LCD行业-富相科技-LCD液晶显示器驱动系统

合集下载

LCD基本驱动原理

LCD基本驱动原理

LCD基本驱动原理LCD(液晶显示器)的基本驱动原理是利用液晶分子在电场作用下改变其排列方式来控制光的透过和阻挡,从而实现图像的显示。

下面将以液晶显示器的构造、液晶原理和驱动方法三个方面详细介绍LCD的基本驱动原理。

液晶显示器主要由三部分组成:玻璃基板,液晶层和电极层。

液晶层是一层特殊的有机化合物,它在没有电场时呈现正常或散乱的排列状态;而在有电场作用下,液晶分子会发生定向,使光线通过的情况发生改变。

电极层是由透明导电材料制成的,它能够在液晶层上施加电场。

玻璃基板用来提供结构支撑和保护。

液晶的驱动原理基于液晶分子的排列方式,液晶分为向列型和相序型两种。

向列型液晶具有向列排列,这意味着分子在没有电场作用下是按照规则排列的,在电场作用下分子会倾斜或扭曲改变光的透过和阻挡。

相序型液晶则具有无序排列,电场的作用下,它们会排列成特定的序列,使光线通过的情况发生变化。

根据液晶材料的不同,液晶显示器被分为TN (扭曲向列型)、STN(超扭曲向列型)、IPS(In-Plane Switching,平面转向型)和VA(Vertical Alignment,垂直向列型)等类型。

