal reflection of Si͑16.6deg͒. Therefore,total internal reflection will occur at the front surface of the cell,and the light is reflected back to the active region of the solar cell for further absorption.Now,we introduce the absorption of light by the con-stituent material.The absorption versus incident wave-length is depicted in Fig.11͑a͒.In the wavelengthrange Fig.9Reflectivity as a function of the incident angle with the same parameters͑p=250nm,f=0.5,T Ag=100nm͒but different wave-lengths͑a͒␭=600nm and͑b͒␭=400nm.Fig.10Relationship between the diffraction angle of reflected light ͑m=1͒and the wavelength.300to 1200nm,the absorption of the TF-Si solar cell with the metallic diffraction grating ͑p =250nm,f =0.5,T Ag =100nm ͒is enhanced,especially for long wavelengths ͑700to 1000nm ͒.The blue and green light will be ab-sorbed within the first few hundred nanometers of the cell,11so the absorption enhancement is about 20%.For long wavelengths ͑700to 1000nm ͒,the absorption en-hancement is about 50to 300%.The wavelength of the diffracted mode is given by 12␭=2␲n͓G 2+͑␲L /d ͒2͔1/2,͑14͒where G =2␲m /P is a reciprocal lattice vector of grating,d =500nm is the thickness of the absorption layer,and L is the peak number.Figure 11͑b ͒shows the relationship be-tween the peak wavelength and peak number.There are 11absorption peaks in the wavelength range 300to 1200nm.The comparison between the numerical data of Fig.11͑a ͒and the analytical model of Eq.͑14͒shows good agree-ment.Figure 12shows the distribution of the electric field E z inside and outside of the designed solar cell with both top antireflection and back metallic diffraction gratings for nor-mal paring Figs.7and 12,the field strength outside the cell is significantly reduced.This is the effect of light trapping by the metallic diffraction grating.4ConclusionsA two-filling-factor asymmetric binary grating on the top of the absorber layer reduces the reflection loss and simulta-neously directes the transmitted light to the appropriate or-ders.A metal periodic grating as a back reflector in solar cells enhances light scattering and diffracts light at oblique angles,which are larger than the critical angle for total internal reflection of Si to increase the photon path length within the absorber layer for furtherabsorption.Fig.11͑a ͒Absorption versus incident wavelength for normal incidence.͑b ͒Absorption peak wave-length as a function of peaknumber.Fig.12Electric field E z for cells with both top antireflection grating ͑a =1␮m,f 1=0.1,f 2=0.4,T g =100nm ͒and back metallic diffraction grating ͑p =250nm,f =0.5,T Ag =100nm ͒for ͑a ͒␭=400nm and ͑b ͒␭=800nm.AcknowledgmentsThis research was supported by the Shanghai Committee of Science and Technology of China͑grant number 0952nm06400͒,ENERGY FP7-ENERGY-2009-1im-proved material quality and light trapping in thinfilm sili-con solar cells͑grant number241277-2͒,and the State Key Development Program for Basic Research of China͑grant number2010CB933702͒References1.Z.N.Yu,H.Gao,W.Wu,H.X.Ge,and S.Y.Chou,“Fabrication oflarge area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,”J.Vac.Sci.Technol.B21, 2874–2877͑2003͒.2.M.G.Moharam and T.K.Gaylord,“Diffraction analysis of dielectricsurface-relief gratings,”J.Opt.Soc.Am.72,1385–1392͑1982͒. 3. C.Heine and R.H.Morf,“Submicrometer gratings for solar energyapplications,”Appl.Opt.34,2476–2482͑1995͒.4.H.J.Zhao,Y.J.Peng,J.Tan,C.R.Liao,P.Li,and X.X.Ren,“Optimal design of sub-wavelength metal rectangular gratings for polarizing beam splitter based on effective medium theory,”Chin.Phys.B18,5326–5330͑2009͒.5.Y.C.Lee,C.F.Huang,J.Y.Chang,and M.L.Wu,“Enhanced lighttrapping based on guided mode resonance effect for thin-film silicon solar cells with twofilling-factor gratings,”Opt.Express16,7969–7975͑2008͒.6.W.D.Zhou,M.Tao,L.Chen,and H.J.Yang,“Microstructuredsurface design for omnidirectional antireflection coatings on solar cells,”J.Appl.Phys.102,103105͑2007͒.7. D.N.Wright,E.S.Marstein,and A.Holt,“Double layer antireflec-tive coatings for silicon solar cells,”Conference Record of the31st IEEE Photovoltaic Specialists Conference,IEEE,New York͑2005͒.8.T.K.Gaylord,W.E.Baird,and M.G.Moharam,“Zero-reflectivityhigh spatial-frequency rectangular groove dielectric surface-relief gratings,”Appl.Opt.25,4562–4567͑1986͒.9.L.Zeng,Y.Yi,C.Hong,J.Liu,N.Feng,X.Duan,L.C.Kimerling,and B.A.Alamariu,“Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,”Appl.Phys.Lett.89,111111͑2006͒.10. A.Cˇampa,J.Krč,F.Smole,and M.Topič,“Potential of diffractiongratings for implementation as a metal back reflector in thin-filmsilicon solar cells,”Thin Solid Films516,6963–6967͑2008͒.11.R.Dewan,M.Marinkovic,R.Noriega,S.Phadke,A.Salleo,and D.Knipp,“Light trapping in thin-film silicon solar cells with submicron surface texture,”Opt.Express17,23058–23065͑2009͒.12.P.Bermel,C.Y.Luo,L.R.Zeng,L.C.Kimerling,and J.D.Joan-nopoulos,“Improving thin-film crystalline silicon solar cell efficien-cies with photonic crystals,”Opt.Express15,16986–17000͑2007͒.Jian Chen received his MS degree in mi-croelectronics and solid-state electronicsfrom Huazhong University of Science andTechnology,China,in2007.He is currentlypursuing a PhD degree in microelectronicsand solid-state electronics at Shanghai JiaoTong University,China.His research inter-ests include semiconductor optoelectronicsand nanophotonicdevices.Qingkang Wang is a professor and vice di-rector of the Research Institute of Micro/Nanometer Science and Technology atShanghai Jiaotong University.He has beenthe director of the Laboratory of Nano-Fabrication and Devices͑NFDL͒since2005.He obtained BS and MS degrees inthe Department of Electronics,Peking Uni-versity,in1982and1985.He works in thefields of compound semiconductor devices,high speed IC,optic-electronic devices, nanofabrication,and nano-optics.He has joined and taken charge of many research projects supported by the Chinese government and has more than40publications.He currently does research on nanofabrication and devices,and nano-optics and devices at present.He has joined the FP7-ENERGY-2009-1“Improved mate-rial quality and light trapping in thinfilm silicon solar cells.”Biography and photograph of Haihua Li not available.。

fundamental design consideration of vcsels

fundamental design consideration of vcsels

fundamental design consideration of vcsels
VCSEL(垂直腔面发射激光器)的基本设计考虑因素包括以下几个方面:
1.激光器腔长:VCSEL的腔长需要精确控制,以确保增益区位于腔内
驻波波腹处,从而实现更高的受激辐射效率。

这要求对VCSEL腔的设计和工艺有更高的要求。

2.光学限制层和自吸收效应:为了减小光的自吸收效应,需要将激光器
中的高吸收材料及光学限制层置于腔内驻波的波节处。

3.激射波长、有源区和DBR的厚度:VCSEL器件的激射波长、有源区
和DBR(分布式布拉格反射器)的厚度需要精确控制,以实现激射波长、增益波长区域与DBR反射谱的三者之间的完美重叠。

4.DBR中相位层的设计:DBR中相位层的设计将直接影响DBR的反
射率、阈值电流和激光功率。

这些因素都是VCSEL设计中的关键考虑因素,它们对VCSEL的性能和可靠性有着重要影响。

因此,在设计和制造VCSEL时,需要充分考虑这些因素,并进行精确的控制和优化。

chapter 1(1)

chapter 1(1)

ym +1 = Aym + Bθ m
θ m +1 = Cym + Dθ m
From these equation, we have
ym +1 − Aym B y − Aym +1 θ m +1 = m + 2 B
θm =
And then:
ym + 2 = 2bym +1 − F 2 ym
linear differential equations
ym A θ = C m
Fundamentals of Photonics
B y0 D θ 0
2011-4-27
m
ym +1 = Aym + Bθ m
θ m +1 = Cym + Dθ m
8
CHAPTER 1---- Optical Resonator
An optical resonator, the optical counterpart of an electronic resonant circuit, confines and stores light at certain resonance frequencies. It may be viewed as an optical transmission system incorporating feedback; light circulates or is repeatedly reflected within the system, without escaping.
ym = y0 F m sin(mφ + φ0 ) = ymax F m sin(mφ + φ0 )