液晶显示器的电极层通过施加电压,产生电场。

液晶分子受到电场的作用,改变排列状态,从而改变传递的光的强度和偏振方向。

根据不同的液晶构造和目标显示效果,液晶显示器的驱动方法也有所不同。

最常用的驱动方法是矩阵驱动法,其中最常见的是被动矩阵驱动法和主动矩阵驱动法。

被动矩阵驱动法是通过将水平和垂直方向的扫描线分别与透明电极交叉连接来驱动液晶分子。

每个像素点都位于两条扫描线的交叉点上,通过施加相应的电压,控制液晶分子改变透光或阻挡光。

主动矩阵驱动法使用了一个透明的源驱动器和一个选通驱动器。

透明的源驱动器是将输入像素数据线连接到显示面板的水平行,而选通驱动器是将输出扫描线驱动到显示面板的垂直行。

通过控制源驱动器和选通驱动器的电压,选择性地驱动特定的像素点,从而控制液晶分子的排列,实现图像的显示。

TFT_LCD液晶显示器的驱动原理详解

TFT_LCD液晶显示器的驱动原理详解

TFT_LCD液晶显示器的驱动原理详解TFT液晶显示器是一种广泛应用于电子产品中的显示技术,它具有亮度高、色彩鲜艳、对比度高等特点。

其驱动原理涉及到液晶分子的操控和信号的产生,下面将详细介绍TFT_LCD液晶显示器的驱动原理。

TFT液晶显示器的基本构造是将两块玻璃基板之间夹上一层液晶材料并加上一层透明导电材料形成液晶屏幕。

液晶是一种具有各向异性的有机材料,其分子有两种排列方式:平行排列和垂直排列。

平行排列时液晶分子可以使光线通过,垂直排列时则阻止光线通过。

这种液晶分子的特性决定了TFT液晶显示器的驱动原理。

TFT液晶显示器的显示过程是通过将电信号施加到液晶分子上来实现的。

在TFT液晶显示器中,每个像素都有一个薄膜晶体管(TFT)作为驱动器,这个晶体管可以控制液晶分子的排列方式。

当电压施加到晶体管上时,晶体管会打开,液晶分子垂直排列,使得背光通过液晶层后被过滤器颜色选择,从而显示对应的颜色。

当电压不再施加到晶体管上时,晶体管关闭,液晶分子平行排列,背光被完全阻挡,形成黑色。

为了产生详细的图像,TFT液晶显示器采用了阵列式的组织结构。

在每个像素之间有三个基色滤光片,分别为红色、绿色和蓝色。

液晶层上的每个像素都与一个TFT晶体管和一个电容器相连。

当电压施加到TFT晶体管上时,电容器会积蓄电荷,触发液晶分子的排列,从而控制对应像素的颜色。

在驱动原理的实现过程中,TFT液晶显示器需要一个控制器来产生电信号。

控制器通过一个复杂的算法,将输入的图像数据转化为适合TFT液晶显示器的电信号,以实现图像的显示。

控制器还负责对TFT晶体管进行驱动,为每个像素提供适当的电压。

另外,TFT液晶显示器还需要背光模块来提供光源。

背光模块通常使用冷阴极荧光灯(CCFL)或者白色LED来产生光线。

背光通过液晶分子的排列方式来调节光的透过程度,从而形成不同的颜色。

为了提供更好的显示效果,在TFT液晶显示器中还需要增加背光的亮度和对比度的调节功能。

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍TFTLCD是一种液晶显示技术,全称为Thin Film Transistor Liquid Crystal Display,即薄膜晶体管液晶显示器。