Optical design fundamentals for Infrared Systems 红外系统光学设计基础

Optical design fundamentals for Infrared Systems 红外系统光学设计基础

Library of Congress Cataloging-in-Publication Data Riedl, Max J. Optical design fundamentals for infrared systems / Max J. Riedl.-- 2" d ed. p. cm. — (Tutorial texts in optical engineering; v. TT48) Includes bibliographical references and index. ISBN 0-8194-4051-5 1. Optical instruments–Design and construction. 2. Infrared equipment–Design and construction. I. Title. II. Series. TS514.R53 2001 621.36'2—dc21
00-068758 CIP
Published by SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: (1) 360 676 3290 Fax: (1) 360 647 1445 Email: spie@ WWW:
Kapf Machine Vision, Harley R. Myler, Vol. TT33 • Design and Mounting of Prisms and Small Mirrors in Optical Instruments, Paul R. Yoder, Jr., Vol. TT32 • Basic Elect ro-Optics for Electrical Engineers, Glenn D. Boreman, Vol. TT31 • Optical Engineering Fundamentals, Bruce H. Walker, Vol. TT30 • Introduction to Radiometry, William L. Wolfe, Vol. TT29 • Lithography Process Control, Harry J. Levinson, Vol. TT28 • An Introduction to Interpretation of Graphic Images, Sergey Ablameyko, Vol. TT27 • Thermal Infrared Characterization of Ground Targets and Backgrounds, P. Jacobs, Vol. TT26 • Introduction to Imaging Spectrometers, William L. Wolfe, Vol. TT25 • Introduction to Infrared System Design, William L. Wolfe, Vol. TT24 • Introduction to Computer-based Imaging Systems, D. Sinha, E. R. Dougherty, Vol. TT23 • Optical Communication Receiver Design, Stephen B. Alexander, Vol. TT22 • Mounting Lenses in Optical Instruments, Paul R. Yoder, Jr., Vol. TT21 • Optical Design Fundamentals for Infrared Systems, Max J. Riedl, Vol. TT20 • An Introduction to Real-Time Imaging, Edward R. Dougherty, Phillip A. Laplante, Vol. TT19 • Introduction to Wavefront Sensors, Joseph M. Geary, Vol. TT18 • Integration of Lasers and Fiber Optics into Robotic Systems, J. A. Marszalec, E. A. Marszalec, Vol, TT17 • An Introduction to Nonlinear Image Processing, E. R. Dougherty, J. Astola, Vol. TT16 • Introduction to Optical Testing, Joseph M. Geary, Vol. TT15 • Image Formation in Low-Voltage Scanning Electron Microscopy, L. Reimer, Vol. TT12 • Diazonaphthoquinone-based Resists, Ralph Dammel, Vol. TT11 • Infrared Window and Dome Materials, Daniel C. Harris, Vol. TT10 • An Introduction to Morphological Image Processing, Edward R. Dougherty, Vol. TT9 • An Introduction to Optics in Computers, Henri H. Arsenault, Yunlong Sheng, Vol. TT8 • Digital Image Compression Techniques, Majid Rabbani, Paul W. Jones, Vol. TT7 • Aberration Theory Made Simple, Virendra N. Mahajan, Vol. TT6 • Single-Frequency Semiconductor Lasers, Jens Buus, Vol. TT5 • An Introduction to Biological and Artificial Neural Networks for Pattern Recognition, Steven K. Rogers,

光电子学第1章_光的波动性

光电子学第1章_光的波动性

ω —the angular frequency
φ0—phase constant
The argument (ωt-kz+φ0) is called the phase wave and denoted byφ. Equation (1) describes a monochromatic plane
a civil engineer for the French government who was one of the principal proponents of the wave theory of light.
1.1 Light Wave in a Homogeneous Medium
Terms
optical frequency(光频); wave packet(波包); harmonic waves(简谐波); group velocity/index(群速度/折射率); dispersion/ dispersive medium (色散 / 色散介质); Poynting vector(波印廷矢量) Irradiance/instantaneous(辐射度/ 瞬时辐射度); energy/power flow (能量/功率流); silica/silicon(石英 / 硅); crystal / noncrystal (晶体/非晶体); polarization/polarizability(偏振,极化/极化率); dipole/dipolar polarization (双偶极子/偶极子极化)
Ex E0 cost kz 0
(1)
Ex — electric field at position z at time t E0 —amplitude of the wave k — propagation constant, or wave number, given by 2π/λ

2006年苏州大学论文被《SCI(E)》,《EI》,《ISTP》收录情况表

2006年苏州大学论文被《SCI(E)》,《EI》,《ISTP》收录情况表
2006 年苏州大学论文被《SCI(E)、 》《EI》《ISTP》收录情况表 、
序号 作者 Li, Shan-Liang; Zhu, Dao-Li 论文名称 Principal-agent analysis of supply chain incentive contract with asymmetric information 李善良 第一(通讯)作者 所在院系 政治与公共管 理学院 刊名 Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS ICEMI 2005: CONFERENCE 2 Xu, DC; Zhou, XJ; Wen, WX; Wang, CF An injector beam automatic shutdown control system based on MCU PROCEEDINGS OF THE SEVENTH 徐大诚 应用技术学院 INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL 2 Zhang, XN; Tang, LH; 3 Gonga, JH; Xu, XY; Zhang, Q Alternative albendazole polybutylcyanoacrylate nanoparticles preparation, pharmaceutical properties and tissue distribution in rats Involvement of nitric oxide in oxidative 4 Wang, JW; Zheng, LP; Wu, JY; Tan, RX burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures Chen, Gang; Wu, 5 Jian-Hong; Chen, Xin-Rong; Liu, Quan Measurement of profile parameters of holographic photoresist grating mask made on top of chrome stack in spectroscopic way 吴建宏 信息光学工程 研究所 Zhongguo Jiguang/Chinese Journal of Lasers 王剑文 药学院 NITRIC OXIDE-BIOLOGY AND CHEMISTRY SCI\SCIE 张学农 药学院 LETTERS IN DRUG DESIGN & DISCOVERY SCIE ISTP EI 检索系统