它是目前应用最广泛的显示器件之一,被广泛应用在电子产品中,如手机、平板电脑、电视等。

TFTLCD显示屏是由数百万个像素点组成的,每个像素点又包含红、绿、蓝三个亚像素。

这些像素点由一层薄膜晶体管(TFT)驱动。

薄膜晶体管是一种微型晶体管,位于每个像素点的背后,用来控制液晶材料的偏振状态。

当电流通过薄膜晶体管时,液晶分子会受到电场的影响,从而改变偏振方向,使光线在通过液晶层时发生偏转,从而改变像素点的亮度和颜色。

TFTLCD显示屏需要配备驱动电路,用来控制TFT晶体管的电流,以控制液晶分子的偏振状态。

驱动电路通常由一个控制器和一组电荷泵组成。

控制器负责接收来自外部的指令,通过电荷泵为晶体管提供适当的电流。

电荷泵可以产生高电压和低电压,从而控制液晶分子的偏振状态。

控制器通过一组驱动信号,将指令传递给TFT晶体管,控制像素点的亮度和颜色。

TFTLCD驱动器是用来控制TFTLCD显示屏的硬件设备,通常与控制器紧密连接。

驱动器主要负责将控制器发送的信号转换为液晶的电流输出,实现对像素点的亮度和颜色的控制。

驱动器还负责控制像素点之间的互动,以实现高质量的图像显示。

1.扫描电路:负责控制像素点的扫描和刷新。

扫描电路会按照指定的频率扫描整个屏幕,并刷新像素点的亮度和颜色。

2.数据存储器:用于存储显示数据。

数据存储器可以暂时保存控制器发送的图像数据,以便在适当的时候进行处理和显示。

3.灰度调节电路:用于调节像素点的亮度。

通过调节像素点的电流输出,可以实现不同的亮度效果。

4.像素点驱动电路:负责控制像素点的偏振状态。

像素点驱动电路会根据控制器发送的指令,改变液晶分子的偏振方向,从而改变像素点的亮度和颜色。

5.控制线路:用于传输控制信号。

控制线路通常由一组电线组成,将控制器发送的信号传输到驱动器中,以控制整个显示过程。

LCD显色及驱动原理

LCD显色及驱动原理

LCD显色及驱动原理LCD(液晶显示器)是利用液晶材料的光学特性来实现图像显示的设备。

液晶材料是一种能够在电场作用下改变光传播速度的有机物质,具有具有低功耗、轻薄、色彩鲜艳等特点。

液晶显示器的显示原理基于液晶材料的光学特性。

液晶材料具有两个重要特点:扭曲型液晶和各向同性液晶。

在不施加电场时,液晶分子呈现扭曲型结构,光无法通过,并且呈现黑色。

当施加电场时,液晶分子重新排列并变为各向同性液晶,光可以通过,呈现出不同的亮度和颜色。

液晶显示器的显示过程可以分为两个阶段,即调光和色彩处理。

调光阶段是通过改变像素区域的透明程度来控制亮度的。

液晶显示器的单个像素由红、绿、蓝三个子像素组成。

每个子像素下面都有一个透明的电极板,电极板上有许多微小的透明缺口,每个缺口被称为一个亮点。

当电场作用于液晶材料时,液晶分子在亮点处排列,允许光通过,显示出亮的像素。

反之,电场消失时,液晶分子重新排列,光无法通过,显示出暗的像素。

通过对电场的控制,可以调节液晶分子的排列程度,从而控制像素的亮度。

色彩处理阶段是通过改变液晶材料分子之间的相互作用来实现颜色的显示。

液晶材料分子在不同颜色红、绿、蓝光照射下表现出不同的特性。

在液晶显示器中,通过堆积不同颜色的液晶层来产生不同的颜色。

当红、绿、蓝三个颜色的光照射到液晶分子上时,液晶分子的各向同性程度发生变化,从而导致不同的颜色显示。

液晶显示器的驱动主要分为主动矩阵驱动和被动矩阵驱动两种方式。

主动矩阵驱动是指每个像素都有一个与之对应的电容,液晶分子的排列受电场的作用,通过对每个像素施加电场的方式来控制像素的亮度和颜色。

主动矩阵驱动技术的优点是刷新速度快,显示效果好,但是需要复杂的电路和高成本。

被动矩阵驱动是指每行像素和每列像素都有电极,液晶分子排列受电场作用,通过改变行和列电极之间的交流电压的方式来控制像素的亮度和颜色。

被动矩阵驱动技术的优点是简单、低成本,但是刷新速度较慢,显示效果有限。

lcd显示驱动原理

lcd显示驱动原理

lcd显示驱动原理液晶显示器(Liquid Crystal Display, LCD)是一种利用液晶体的光学特性来输出图像的设备。

它由液晶层、驱动电路、背光源和控制电路组成。

LCD显示驱动的原理可以分为以下几个步骤:1.电压施加:通过驱动电路向液晶层施加电压,使得液晶分子朝向不同的方向排列,从而改变光的传播方式。

2.光的传播:当液晶分子排列有序时,光的传播路径会改变。

通过调整电压的变化,可以控制液晶分子的排列,从而改变光的传播路径。

3.亮度调节:通过控制电压的大小和频率,可以调节背光源的亮度,从而实现LCD显示的亮度调节。

4.像素控制:LCD面板由一个个像素组成,每个像素都有液晶分子和彩色滤光片。

通过调整液晶分子的排列和滤光片的透光性,可以控制每个像素的颜色和亮度,从而显示出图像。

总的来说,LCD显示驱动是通过驱动电路控制液晶分子的排列和背光源的亮度,从而实现像素的控制和图像显示。

控制电路会接收输入信号,并将其转化为相应的驱动信号,通过驱动电路控制液晶的排列方式和背光的亮度,最终将图像显示在LCD屏幕上。

LCD显示驱动的原理进一步细化如下:1. LCD结构:液晶显示器由液晶分子和彩色滤光片组成。

彩色滤光片负责调整光的颜色,液晶分子则负责控制光的透过与阻挡。

2. 电压控制液晶分子:液晶分子在不同的电场作用下,具有不同的排列方式。

液晶分子的排列方式会影响光的传播路径,从而实现光的显示。

通过驱动电路施加不同的电压,可以改变液晶分子的排列方式。

3. 二极管结构驱动:常见的液晶显示器驱动方式是使用二极管结构。

每个像素有一个单独的液晶分子和驱动电路,通过对每个像素的电压进行控制,可以通过改变液晶分子的排列方式来实现图像的显示。

4. 行列扫描:驱动电路会按照一定的顺序对每一行的像素进行扫描,控制电压的变化使得液晶分子的排列发生变化。

这样可以通过逐行扫描的方式将整个图像显示出来。

5. 背光控制:液晶显示器通常需要背光才能正常显示。

lcd屏幕驱动原理

lcd屏幕驱动原理

lcd屏幕驱动原理1.引言1.1 概述引言部分旨在介绍本篇文章的主要内容和背景。

本文将详细讨论LCD (Liquid Crystal Display,液晶显示器)屏幕的驱动原理。

LCD屏幕作为现代电子产品中广泛应用的显示器件之一,具有节能、清晰、轻薄等特点,被广泛应用于智能手机、平板电脑、电视、计算机显示器等设备中。

在本文中,我们将首先介绍LCD屏幕的基本原理,包括液晶分子的排列结构、光的透射和偏振特性等。

了解这些基本原理将为后续的驱动工作原理提供必要的背景知识。

接下来,本文将重点探讨LCD屏幕的驱动工作原理。

作为一种主动矩阵显示技术,LCD屏幕的驱动原理涉及到电场调控液晶分子的排列状态,从而实现像素点的显示。

我们将详细解释液晶分子在不同电压下的排列方式,以及如何通过电路信号的控制来实现各种显示效果。

通过对LCD屏幕的驱动原理进行深入的研究和探索,我们可以更好地理解其工作原理,为设计和优化LCD驱动电路提供指导和参考。

同时,我们也可以借此机会探讨一些新兴的LCD驱动技术和未来的发展趋势。

在本篇文章的后续章节中,我们将按照以上提到的大纲,分别介绍LCD 屏幕的基本原理和驱动工作原理,并在结论部分对所讨论的内容进行总结和展望。

希望通过本文的阅读,读者能够对LCD屏幕的驱动原理有一个更清晰的认识,并对相关技术的研究和应用提供一些启发和帮助。

1.2文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的整体结构和每个部分的主要内容,以便读者能够更好地理解和阅读本文。