光电行业关键词英汉对照

光电行业关键词英汉对照光电行业关键词英汉对照(一)A01光学材料:A01-001 光学材料Optical MaterialsA01-002 光学玻璃Optical GlassA01-003 激光玻璃Laser GlassA01-004 声光玻璃Acousto-Optic GlassA01-005 红外线玻璃Infrared GlassA01-006 红外线材料Infrared MaterialsA01-007 紫外线材料Ultraviolet MaterialsA01-008 石英镜片Fused Silica GlassA01-009 光学陶瓷CeramicsA01-010 矽半导体材料Silicon Semiconductor MaterialsA01-011 化合物半导体材料Compound Semiconductor Materials A01-012 光纤材料Fiber Optic MaterialsA01-013 光纤预型体Fiber Optic PreformsA01-014 PLZT晶圆,钛酸锆酸铅晶圆 PLZT WafersA01-015 环氧树脂EpoxiesA01-016 声光光学晶体Acousto-Optic CrystalsA01-017 双折射/偏光晶体Birefringent and Polarizing CrystalsA01-018 电光光学晶体Electro-Optic CrystalsA01-019 红外线晶体Infrared CrystalsA01-020 激光晶体(YAG) YAG Laser CrystalsA01-021 激光晶体(亚历山大) Alexandrite Laser CrystalsA01-022 激光晶体(GGG) GGG Laser CrystalsA01-023 激光晶体(GSGG,GSAG) GSGG GSAG Laser Crystals A01-024 激光晶体(YLF) YLF Laser CrystalsA01-025 激光晶体(其他) Other Laser CrystalsA01-026 非线性光学晶体Nonlinear CrystalsA01-027 有机光学材料Organic Optical MaterialsA01-028 萤光放射晶体Fluorescent Emission CrystalsA01-029 结晶育成材料Crystals Growing MaterialsA01-030 镀膜材料Coating MaterialsA01-031 光罩材料Photomask MaterialsA01-032 真空蒸镀化学药品Vaccum Evaporation ChemicalsA01-033 感光剂SensitizersA01-034 影像用材料Materials for ImagingA01-035 热色材料Thermochromic MaterialsA01-036 光色材料Photochromic MaterialsA01-037 稀土族材料Rare Earth MaterialsA01-038 光碟基板,基板材料Optical Disk Substrate Materials A01-039 光碟记录材料Optical Disk Data Storage MaterialsA02 加工用其他材料:A02 加工用其他材料MATERIALS FOR PROCESSINGA02-001 光学用胶合剂/接著剂Optical Cements and Adhesives A02-002 光学用气体Gases for Optical ApplicationA02-003 激光用气体Gases for LasersA02-004 光学研磨材料(研磨布纸) Optical-Coated AbrasiveA02-005 光学研磨材料(砥粒) Optical-Powder or Grin Abrasive A02-006 光学研磨材料(砥石) Optical-Wheel AbrasiveA02-007 研磨化合物Polishing CompoundsA02-008 研磨衬垫及布Polishing Pads and ClothA02-009 全像底片及感光板Holographic Films and PlatesA02-010 红外线底片及感光板Infrared Films and PlatesA02-011 相片用化学药品Photographic ChemicalsA02-012 折射率液Refractive Index LiquidsA02-013 显微镜浸液Microscope Immerison LiquidsA02-014 显微镜埋置用材料Microscope Imbedding MediaA02-015 激光用染料Laser DyesA02-016 冷媒CoolantsA02-017 拭镜纸 Lens TissueA03 显示器用材料:A03 显示器用材料MATERIALS FOR DISPLAYA03-001 液晶Liquid CrystalsA03-002 导电膜玻璃基板ITO Glass SubstrateA03-003 彩色滤光片Color FilterA03-004 偏光板/相位差板Polarizer/ Phase Shift LayerA03-005 显示面板用驱动IC Driver ICA03-006 背光源BacklightA03-007 配向膜Alignment FilmA03-008 间隔物Spacer光电行业关键词英汉对照(二)B01 透镜:B01 透镜 LENSESB01-001 单透镜Simple (Single) LensesB01-002 球透镜 Ball LensesB01-003 歪像透镜 Anamorphic LensesB01-004 圆锥透镜 Conical LensesB01-005 柱状透镜,环形透镜Cylindrical & Toroidal LensesB01-006 非球面透镜 Aspheric LensesB01-007 反射折射透镜 Catadioptric LensesB01-008 绕射极限透镜 Diffraction-Limited LensesB01-009 GRIN透镜GRIN Lenses (Graduated Refractive Index Rod)B01-010 微小透镜阵列Micro Lens ArraysB01-011 准直透镜 Collimator LensesB01-012 聚光透镜 Condenser LensesB01-013 多影像透镜Multiple Image LensesB01-014 傅利叶透镜 Fourier LensesB01-015 菲涅尔透镜 Fresnel LensesB01-016 替续透镜 Relay LensesB01-017 大口径透镜(直径150mm以上) Large Aperture Lenses (150mm)B01-018 复合透镜 Complex LensesB01-019 红外线透镜 Infrared LensesB01-020 紫外线透镜 Ultraviolet LensesB01-021 激光透镜 Laser LensesB01-022 望远镜对物镜Telescope Objectives LensesB01-023 显微镜对物镜Microscope Objectives LensesB01-024 接目镜 Eyepieces LensesB01-025 向场透镜 Field LensesB01-026 望远镜头 Telephoto LensesB01-027 广角镜头Wide Angle LensesB01-028 可变焦伸缩镜头Variable Focal Length Zoom LensesB01-029 CCTV镜头 CCTV LensesB01-030 影印机镜头Copy Machine LensesB01-031 传真机镜头 Facsimile LensesB01-032 条码扫描器镜头Bar Code Scanner LensesB01-033 影像扫描器镜头Image Scanner LensesB01-034 光碟机读取头透镜Pick-up Head LensesB01-035 APS相机镜头APS Camera LensesB01-036 数位相机镜头Digital Still Camera LensesB01-037 液晶投影机镜头Liquid Crystal Projector LensesB02 镜面:B02 镜面MIRRORB02-001 平面镜 Flat MirrorsB02-002 球面凹面镜,球面凸面镜Spherical Concave and Convex Mirrors B02-003 抛物面镜,椭圆面镜Off-Axis Paraboloids and Ellipsoids Mirrors B02-004 非球面镜 Aspheric MirrorsB02-005 多面镜 Polygonal MirrorsB02-006 热镜 Hot MirrorsB02-007 冷镜 Cold MirrorsB02-008 玻璃,玻璃/陶瓷面镜Glass and Glass-Ceramic MirrorsB02-009 双色向面镜 Dichroic MirrorB02-010 金属面镜 Metal MirrorsB02-011 多层面镜 Multilayer MirrorsB02-012 半涂银面镜 Half-Silvered MirrorsB02-013 激光面镜 Laser MirrorsB02-014 天文用面镜 Astronomical MirrorsB02-099 其他面镜 Other MirrorsB03 棱镜:B03 棱镜 PRISMB03-001 Nicol棱镜 Nicol PrismsB03-002 Glan-Thomson棱镜 Glan-Thomson PrismsB03-003 Wollaston棱镜 Wollaston PrismsB03-004 Rochon棱镜 Rochon PrismsB03-005 直角棱镜Right-Angle; Rectangular PrismsB03-006 五面棱镜 Pentagonal PrismsB03-007 脊角棱镜 Roof PrismsB03-008 双棱镜 BiprismsB03-009 直视棱镜Direct Vision PrismsB03-010 微小棱镜 Micro PrismsB03-099 其他棱镜 Other PrismsB04 滤光镜:B04 滤光镜 FILTERB04-001 尖锐滤光镜Sharp Cut (off) FiltersB04-002 色温变换滤光镜,日光滤光镜Colour Conversion/Daylight Filters B04-003 干涉滤光镜 Interference FiltersB04-004 中性密度滤光镜Neutral Density FiltersB04-005 空间/光学匹配滤光镜Spatial/Optical Matched FiltersB04-006 双色向滤光镜 Dichroic FiltersB04-007 偏光滤光镜 Polarizing FiltersB04-008 排除频带滤光镜Rejection Band FiltersB04-009 可调式滤光镜 Turnable FilterB04-010 超窄频滤光镜Ultra Narrowband FiltersB04-011 色吸收滤光镜 Absorption FiltersB04-012 红外吸收/反射滤光镜Infrared Absorbing/Reflecting FiltersB04-013 红外透过滤光镜Infrared Transmitting FiltersB04-014 紫外吸收滤光镜Ultraviolet Absorbing FiltersB04-015 紫外透过滤光镜Ultraviolet Transmitting FiltersB04-016 针孔滤光镜 Pinhole FiltersB04-017 有色玻璃滤光镜 Colored-Glass FiltersB04-018 塑胶滤光镜 Plastic FiltersB04-019 照像用滤光镜 Photographic FiltersB04-020 全像滤光镜 Holographic FiltersB04-021 微小干涉滤光镜Micro Interference FiltersB06 激光:LASERS B06 激光LASERSB06-100 气体激光GAS LASERSB06-101 氦氖激光He-Ne LasersB06-102 金属蒸气激光Metal Vapor LasersB06-103 氩离子激光Argon LasersB06-104 氪离子激光Krypton LasersB06-105 二氧化碳激光(气流型) CO2 (Gas Flow type) LasersB06-106 二氧化碳激光(脉冲,TEA型) CO2 (Pulsed,TEA) LasersB06-107 二氧化碳激光(密封型) CO2 (Sealed tube) LasersB06-108 二氧化碳激光(波导型) CO2 (Wave guide) LasersB06-109 一氧化碳激光CO LasersB06-110 氦镉激光He-Cd LasersB06-111 氮分子激光Nitrogen LasersB06-112 准分子激光Excimer LasersB06-113 氙分子激光Xenon LasersB06-200 固体激光SOLID STATE LASERSB06-201 红宝石激光Ruby LasersB06-202 玻璃激光Glass LasersB06-203 Nd:YAG激光(脉冲式) Nd:YAG (Pulsed) LasersB06-204 Nd:YAG激光(连续式) Nd:YAG Laser (CW) LasersB06-205 Nd:YAG激光(半导体激光激发) Nd:YAG (LD Pumped) LasersB06-206 YLF 激光YLF LasersB06-207 亚历山大激光Alexanderite LasersB06-208 铒固体激光Erbium LasersB06-209 半导体激光激发式固态激光Solid State(LD pumped)LaserB06-210 其他固态激光OthersB06-300 染料激光DYE LASERSB06-301 染料激光(闪光灯激发) Dye (Flash lamp Pumped) LasersB06-302 染料激光(激光激发) Dye (Laser Pumped) LasersB06-400 半导体激光SEMICONDUCTOR LASERSB06-401 半导体激光(1.55µm带) Semiconductor (1.55µm) LasersB06-402 半导体激光(1.30µm带) Semiconductor (1.30µm) LasersB06-403 半导体激光(0.85µm带) Semiconductor (0.85µm) LasersB06-404 半导体激光(0.78µm带) Semiconductor (0.78µm) LasersB06-405 半导体激光(0.60µm带) Semiconductor (0.60µm) LasersB06-406 半导体激光(其他波长带) Other Semiconductor LasersB06-407 半导体激光模组(长波长) Semiconductor (Long Wavelength) Laser Modules B06-408 半导体激光模组(短波长) Semiconductor (Short Wavelength) Laser Modules B06-409 半导体激光模组(可见光) Semiconductor (Visible) Laser ModulesB06-501 铁离子中心激光F-Center LasersB06-502 化学激光(HF-DF) Chemical (HF-DF) LasersB06-503 平板激光Slab LasersB06-504 远红外线激光Far-Infrared LasersB06-505 真空紫外线激光Vacuum Ultraviolet LasersB06-506 多色激光Multi Colour LasersB06-507 稳频激光Frequency Stabilized LasersB06-508 自由电子激光Free Electron LasersB07 激光用元件:B07 激光用元件LASER COMPONENTSB07-001 Q 开关 Laser Q-SwitchesB07-002 激光管Laser Tubes and BoresB07-003 激光棒Laser RodsB07-004 激光板Laser SlabsB07-005 气体再生设备,气体填充设备Gas Recyclers and Gas Handling EquipmentB07-006 激光控制设备Laser Control EquipmentB07-007 激光用盒Laser CellsB07-008 参数振汤器Parametric OscillatorsB07-009 光脉冲产生设备Optical Pulse GeneratorsB07-010 激光用共振腔Resonators for LasersB07-011 磁铁 MagnetsB07-012 激光用冷却设备Cooling Systems for LasersB07-013 激光护眼镜Safty Equipment; Goggles Glasses and FilmsB07-014 激光光吸收体Safty Equipment; Laser AbsorbersB07-015 激光用安全设备Safty Equipment; Protective HousingsB08 发光二极体:B08 发光二极体LIGHT-EMITTING DIODES; LEDB08-001 通信用1.55µm发光二极体1.55µm LEDs forCommunicationB08-002 通信用1.30µm发光二极体1.30µm LEDs forCommunicationB08-003 通信用0.85µm发光二极体0.85µm LEDs for CommunicationB08-004 通信用长波长发光二极体模组Long Wavelength LED Modules for Communication B08-005 通信用短波长发光二极体模组Short Wavelength LED Modules for Communication B08-006 可见光发光二极体(红色) Visible (Red) LEDsB08-007 可见光发光二极体(黄色) Visible (Yellow,Orange) LEDsB08-008 可见光发光二极体(绿色,多色) Visible (Green,Multi-Color) LEDsB08-009 可见光发光二极体(蓝色) Visible (Blue) LEDsB08-010 红外线二极体(非通信用) Infrared (not for Communication) LEDsB08-011 文数字表示用发光二极体Alpha-Numeric LEDsB08-012 发光二极体晶圆(通信用) LED Wafers for CommunicationB08-013 发光二极体晶圆(非通信用) LED Wafers not for CommunicationB08-014 发光二极体晶片、晶粒(通信用) LED Chips for CommunicationB08-015 发光二极体晶片、晶粒(非通信用) LED Chips not for CommunicationB09 光源设备:B09 光源设备 LIGHT SOURCESB09-001 标准光源Standard Light SourcesB09-002 安定化光源Stabilized Light SourcesB09-003 弧光灯Arc Light SourcesB09-004 氪灯Krypton Light SourcesB09-005 卤素灯Halogen Light SourcesB09-006 氙灯Xenon /Xenon Flashlamps Light SourcesB09-007 紫外线光源Ultraviolet Light SourcesB09-008 真空紫外线光源VUV Light SourcesB09-009 红外线光源Infrared Light SourcesB09-010 闪光光源Stroboscopic Light SourcesB09-011 小型光源Miniature Light SourcesB09-012 光纤光源Fiber Optic IlluminatorsB10 显示器元件:B10 显示器元件DISPLAY PANELB10-001 发光二极体显示器LED DisplaysB10-002 液晶显示器Liquid Crystal Display (LCD)B10-003 电浆显示器Plasma Display Panels(PDP)B10-004 电激发光显示器Electroluminescence Display (ELD)B10-005 电铬显示器Electrochromic Display (ECD)B10-006 真空萤光显示器Vacuum Fluorescent Display (VFD)B10-007 平面阴极射线管Flat CRTsB10-008 场发射显示器Field Emitter Display(FED)B10-099 其他平面显示元件Other Flat Panel DisplaysB11 检光元件及光纤混成元件:B11 检光元件及光纤混成元件DETECTORS & FIBEROPTIC HYBRID DEVICESB11-001 通信用PIN光二极体PIN Photodiodes for CommunicationB11-002 通信用崩溃光二极体Avalanche Photodiodes for CommunicationB11-003 通信用(长波长)Ge和III-V族检光元件Long-wavelength Detectors for Communication B11-004 通信用PIN光二极体模组PIN Photodiode Modules for CommunicationB11-005 通信用崩溃光二极体模组Avalanche Photodiode Modules for CommunicationB11-006 通信用(长波长)Ge和III-V族检光模组Long-wavelength Decector Modules for CommunicationB11-007 光二极体(近红外光) Near-infrafed PhotodiodesB11-008 光二极体(可见光) Visible PhotodiodesB11-009 光二极体(紫外光) Ultraviolet PhotodiodesB11-010 光电晶体PhototransistorsB11-011 光电管PhototubesB11-012 光电子增倍管(PMT) PhotomultipliersB11-013 光导电池Photoconductive CellsB11-014 热电偶检测器Thermocouple DetectorsB11-015 热堆检测器Thermopile DetectorsB11-016 微道板Microchannel PlatesB11-017 热电检测器Pyroelectroic DetectorsB11-018 辐射热测定器BolometersB11-019 其他红外线检测器Infrared DetectorsB11-020 摄像管Camera TubesB11-021 线型检光元件One Dimension Detector ArraysB11-022 面型检光元件Two Dimension Detector ArraysB11-023 光电耦合器Photo CouplerB11-024 光断续器Photo InterrupterB11-025 光反射器Photo ReflectorB11-026 光闸流晶体管PhotocyristorsB11-027 光感测元件Photosensing UnitsB11-028 内藏电路之光感测器Detectors with CircuitB11-029 民用用太阳电池Solar Cells for Consumer UseB11-030 产业用太阳电池Solar Cells for Power & Space UseB12 光纤及光缆:B12 光纤及光缆FIBER OPTIC FIBERS & CABLEB12-100 光纤FIBER OPTIC FIBERSB12-101 石英系多模态步阶式折射率型光纤Fiber Optic Fibers, Silica, Multimode, Step IndexB12-102 石英系多模态渐近式折射率型光纤(50/125) Fiber Optic Fibers, Silica, Multimode, Graded IndexB12-103 石英系多模态渐近式折射率型光纤(62.5/125) Fiber Optic Fibers, Silica,Multimode,Graded IndeB12-104 石英系多模态渐近式折射率型光纤(100/140) Fiber Optic Fibers, Silica,Multimode,Graded IndexB12-105 石英系单模态标准型光纤Fiber Optic Fibers, Silica, Single Mode,StandardB12-106 色散位移光纤Fiber Optic Fibers, Dispersion - ShiftedB12-107 偏振恒持光纤Fiber Optic Fibers, Polarization - MaintainingB12-108 其他单模态光纤Other Single Mode Optic FibersB12-109 石英系塑胶包覆光纤Fiber Optic Fibers, Plastic - Clad SilicaB12-110 塑胶光纤Fiber Optic Fibers, PlasticB12-111 石英系影像光纤Fiber Optic Bundles, Silica, ImagingB12-112 多成分影像光纤Fiber Optic Bundles, Non-silica, ImagingB12-113 光导管Fiber Optic LightguidesB12-199 其他集束光纤Other Fiber Optic BundlesB12-200 光缆FIBER OPTIC CABLEB12-201 单模态标准型松包悬空式光缆Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, AerB12-202 单模态标准型松包管路式光缆Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, DucB12-203 单模态标准型松包直埋式光缆Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, DireB12-204 单模态标准型紧包单心式光缆Fiber Optic Cable, Single Mode, Standard, Tightly Buffered, SingB12-205 单模态标准型紧包多心式光缆Fiber Optic Cable, Single Mode, Standard, Tightly Buffered, MultB12-206 光纤带 RibbonB12-207 色散位移光缆Fiber Optic Cable, Dispersion-ShiftedB12-208 偏振恒持光缆Fiber Optic Cable, Polarization - MaintainingB12-209 其他单模态光缆Other Single Mode Fiber Optic CableB12-210 多模态石英系(50/125)光缆Fiber Optic Cable, Multimode, Silica, 50/125B12-211 多模态石英系(62.5/125)光缆Fiber Optic Cable, Multimode, Silica, 62.5/125B12-212 多模态石英系(100/140)光缆Fiber Optic Cable, Multimode, Silica, 100/140B12-213 塑胶光缆Fiber Optic Cable, PlasticB12-214 石英系塑胶包覆光缆Fiber Optic Cable, Plastic-Clad SilicaB12-215 其他多模态光缆Other Multimode Fiber Optic CableB12-216 光纤保护用管Protect Tubes for Fiber Optic FiberB13 光被动元件/光控制元件:B13 光被动元件/光控制元件OPTICAL PASSIVE DEVICES/CONTROL DEVICESB13-001 单模态ST光纤连接器Fiber Optic Connectors, Single Mode, STB13-002 单模态Biconic光纤连接器Fiber Optic Connectors, Single Mode, BiconicB13-003 单模态FC/PC光纤连接器Fiber Optic Connectors, Single Mode, FC/PCB13-004 单模态APC光纤连接器Fiber Optic Connectors, Single Mode, APCB13-005 单模态FDDI光纤连接器Fiber Optic Connectors, Single Mode, FDDIB13-006 