本文分为引言、正文和结论三个主要部分。

引言部分主要是对整篇文章进行概括性介绍。

首先,我们会简要概述LCD屏幕驱动原理的背景和重要性。

然后,我们将介绍文章的结构和每个部分的主要内容,以便读者能够有一个整体的把握。

正文部分是本文的主体部分,包括了LCD屏幕的基本原理和LCD屏幕驱动的工作原理。

在2.1小节中,我们将详细介绍LCD屏幕的基本原理,包括LCD的构造和LCD显示原理。

lcd驱动原理

lcd驱动原理LCD驱动原理是指控制液晶显示器(LCD)工作的基本原理和方法。

液晶显示器是一种利用液晶材料的光学特性显示图像的平面显示器。

它通过一个特定的驱动电路将电信号转换为显示图像。

液晶显示器通常由玻璃基板、像素点阵列、驱动电路和灯管组成。

驱动电路起着核心作用,它可以控制每个像素点的电压和开关状态,以达到控制显示效果的目的。

液晶显示器通常采用被动矩阵驱动方式,即通过一个行列排布的驱动电路进行控制。

在驱动电路中,液晶材料扮演着关键角色。

液晶有两种典型状态:向列头方向扭曲和向列尾方向扭曲。

液晶分子扭曲程度决定了其透光性,从而实现信息的显示。

驱动电路通过施加电场来控制液晶分子的扭曲程度。

当电压施加到液晶层时,液晶分子会因电场作用而扭曲,从而改变光的传播路径。

通过改变施加的电压,可以控制液晶分子的扭曲程度,从而调整显示的亮度和颜色。

液晶显示器驱动电路通常由逐行扫描和逐列输出两个阵列组成。

逐行扫描阵列控制每行液晶分子的扭曲程度,逐列输出阵列则控制输出的电压。

通过逐行扫描和逐列输出的方式,可以实现对整个显示器的控制。

驱动电路还包括了时序控制和温度补偿等功能。

时序控制是为了保证电路产生准确的电压和信号,使液晶分子能够按照预定的方式扭曲。

而温度补偿则是为了解决液晶分子在不同温度下的扭曲程度不同的问题,以保证显示的准确性和稳定性。

总之,LCD驱动原理是通过控制驱动电路中液晶分子的扭曲来实现显示效果的原理。

驱动电路中的逐行扫描和逐列输出阵列,以及时序控制和温度补偿功能等,都是为了保证显示器能够正确地显示出图像和信息。

液晶显示器驱动原理介绍讲述课件


05
液晶显示器驱动技术的实 际应用
液晶显示器在电视中的应用
液晶电视
液晶显示器作为电视的核心显示部件 ,能够提供清晰、逼真的画面效果, 广泛应用于家庭和商业场合。
智能电视
随着技术的发展,液晶电视与智能技 术的结合,使得电视具备了更多的功 能,如网络浏览、视频通话等。
液晶显示器在电脑中的应用
笔记本电脑
液晶显示器驱动原 理介绍
contents
目录
• 液晶显示器的概述 • 液晶显示器的工作原理 • 液晶显示器驱动电路 • 液晶显示器驱动技术的发展趋势 • 液晶显示器驱动技术的实际应用
01
液晶显示器的概述
液晶显示器的定义与特点
定义
液晶显示器(LCD)是一种通过 液晶材料实现图像显示的设备。
特点
具有低功耗、体积小、重量轻、 无辐射等优点,广泛应用于各种 电子设备中。
智能化的液晶显示器驱动技术
智能化的液晶显示器驱动技术是液晶显示器驱动技术的最新发展方向。随着人工智能和物联网技术的 发展,智能化已经成为各种设备的必然趋势。智能化的液晶显示器驱动技术能够实现自适应调节、自 动校准等功能,提高液晶显示器的智能化水平和用户体验。
智能化的液晶显示器驱动技术主要通过引入人工智能算法、传感器技术、无线通信等技术手段实现。 这些技术手段能够使液晶显示器具备自主学习和自我调整的能力,使其在各种应用场景下都能够提供 最佳的显示效果和用户体验。
果。
液晶显示器的显示原理
010203Fra bibliotek背光系统
背光系统提供显示器所需 的基本光源,光线通过液 晶层后,由彩色滤光片决 定像素的颜色。
彩色滤光片
彩色滤光片用于决定像素 的颜色,不同颜色的像素 组合形成完整的图像。

TFTLCD液晶显示器的驱动原理详解

TFTLCD液晶显示器的驱动原理详解1.TFT液晶显示器的像素控制TFT液晶显示器由很多个像素点组成,每个像素点由一个TFT晶体管和一个液晶单元组成。

驱动原理中的像素控制指的是对每个像素点的亮度和颜色进行控制。

首先,通过扫描线进行逐行的行选择,确定需要刷新的像素点的位置。

然后,通过控制每个像素点的TFT晶体管的门电压,来控制像素点是否导通,从而决定其亮度。

最后,通过改变液晶单元的偏振方向和强度,来调整像素点显示的颜色。

2.TFT液晶显示器的背光控制TFT液晶显示器需要背光来照亮像素点,使其显示出来。

背光控制是驱动原理中非常重要的一部分。

通常,TFT液晶显示器采用CCFL(冷阴极荧光灯)或LED(发光二极管)作为背光源。

背光的亮度可以通过控制背光源的电压或电流来实现。

在驱动原理中,通过在适当的时间段内给背光源供电,来控制背光的开关和亮度,进而实现对显示器亮度的控制。

3.TFT液晶显示器的数据传输TFT液晶显示器的驱动原理还涉及到数据的传输和刷新。

液晶显示器通常使用串行并行转换器将来自图形处理器(GPU)或其他输入源的图像信号转换为液晶显示器可接受的格式。

在驱动原理中,通过控制驱动芯片中的数据线和时钟线,将每个像素点对应的图像数据传输到相应的位置,从而实现图像的显示。

此外,TFT液晶显示器的驱动原理还包括时序控制和电压控制。

时序控制用于控制图像数据的传输速率和刷新频率,以确保图像的稳定和流畅;电压控制用于确定液晶单元的电压,以实现相应的亮度和颜色效果。

总结起来,TFT液晶显示器的驱动原理主要涉及像素控制、背光控制、数据传输、时序控制和电压控制。

每个像素点的亮度和颜色通过TFT晶体管和液晶单元的控制实现,背光通过背光源的控制实现,数据通过驱动芯片的控制传输到相应的位置。

通过精确的控制和调整,TFT液晶显示器能够呈现出清晰、鲜艳的图像。

液晶显示器 LCD工作原理及驱动方式

液晶显示器 LCD工作原理及驱动方式一. 液晶显示器的工作原理1.什么是液晶显示器有一些物质,它们在固体加热变为液体的过程中,不是直接由固体变为液体,而是先要经一种中间状态,处于中间状态的物质外观上看是具有流动的混浊液体,但是,它们的光学性质和某些电学性质又和晶体相似.是各向异性的.如具有双折射特性.当温度继续升高时,这种浑浊液体变得透明清澈,流向同性液体.反之,这类物质从各向同性液体开始冷却时,一般也要先经过中间状态转变为固态. 这种能在某个温度范围内兼有液体和晶体二者特性的物质叫液晶,它不同于通常的固态,液态和气态,又称物质的第四态.液晶分为热质液晶和溶质液晶两大类.其中热质液晶就是前面所讲的 ,溶质液晶是由于溶液浓度发生变化而出现的液晶相. 目前所用的多是热致液晶.从液晶分子排列分三类:a.向列相液晶. 向列相液晶的长轴互相平行,但分子的重心是杂乱分布的,分子运动自由,对外界作用敏感,因此应用广.b.胆甾相液晶.分子呈扁平形,在空间形成一个螺旋结构.分子的长轴彼此平行,与向列向一样.当温度变化时,螺矩也随之变化,从而使提胆甾相显现不同的颜色.因此这种液晶可用来制作测量物体表面温度.c.近晶相液晶液晶的分子排列成层,在每层内分子长轴平行,其方向垂直于层面.各层中分子的重心杂乱分布.2.液晶显示的原理a.液晶显示器分类:L 按显示方式分透射型,反射型,和投影显示三大类.按机理分,动态散射型,扭曲向列场效应型,电控折射型,宾主效应型,相变存储型,有源矩阵型.超扭曲向列型,铁电液晶型,等等 .b.扭曲向列型 TNLCDa>. 定向薄膜.b>. 偏振光.自然光光波的振动方向在与传播方向的垂直平面内是随机分布的.它通过偏振片时,变成只沿一个方向分布的光,即为偏振光.c>.液晶中光的传播.通过起偏器形成的偏振光其振动方向与上方定向薄膜凹槽走向.一运载.当光向下传播时,光的传播方向随液晶的分子扭曲.因此进入检偏器时,光的振动方向与检偏器偏光轴一运载而能通过检偏器.为非显示状态.如果在需要显示部份,在电极上加电压,于是液晶分子长轴方向将与电场方向平行.偏振光通过液晶时不发生扭曲,因此不能通过检偏器.显示器部份该显示的地方呈非透明状态,为显示状态.d> . 反射与透射式液晶显示器. 在上述液晶显示器的背面上装一个反射板,就构成了反射式显示器,适用于明亮的环境.e>. 高容量点阵液晶显示器.如计算机显示屏,彩色平板电视屏,就是采用此类.二. 彩色液晶显示器原理.按彩色产生原理分: 彩色滤色膜方式 {TN型; STN型; VAN型; FLC型;}彩色光源方式: { TN型; STN型; FLC型}光开关彩色方式:{VAN型;PAN型;HAN型;GH方式.} 彩色滤色膜方式和彩色光源方式是利用彩色滤色膜和彩色光源用为彩色产生源,而其中的液晶单元仅仅起开关作用,因此这两种方式都叫做被动式彩色LCD.主动式彩色LCD的光开关彩色方式和GH方式中,液晶单元是过偏光子的作用使其产生双折射性和二色性的变化,直接捕捉色相变化而工作的.被动式LCD,担任光开关机能的液晶单元,其透过光是无色的黑白光.具体说,TN型,二层单元结构的D-STN型,附加位相差板的F-STN型,ECB方式的VAN 型,强电介质性液晶的FLC型.添加了黑色二色性染料的GH型等液晶单元得到了作用.1.彩色滤色膜方式的彩色LCD如图,具有黑白光开关机能的液晶单元和R,G,B,微彩色滤色膜组合,通过加法混色实现多色显示或全色显示. 按着带状.三角形等配置的R,G,B,各像素之间通常是黑底,所以提高了对比度和色纯度.一般情况下,彩色滤色膜上形成的透明电极在TFT(薄膜晶体管)驱动中作为全部的电极,而在纯矩阵驱动中作为带汰电极.这彩色Lcd的光透过率相当低,所以应附加后照光.后照光除提高LCD辉度有用外,与彩色滤色膜结合还可提高色纯度.彩色滤色片的R,G,B 吸收光,虽然因染色,颜料的色散及电沉积,印刷等有所不同,但都是宽带响应,与三波长的灯结合可实现高的色纯度.