单模态SC光纤连接器Fiber Optic Connectors, Single Mode, SCB13-007 单模态D4光纤连接器Fiber Optic Connectors, Single Mode, D4B13-008 单模态光纤连接器插座(ST,FC/PC,SC,Biconic) Fiber Optic Connectors, Single Mode, Adapter(ST,FC/PC,SC,Biconic)B13-009 单模态多心光纤连接器(MT) Fiber Optic Connectors, Single Mode,Multi-Channel/MT B13-010 其他单模态光纤连接器Other Single Mode Fiber Optic ConnectorsB13-011 多模态ST光纤连接器Fiber Optic Connectors, Multimode, STB13-012 多模态FC/PC相容光纤连接器Fiber Optic Connectors, Multimode, FC/PCB13-013 多模态SMA光纤连接器Fiber Optic Connectors, Multimode, SMAB13-014 多模态FDDI光纤连接器Fiber Optic Connectors, Multimode, FDDIB13-015 多模态SC光纤连接器Fiber Optic Connectors, Multimode, SCB13-016 多模态D4光纤连接器Fiber Optic Connectors, Multimode, D4B13-017 多模态光纤连接器插座(ST,SMA,FC/PC) Fiber Optic Connectors,Multimode,Adapter(ST,SMA,FC)B13-018 多模态多心光纤连接器Fiber Optic Connectors, Multimode, Multi-ChannelB13-019 其他多模态光纤连接器Other Multimode Fiber Optic ConnectorsB13-020 套筒SleevesB13-021 金属箍(套管) Metal FerrulesB13-022 塑胶箍(套管) Plastic FerrulesB13-023 陶瓷箍(套管) Ceramic FerrulesB13-024 插座ReceptaclesB13-025 插头 PlugsB13-026 光连接器(含光纤线) Optical Connectors with FiberB13-027 光纤耦合器(两分支) Optical Couplers, Tap/SplitterB13-028 光纤耦合器(树状分支) Optical Couplers, TreeB13-029 星状光纤耦合器(穿透形) Transmission Type Star Optical CouplersB13-030 星状光纤耦合器(反射形) Reflection Type Star Optical CouplersB13-031 其他光纤耦合器Other Optical CouplersB13-032 光分波合波器(两波长) Optical Couplers, WDM, Dual-WavelengthB13-033 光分波合波器(多波长) Optical Couplers, WDM, Over Two WavelengthB13-034 其他光分波合波器Other Optical WDM CouplersB13-035 光衰减器(固定) Fixed Optical AttenuatorsB13-036 光衰减器(可变) Adjustable Optical AttenuatorsB13-037 光隔离器(通信用) Optical Isolators for CommunicationB13-038 光隔离器(非通信用) Optical Isolators for Non-CommunicationB13-039 光环流器Optical CirculatorsB13-040 光开关(机械式) Mechanical Optical SwitchesB13-041 光开关(非机械式) Non-mechanical Optical SwitchesB13-042 光纤光栅Fiber Bragg GratingB13-043 光移相器Optical Phase ShiftersB13-044 光共振器Optical ResonatorsB13-045 空间调变元件Spatial Light ModulatorsB13-046 光影像转换元件(ITC) Incoherent to Coherent Devices(ITC)B13-047 光截波器,机械式光调变器Optical Choppers, Mechanical ModulatorsB13-048 磁光调变器Maganeto-Optic ModulatorsB13-049 声光调变器Acousto-Optic ModulatorsB13-050 电光调变器Electro-Optic ModulatorsB13-051 波导形调变器,行波形调变器Optical Waveguide,Travelling-wave ModulatorsB13-052 类比/强度调变器Analog/Intensity ModulatorsB13-053 数位调变器Digital ModulatorsB13-054 其他调变器Other ModulatorsB13-055 光弹性调变器Photoelastic ModulatorsB13-056 机械式偏折/扫瞄器(Galvanometer方式) Mechanical OpticalDeflectors/Scanners(Galvanometer)B13-057 声光偏折/扫瞄器Acousto-Optic Optical Deflectors/ScannersB13-058 电光偏折/扫瞄器Electro-Optic Optical Deflectors/ScannersB13-059 机械式扫瞄器(回转多面镜方式) Mechanical Optical Scanners(Polygonal Mirrors)B13-060 机械式扫瞄器(全像方式) Mechanical Optical Scanners(Holographic)B13-061 光纤跳接线Fiber Optic Patchcord PigtailB13-062 光纤终端箱Fiber Optic Distribution BoxB13-063 光纤接续盒Fiber Optic ClosureB13-099 其他光被动元件/控制元件Other Optical Passive Devices/Control DevicesB14 积体光元件:B14 积体光元件INTEGRATED OPTICAL DEVICESB14-001 光IC Optical ICB14-002 OEIC Optoelectronic ICB14-099 其他光电元件Other Devices光电行业关键词英汉对照(三)C01 光通讯设备:C01 光通讯设备OPTICAL COMMUNICATION EQUIPMENTC01-100 电信用光通讯设备 OPTICAL COMMUNICATIONEQUIPEMNT(TELECOMMUNICATION)C01-101 同步光纤网路光波传输系统及多工机设备Lightwave/Transimission System and Multiplexer Equipment (SONET-Based)C01-102 同步光纤网路光数位回路载波机设备Optical/Digital Loop Carrier Equipment (SONET-Based)C01-103 同步光纤网路数位交换连接系统设备Digital Cross Connect System Equipment (SONET-based)C01-104 同步数位阶层光波传输系统及多工机设备Lightwave/Transmission System and Multiplexer Equ Based)C01-105 同步数位阶层光数位回路载波机设备Optical/Digital Loop Carrier Equipment(SDH-Based)C01-106 同步数位阶层数位交换连接系统设备Digital Cross Connect System Equipment (SDH-Based)C01-107 光纤网路单体ONU(Optical Network Unit)C01-108 非同步光通讯设备Asynchronous Optical Communication EquipmentC01-199 其他公众用光通讯设备Other Optical Communication Equipment (Telecommunication) C01-200 数据通讯光纤网路设备OPTICAL DATA COMMUNICATION NETWORK EQUIPMENT (PREMISES)C01-201 光纤分散式资料介面网路设备FDDI Network EquipmentC01-202 非同步传输模式网路设备ATM Network EquipmentC01-203 高速乙太网路设备Fast Ethernet Network EquipmentC01-204 光纤通道Fiber ChannelC01-299 其他用户光数据通讯设备Other Optical Data Communication Network Equipment (Premises)C01-300 特殊用途光传输设备OPTICAL TRANSMISSION EQUIPMENT(SPECIAL PURPOSE) C01-301 有线电视光传输设备Optical Transmission Equipment, CATVC01-302 视讯/闭路监视光传输设备Optical Transmission Equipment, Video/CCTVC01-303 量测/控制信号光传输设备Optical Transmission Equipment, Measure/ControlC01-304 空间(无线)光传输设备Optical Transmission Equipment, Spatial (Wireless)C01-305 光放大器Optical AmplifierC01-399 其他特殊用途光传输设备Other Optical Transmission Equipment (Special Purpose)C02 光测仪器设备:C02 光测仪器设备OPTICAL MEASURING EQUIPMENTC02-001 量测用标准光源Standard/Stabilized Light SourcesC02-002 光功率计(热转换型) Thermal Conversion Type Optical Power MetersC02-003 光功率计(光电转换型) Photoelectric Conversion Type Optical Power MetersC02-004 光谱分析仪Optical Spectrum AnalyzersC02-005 光波长计Optical Wavelength MetersC02-006 光谱幅宽量测器Spectral Width Measuring EquipmentC02-007 光时域反射计(OTDR) Optical Time-Domain Reflectometers(OTDR)C02-008 基频传输特性检测器Baseband Frequency Characteristics Evaluation EquipmentC02-009 波长色散量测器Wavelength Dispersion Measuring EquipmentC02-010 光纤测试设备Optical Fiber Test EquipmentC02-011 激光光束波形量测器Laser Beam Profile Measuring EquipmentC02-012 光纤尺寸量测器Optical Fiber Sizes Measuring EquipmentC02-013 光纤模态参数测试器Optical Fiber Mode Field Parameters Test EquipmentC02-014 光纤强度测试器Optical Fiber Strength Test EquipmentC02-015 其他光纤相关量测设备Other Optical Fiber Measurement EquipmentC02-016 光连接器尺寸量测器Optical Connector Sizes Measuring EquipmentC02-017 光碟测定检查设备(装置用) Optical Disk Drive Inspection EquipmentC02-018 光碟测定检查设备(碟片用) Optical Disk Inspection EquipmentC02-019 光度计 PhotometersC02-020 复光束光度计,复光束量测器Double Beam PhotometersC02-021 测微光度计 MicrophotometersC02-022 感光密度计 DensitometersC02-023 光泽度计 GrossmetersC02-024 照度计 Illuminance MetersC02-025 测距仪 RangefindersC02-026 曝光计 Exposure MetersC02-027 辉度计 Luminance MetersC02-028 比色计 Comparison ColorimetersC02-029 色彩计(分光型) Spectral ColorimetersC02-030 色彩计(光电型) Photoelectric ColorimetersC02-031 积分球Integrating SpheresC02-032 折射计 RefractometersC02-033 椭圆计 EllipsometersC02-034 偏振光镜 PolariscopesC02-035 偏振计 PolarimetersC02-036 比较量测器ComparatorsC02-037 焦距仪 FocometersC02-038 球径计 SpheremetersC02-039 OTF(光学转换函数)设备Optical Transfer Function InstrumentationC02-040 MTF分析/量测装置Modulation Transfer Function(MTF) Analysis/Measurement EquipmentC02-041 投影检查器Profile ProjectorsC02-042 自动准直仪 AutocollimatorsC02-043 光弹性机器Photoelastic InstrumentsC02-099 其他光(学)量测器Other Optical Measurement EquipmentC03 分光镜、干涉仪:C03 分光镜、干涉仪 SPECTROSCOPES, INTERFEROMETERSC03-001 分光计 SpectrometersC03-002 单色器MonochromatorsC03-003 分光镜,干涉分光镜,摄谱仪 Spectroscopes, Interference Spectroscopes,Spectrographs C03-004 分光光度计,分光测光器SpectrophotometerC03-005 Michelson干涉仪 Michelson InterferometersC03-006 Tywman Green干涉仪Tywman Green InterferometersC03-007 Mach-Zehnder干涉仪 Mach-Zehnder InterferometersC03-008 Fizeau干涉仪 Fizeau InterferometersC03-009 Fabry-Perot干涉仪 Fabry-Perot InterferometersC04 显微镜,望远镜,照像机:C04 显微镜,望远镜, 照像机MICROSCOPES, TELESCOPES, CAMERASC04-001 放大镜 MagnifiersC04-002 单接物镜双眼显微镜 Binocular MicroscopesC04-003 双眼实体显微镜,立体显微镜 Stereo MicroscopesC04-004 金属显微镜 Metallurgical MicroscopesC04-005 偏光显微镜 Polarizing MicroscopesC04-006 相位差显微镜 Phase-Contrast MicroscpoesC04-007 干涉显微镜,微分干涉对比显微镜 Interferences/Differential Interference Contrast MicroscopesC04-008 萤光显微镜 Fluorescence MicroscopesC04-009 激光显微镜 Laser MicroscopesC04-010 量测用显微镜,工具显微镜 Measurement MicroscopesC04-011 显微镜光度计 Microscope PhotometersC04-012 折射望远镜,Galilean望远镜Galilean Refracting TelescopesC04-013 反射望远镜 Reflecting TelescopesC04-014 反射折射望远镜 Catadioptric TelescopesC04-015 35mm焦平面自动对焦相机35mm AF Focal Plane CamerasC04-016 35mm焦平面手动对焦相机35mm NON-AF Focal Plane CamerasC04-017 35mm镜头快门多焦点相机35mm Multi Focal Points Lens Shutter CamerasC04-018 35mm镜头快门单焦点相机35mm Single Focal Point Lens Shutter CamerasC04-019 中, 大型照相机Medium and Large Size CamerasC04-020 VTR摄影机VTR CamerasC04-021 电视摄影机TV CamerasC04-022 高画质电视摄影机High Definition(HDTV) CamerasC04-023 CCTV摄影机CCTV CamerasC04-024 全像照像机Holographic CamerasC04-025 眼镜 EyeglassesC04-026 夜视设备Night Vision EquipmentC04-027 照像机用之日期显示模组 Date moduleC04-028 照像机用之底片计数器Film counterC04-029 APS 相机APS CamerasC05 光感测器:C05 光感测器OPTICAL SENSORSC05-001 光电开关,光电感测器Photo Switches, Photo SensorsC05-002 标记感测器Mark Photo SensorsC05-003 色彩标记感测器Color Mark Photo SensorsC05-004 色彩感测器Color Photo SensorsC05-005 光学式编码器,角度感测器Optical Encoders, Angle SensorsC05-006 光遥控器Optical Remote Control EquipmentC05-007 影像感测器式量测设备Image Sensor Type Measurement InstrumentsC05-008 显微镜式量测设备Microscope Type Measurement InstrumentsC05-009 精密长度干涉仪Precise Length InterferometersC05-010 光波测距装置Electronic Distance MetersC05-011 三角测量法距离感测器Triangulation Distance MetersC05-012 激光调变测距方式距离感测器Laser Modulation Distance MetersC05-013 脉冲测距方式距离感测器Pulse Distance MetersC05-014 激光外径测定器Laser Outer Diameter Measuring SensorsC05-015 激光厚度计Laser Thickness GaugesC05-016 激光拉伸计Laser Extension MeterC05-017 红外线厚度计Infrared Thickness GaugesC05-018 水平仪 LevelsC05-019 激光水平仪 Laser LevelsC05-020 经纬仪 Theodlites/TransitsC05-021 激光经纬仪 Laser Theodlites/TransitsC05-022 激光标线设备Laser Marking-off EquipmentC05-023 位置光电感测器Position Sensors, Pattern Edge SensorsC05-024 半导体位置感测器Position Sensitive Devices(PSDs)C05-025 激光指示器Laser PointersC05-026 激光都卜勒测速计Laser Doppler VelocimetersC05-027 环形激光流速计,光纤陀螺仪Ring Laser Velocimeters, Optical Fiber Laser Gyros C05-028 转速仪Rotational Speed MetersC05-029 激光都卜勒转速仪Laser Doppler Rotational Speed MetersC05-030 全像方式图样量测设备Holographic Method Pattern Measurement EquipmentsC05-031 激光移位计Laser Displacement MetersC05-032 激光指纹检测器Laser Fingerprint DetectorsC05-033 光学水质污染检测设备Optical Water Pollution Measurement and Detection Equipment C05-034 光学大气污染检测设备Optical Air Pollution Measurement and Detection EquipmentC05-035 红外线气体浓度感测器Infrared Gas Density MetersC05-036 光电式烟检知器Photo Smoke DetectorsC05-037 激光粉尘监视器,粒径量测器Laser Dust MonitorsC05-038 距离测定用激光雷达Rang-finding Lidar SystemsC05-039 环境监测用激光雷达Environment Monitoring Lidar SystemsC05-040 激光表面检查设备Laser Surface Inspection EquipmentC05-041 平面度测定系统 Flatness TestersC05-042 斑点图形量测设备Speckle Method Pattern Measurement EquipmentC05-043 云纹图形量测设备Moire Method Pattern Measurement EquipmentC05-044 影像分析仪 Image AnalyzersC05-045 激光缺陷检查设备Laser Defect Inspection EquipmentC05-046 红外线辐射温度感测器Infrared ThermometersC05-047 人体检知感测器,激光保全设备Laser Security/Surveillance EquipmentC05-048 光计数器Photo CountersC05-049 激光公害检测设备Laser Pollution Detective DevicesC05-050 激光热常数量测设备Laser Thermal Constants Measurement EquipmentC05-051 全像非破坏检查设备 Holographic Nondestructive Testing EquipmentC06 光纤感测器:C06 光纤感测器FIBER OPTIC SENSORSC06-001 光纤光电开关/感测器Fiber Optic Photo Switches/ SensorsC06-002 光纤式标记感测器Fiber Optic Mark Photo SensorsC06-003 光纤式色彩标记感测器Fiber Optic Color Mark Photo SensorsC06-004 光纤温度感测器Fiber Optic Temperature SensorsC06-005 光纤压力感测器Fiber Optic Pressure SensorsC06-006 光纤声波感测器Fiber Optic Acoustic SensorsC06-007 光纤变形感测器Fiber Optic Strain SensorsC06-008 光纤振动感测器Fiber Optic Vibration SensorsC06-009 光纤移位感测器Fiber Optic Displacement SensorsC06-010 光纤陀螺仪感测器Fiber Optic Gyro SensorsC06-011 光纤速度感测器Fiber Optic Velocity SensorsC06-012 光纤磁通量感测器Fiber Optic Magnetic Flux SensorsC06-013 光纤磁场感测器Fiber Optic Magnetic Field SensorsC06-014 光纤电流感测器Fiber Optic Current SensorsC06-015 光纤电场感测器Fiber Optic Electric Field SensorsC06-016 光纤浓度、成份感测器Fiber Optic Density,Constituent SensorsC06-017 光纤油膜感测器Fiber Optic Oil Film SensorsC06-018 光纤液位感测器Fiber Optic Liquid Surface Level SensorsC06-019 光纤光分布/放射线感测器Fiber Optic Light Distribution/Radiation SensorsC06-020 光纤显微镜Fiber Optic FiberscopesC06-021 光纤光栅应变感测器Fiber Grating Strain SensorC07 光储存装置:C07 光储存装置OPTICAL STORAGE PRODUCTC07-100 消费性光碟机CONSUMER OPTICAL DISC PLAYERSC07-101 激光唱盘Compact Disc (CD) PlayersC07-102 激光音响组合Products Incorporated CD(CD-Radio-Cassette Tape Recorders) C07-103 LD 影碟机Laser Disc (LD) PlayersC07-104 影音光碟机Video CD PlayersC07-105 DVD 影碟机Digital Versatile Disc (DVD) PlayersC07-106 迷你音碟机Mini Disc (MD) PlayersC07-200 资讯用仅读型光碟机READ-ONLY OPTICAL DISC DRI597VESC07-201 CD-ROM光碟机CD-ROM DrivesC07-202 DVD-ROM 光碟机DVD-ROM DrivesC07-300 资讯用仅写一次型光碟机RECORDABLE OPTICAL DISC DRIVESC07-301 CD-R 光碟机CD-R DrivesC07-399 其他仅写一次型光碟机Other Recordable Optical Disc DrivesC07-400 资讯用可覆写型光碟机REWRITABLE OPTICAL DISC DRIVESC07-401 3.5" MO 光碟机3.5" MO Disc DrivesC07-402 5.25" MO 光碟机5.25" MO Disc DrivesC07-403 PD 光碟机PD DrivesC07-404 CD-RW光碟机CD-RW DrivesC07-499 其他可覆写型光碟机Other Rewritable Optical Disc DrivesC07-500 光碟机零组件DEVICES OF OPTICAL DISC DRIVESC07-501 光学头,光学读取头Optical Heads , Pick-up HeadsC07-502 光学头伺服装置,伺服用IC模组Optical Head Controllers, Control ICs/Modules C07-503 光学头驱动装置Optical Head ServomotorsC07-504 光碟匣Optical Disc CartridgesC07-505 主轴马达 Spindle MotorC07-600 光碟片OPTICAL DISCSC07-601 CD 音碟片Compact DiscsC07-602 LD 影碟片Laser DiscsC07-603 影音光碟片Video CDsC07-604 DVD光碟片Digital Versatile Discs : DVDsC07-605 迷你音碟片Mini Discs : MDsC07-606 CD-ROM 光碟片CD-ROMsC07-607 DVD-ROM光碟片DVD-ROMsC07-608 CD-R 光碟片CD-RsC07-609 其他可写仅读型光碟片Other Recordable Optical DiscsC07-610 3.5" MO 光碟片3.5" MO Discs。