这种方法可作出:25.4---508mm的彩色LCD.用于摄相机,小型彩电等2.彩色光源方式的LCD.这种方式LCD中,彩色产生源是由彩色光源及具有黑白光开关机能的液晶构成.一般情况下使用R,G,B,三色作为彩色光源,也就是将卤光灯和氙灯等发出较强的白光,用分色镜分成R,G,B,三基色.另外在R,G,B,整个光源上使用了三个黑白光开关液晶单元,将R,G,B,的光一个个地入射到这些单元中.再用二色棱镜将由各个液晶分解生成的R图像,B图像,G图像等合成.现市场售的TV ,都是TN型和STN型液晶单元用作光开关.三. 液晶显示器驱动方式1.液晶的驱动电压要使液晶显示,两电极间所加电压应是交变的,且电压的正负幅度相同等 ,即不能有直流成份,否则易使液晶发行极化而分解,失效.另外,电压的频率不应低于30hz,否则显示闪烁;但频率也不能太高,若高于200hz液晶功耗大而发热升温,特性变差.2.静态驱动方式在电子表中一些所用位数不多的段式数码液晶显示器都使用静态驱动方式.(用异或门电路)3.点阵式LCD的时间分割驱动方式.像个人计算机的显示器就彩用点阵式,像素量大,不能使用静态驱动方式.时间分割法的原理: 电极为矩阵排列,按顺序给各电极加选通波形.通过此操作,由X电极和Y电极交点形成的像素全部可以是任意的显示状态,X电极称作为扫描电极,Y极叫作信号电极.所有X扫描电极依序加电夺波形完了,则称一个帧周期.对频率叫帧频.时间分割驱动,不仅仅对被选通的像素加电压,而且对非选通的像素加电压.(低于阈值电压).第一帧为正极驱动,第二帧为负极驱动,于是对液晶实验了两帧为周期的交流驱动,而信号电极在正极或负极的帧期间,对选通波形给-v 电位.对于非选通波形纵+V,于是在选通像素施加了波形.很显然,随着扫描电极的增加,有效电压变小,对比度下降.4.字符显示LCD在很多LCD中,在容量驱动中,就用LCD模块.如果用作图形显示,则不需字符发生器(ROM).等离子体显示屏(PDP)一. 特点工作电压低,显示屏厚度薄,有存储机能,工作寿命长从结构分: AC型PDP显示单元, DC型PDP显示单元,二. 原理:不论是AC型PDP显示单元, DC型PDP显示单元, 都是利用气体放电产生辉光进行显示的.与荧光灯的辉光放电原理是一样.在两个电极上加足够的电压引起辉光放电.因为气体中总是有少量的自由电子和正离子存在,在两极较强的电场作用下,电子和正离子都得到加速,电子在自已的行程上将气体原子电离而产生新的电子,正离子处于激发态的原子.激发态的原子回到静态而产生荧光. 在辉光放电中,靠近阴极处有一暗区,离开暗区为长度很短的阴极辉光区,阴极辉光区与阳极之间为较长的阳极辉光区.阴极与阳极爆裂间的电压主要降在阴极附近的暗区.R.G.B.荧光体受到显示单元中混合气体放电而发光的辉光照射后产生的红,绿,蓝的原理进行彩色显示.三. PDP的驱动方式.AC型PDP与DC型PDP的驱动方式相同的.分五大部份: 列驱动,行驱动,动态控制,数据缓冲器及电源部份.四. PDP的电源不论是什么型号的PDP,多利用DC-DC 或AC-DC 电源转换器供电.显示单元电压为180—250V.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N×M STN LCDs 液晶層間隙4.5um 液晶材料:低黏滯係數
N×M圖框緩 衝記憶體
主動矩陣式液晶顯示器 AM-LCDs
TFT LCDs 等效電路
Column Driver
Row Drivers
Arrangement of Color Filter
RGBRGB RGBRGB RGBRGB
DC Bias of Common
AC Modulation Addressing of TFT LCDs
Graylevel
V0
Voltage
V7
V1
V6
V2
V5
V3
V4
V4
V3
V5
V2
V6
V1
V7
V0
Common Waveform
1Frame / 1 Line
TFT LCDs 的電光效應 Direct Addressing
• 缺點
– 視角限制。 – 外加被光源或投射光源。 – 溫度操作範圍限制。
液晶顯示器的種類
液晶 顯示器
扭轉型 (Twinst Nematic, TN) 1971 超扭轉型 (Super Twinst Nematic, STN) 1984
雙層雙扭轉型 (Double Layer STN, DSTN)1987 光相位補償超扭轉型 (Film STN, FSTN)1988 主動驅動超扭轉型 (AASTN or MLS STN) 1992 強介電型 (Ferroelectric Liquid Crystal : FLC) 1980 PDLC (Polymer Dispersive LC) 1988 PSCT (Polymer Stabilized Cholesteric Texture) 1993 Other DS (Dynamic Scattering) 1968 PC (Phase Change) 1968 GH (Guest Host) 1968 ECB (Elcetrical Control Birefregency) 1971 BTN (Bistable Twist Nematic) 1995 IPS (In Plane Switch) 1995 VA (Vertical Alignment)1996
DF
IAPT 驅動 IC
............................
IAPT 參考電壓
2D 0 2D
垂直訊號電極
2D
灰階顯示 ─ FRC
•Frame Rate Control, FRC :
灰階顯示 ─ PWM
•Pulse Width Modulation, PWM :
灰階顯示 ─ PHM
Frame Inversion Column Inversion
Row Inversion Dot Inversion
Direct Driving of TFT LCDs
V7
V6
GrayScale