《Laser Fundamentals

《Laser Fundamentals——激光基础》评介赵国华(南开大学现代光学研究所天津300071)张立彬(南开大学图书馆天津300071)傅汝廉(南开大学现代光学研究所天津300071)摘要本文对《激光基础》一书从写作背景、内容及特点以及本书的适用对象等方面进行了分析和介绍,并与国内知名教材在知识点上、讲述方法、总体框架上的区别进行了对比。

关键词外国教材激光教材评介1.对本书的评介1.1 本书的写作背景和作者情况介绍《激光基础》是一本优秀的教科书。

作者William T. Silfvast教授历时十年于1996年完成第一版,此后分别在1999年、2000年、2003年三次再版。

该书出版后受到读者和编辑的一致好评,作者于2004年完成了第二个版本并出版。

William Silfvast 分别于1961和1965 获得了Utah大学的物理和数学的理学学士学位以及物理学博士学位。

1967-1989工作于AT&T贝尔实验室,1983年成为一名卓越的工程技术成员,1990年,成为佛罗里达州奥兰多市的大学中心的一名物理教授,同时也是一名光学与激光研究与教学中心的一名成员。

1999年,他成为光学研究所的光学教授,目前是光学所退休的名誉教授。

他是牛津大学1966-1967年NATO的博士学位获得者,1982-1983年成为史丹弗Guggenheim基金学者,1994-1997年是弗罗里达中心大学物理学院的一员。

Silfvast教授是美国物理学界、光学界和IEEE的成员,他在原子蒸气激光、复合激光、光至电离泵浦激光、等离子激光和EUV石版印刷术领域承担先驱性工作,著有100多篇工程论文,还拥有30余项专利。

《激光基础》是作者在佛罗里达中央大学教授“激光原理”课程所用讲义的基础上编写而成。

佛罗里达中央大学的光学激光研究教育中心,是美国著名的三大光学研究中心之一。

正是由于作者从1960年就开始长期从事激光科研与教学工作,积累了丰富的理论与实践知识,因此才能写出如此优秀的有独到见解的激光教科书。

激光专业英语汇总

2011年技术物理学院08级(激光方向)专业英语翻译重点!!!作者:邵晨宇Electromagnetic电磁的principle原则principal主要的macroscopic宏观的microscopic微观的differential微分vector矢量scalar标量permittivity介电常数photons光子oscillation振动density of states态密度dimensionality维数transverse wave横波dipole moment偶极矩diode 二极管mono-chromatic单色temporal时间的spatial空间的velocity速度wave packet波包be perpendicular to线垂直be nomal to线面垂直isotropic各向同性的anistropic各向异性的vacuum真空assumption假设semiconductor半导体nonmagnetic非磁性的considerable大量的ultraviolet紫外的diamagnetic抗磁的paramagnetic顺磁的antiparamagnetic反铁磁的ferro-magnetic铁磁的negligible可忽略的conductivity电导率intrinsic本征的inequality不等式infrared红外的weakly doped弱掺杂heavily doped重掺杂a second derivative in time对时间二阶导数vanish消失tensor张量refractive index折射率crucial主要的quantum mechanics 量子力学transition probability跃迁几率delve研究infinite无限的relevant相关的thermodynamic equilibrium热力学平衡(动态热平衡)fermions费米子bosons波色子potential barrier势垒standing wave驻波travelling wave行波degeneracy简并converge收敛diverge发散phonons声子singularity奇点(奇异值)vector potential向量式partical-wave dualism波粒二象性homogeneous均匀的elliptic椭圆的reasonable公平的合理的reflector反射器characteristic特性prerequisite必要条件quadratic二次的predominantly最重要的gaussian beams高斯光束azimuth方位角evolve推到spot size光斑尺寸radius of curvature曲率半径convention管理hyperbole双曲线hyperboloid双曲面radii半径asymptote渐近线apex顶点rigorous精确地manifestation体现表明wave diffraction波衍射aperture孔径complex beam radius复光束半径lenslike medium类透镜介质be adjacent to与之相邻confocal beam共焦光束a unity determinant单位行列式waveguide波导illustration说明induction归纳symmetric 对称的steady-state稳态be consistent with与之一致solid curves实线dashed curves虚线be identical to相同eigenvalue本征值noteworthy关注的counteract抵消reinforce加强the modal dispersion模式色散the group velocity dispersion群速度色散channel波段repetition rate重复率overlap重叠intuition直觉material dispersion材料色散information capacity信息量feed into 注入derive from由之产生semi-intuitive半直觉intermode mixing模式混合pulse duration脉宽mechanism原理dissipate损耗designate by命名为to a large extent在很大程度上etalon 标准具archetype圆形interferometer干涉计be attributed to归因于roundtrip一个往返infinite geometric progression无穷几何级数conservation of energy能量守恒free spectral range自由光谱区reflection coefficient(fraction of the intensity reflected)反射系数transmission coefficient(fraction of the intensity transmitted)透射系数optical resonator光学谐振腔unity 归一optical spectrum analyzer光谱分析grequency separations频率间隔scanning interferometer扫描干涉仪sweep移动replica复制品ambiguity不确定simultaneous同步的longitudinal laser mode纵模denominator分母finesse精细度the limiting resolution极限分辨率the width of a transmission bandpass透射带宽collimated beam线性光束noncollimated beam非线性光束transient condition瞬态情况spherical mirror 球面镜locus(loci)轨迹exponential factor指数因子radian弧度configuration不举intercept截断back and forth反复spatical mode空间模式algebra代数in practice在实际中symmetrical对称的a symmetrical conforal resonator对称共焦谐振腔criteria准则concentric同心的biperiodic lens sequence双周期透镜组序列stable solution稳态解equivalent lens等效透镜verge 边缘self-consistent自洽reference plane参考平面off-axis离轴shaded area阴影区clear area空白区perturbation扰动evolution渐变decay减弱unimodual matrix单位矩阵discrepancy相位差longitudinal mode index纵模指数resonance共振quantum electronics量子电子学phenomenon现象exploit利用spontaneous emission自发辐射initial初始的thermodynamic热力学inphase同相位的population inversion粒子数反转transparent透明的threshold阈值predominate over占主导地位的monochromaticity单色性spatical and temporal coherence时空相干性by virtue of利用directionality方向性superposition叠加pump rate泵浦速率shunt分流corona breakdown电晕击穿audacity畅通无阻versatile用途广泛的photoelectric effect光电效应quantum detector 量子探测器quantum efficiency量子效率vacuum photodiode真空光电二极管photoelectric work function光电功函数cathode阴极anode阳极formidable苛刻的恶光的irrespective无关的impinge撞击in turn依次capacitance电容photomultiplier光电信增管photoconductor光敏电阻junction photodiode结型光电二极管avalanche photodiode雪崩二极管shot noise 散粒噪声thermal noise热噪声1.In this chapter we consider Maxwell’s equations and what they reveal about the propagation of light in vacuum and in matter. We introduce the concept of photons and present their density of states.Since the density of states is a rather important property,not only for photons,we approach this quantity in a rather general way. We will use the density of states later also for other(quasi-) particles including systems of reduced dimensionality.In addition,we introduce the occupation probability of these states for various groups of particles.在本章中,我们讨论麦克斯韦方程和他们显示的有关光在真空中传播的问题。

基于DMD的小型近红外光谱仪原理及优化分析

第50卷第2期Vol.50No.22021年2月Feb.2021红外与激光工程Infrared and Laser EngineeringPrinciple and optimum analysis of small near-infrared spectrometersbased on digital micromirror deviceLiu Hongming1,3,Liu Yujuan1*,Song Ying1,Zhong Zhicheng1,Kong Lingsheng2,Liu Huaibin2(1.Key Laboratory of Geophysical Exploration Equipment,Ministry of Education,College of Instrumentation&Electrical Engineering,Jilin University,Changchun130021,China;2.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun130012,China;3.Tonghua Normal University,Tonghua134002,China)Abstract:The DMD small near-infrared spectroscopy instrument is widely used in chemical composition analysis and quality inspection for its advantages of fast detection speed,high sensitivity,no damage detection, and miniaturization of portable instruments.However,as the premise of instrument design,optical optimization design of the whole spectral range is the hard work of the system.In this paper,the theoretical design method of the spectroscopic imaging system based on the small near-infrared spectrometer of DMD was studied.The method was designed by using the double-dispensing anti-aberration lens and combining the geometric aberration theory to optimize the design of a small DMD near-infrared spectrometer to reduce the aberration of the entire system.Then,the optical simulation software was used to align the direct imaging system for optical simulation. And ultimately achieve the design simulation requirements.Simulation results indicate that the whole size of the spectrometer is less than150mm"50mm><150mm,and the resolution is better than15nm in the range of 1000・l700nm in the working band.Therefore,the proposed method can meet the design requirements and has broad application prospects in practical applications.Key words:near-infrared spectroscopy instrument;DMD;principle and optimum analysisCLC number:TH74Document code:A DOI:10.3788/IRLA20200427基于DMD的小型近红外光谱仪原理及优化分析刘宏明乜刘玉娟匚宋莹*仲志成*孔令胜2,刘怀宾$(1.吉林大学仪器科学与电气工程学院地球信息探测仪器教育部重点实验室,吉林长春130021;2.中国科学院长春光学精密机械与物理研究所,吉林长春130021;3.通化师范学院,吉林通化134002)摘要:数字微镜器件小型近红外光谱仪器具有检测速度快、灵敏度高、无损伤检测、仪器小型化等优点,广泛应用于化学成分分析和质量检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

151
Downloaded From: / on 12/09/2014 Terms of Use: /terms
152 OPTICAL DESIGN FUNDAMENTALS FOR INFRARED SYSTEMS
r 80 rmnoie xaaius FIG. 9.4 Radial energy distribution. 9.4 Modulation Transfer Function Removing the subjectivity from evaluating lenses by just visually judging their performance was achieved with the introduction of the modulation transfer function. This occurred about a half century ago.' While the subject of MTF is very complex, there are a number of approximations that are especially helpful in the layout stages to assess the performance expectations of a
Downloaded From: / on 12/09/2014 Terms of Use: /terms
CHAPTER 9. IMAGE EVALUATION 153
FIG. 9.2 Knife edge scan across the blur spot.
E
r= 1.25aE -047
.
(
9.1)
For example, for E = 80%, r = 1.25a 0.80 -0477 = 1.39a. In other words, if the dimension a obtained with the knife measurement was 0.2 mm, the radius of the circular blur spot would be 0.2 x 1.39 = 0.28 mm. The main point to remember is that one has to be careful with the interpretation of data obtained by one measuring method when applied to another. 9.3 Energy Distribution To properly assess the energy distribution of a blur spot, measurements are required that indicate the change of the encircled energy as a function of the blur spot radius. The setup shown in Fig. 9.1 is suitable for such a measurement. A number of well-centered circular masks of increasing size are inserted successively at the image location and the energy levels are recorded from 0 to 100%. The resultant plot looks typically like the one shown in Fig. 9.4. Energy Contents
FIG. 9.3 Comparison between measurements with circular masks and knife edge scan.
Downloaded From: / on 12/09/2014 Terms of Use: /terms
154 OPTICAL DESIGN FUNDAMENTALS FOR INFRARED SYSTEMS The relation between the distance a and the radius r for the same amount of energy contained in the exposed portion of the blur spot is approximated by
FIG. 9.1 Setup for blur spot measurement with circular masks.
9.2.2 Slit Substituting a very narrow slit in place of the pinhole and moving it across the image blur is another way of measuring the total blur spot size. To obtain an accurate result, the width of the slit should be no wider than about 1/20 of the blur spot size to be measured. The scanning across the blur spot is done in two directions, orthogonal to each other, if the shape of the blur is not circular.
9.2.3 Knife edge
A third way of measuring the blur spot size is to traverse a sharp edge (knife edge) across the blur. The total spot size and the optimum image position for the minim um blur spot size are found when the travel of the knife edge required to raise the signal from zero to 100% is a minimum. This is indicated in Fig. 9.2. The question arising from Fig. 9.2 is whether one can simply subtract 10% from both ends of the scan to fmd the 80% blur spot size. Figure 9.3 shows that this is not the case. Based on the reasonable assumption that the blur spot envelope resembles a Gaussian curve, a correction factor can be applied.
CHAPTER ction
With the knowledge of how aberrations and diffraction influence the performance of an optical system, we shall now discuss ways to measure and evaluate image quality. For the infrared, the blur spot size and the radial energy distribution in the image plane are two quantities of great interest. They indicate the minim um detector element size required to collect a certain amount of energy. From this information, one can derive the MTF, a measure of contrast versus resolution. As with previously discussed subjects, this chapter encompasses a very special and large field. However, the presented approximations will help to quickly obtain some valuable benchmarks for a given situation. 9.2 Blur Spot Measurements It was pointed out in Chapter 3 that due to diffraction and uncorrected aberrations, the image of an object point is never a point but a diffused disk, usually referred to as the blur circle or blur spot. To confirm the predicted size of a blur spot, several measurement methods are used.
9.2.1 Circular mask
One way of measuring the size of an image blur is to place the lens under test in the exiting beam of a collimator and insert at the image location of the lens a circular mask just large enough to encompass the percentage of the energy the system design asks for. The 100% level is established by recording the signal without any mask. Of course, the detector has to be large enough to accept all the energy transmitted through the lens under test. Next, a mask is inserted, properly sized to the specifications of the desired blur spot size. The signal will indicate if the energy passing through the mask meets the expected percentage level. The principle of such a setup is shown in Fig. 9.1. The use of a field lens provides the necessary clearance for the pinhole aperture insertion.
相关文档
最新文档