V5
Voltage
V4
V3
V2
V1
V0
V0
V1
V2
V3
V4
V5
1 Frame / 1 Line
V6
V7
(d) 液晶畫素波形
(e) 水平掃描 補償波形 £GV
(f) 補償之液晶畫素波形
A
B
L
Frame Response of STN LCDs
Active Addressing for STN LCDs
Active Addressing 驅動電壓
If Voff=2V, N=240 rows, Then : F = 0.730 X 2V = 1.460V |G| = 0.954 X 2V = 21.909V
TFT
Cs on Common
Cs Common
Gate Line TFT
液晶畫素
Cs Common
Cs Gate Line
液晶畫素 Cs
Cs on Gate
Timing Chart of TFT LCDs
Gate
Frame Time
1
2
3
Time
N
TFT LCDs Driving Method
Stripe
R B G RB GRBG
R B G RB GRBG
R B G RB GRBG
Triangle
RGRG GBGB RGRG GBGB
RGRG WBWB RGRG WBWB
Pixel Structure of TFT LCDs
Cs on Common 與 Cs on Gate 架構
Data Line Data Line
TFT LCDs 的電光效應 AC Addressing
TFT LCDs Driving Waveform Cs on Common (一)
TFT LCD 驅動波形 (Cs on Common, Common = DC Bias)
TFT LCDs Driving Waveform Cs on Common (二)
Vsig
Vc
Vsig Vc Vs
Vc-Vs
Vs XOR
ON
OFF
LC Cell Vc
多工驅動法 (振幅選擇驅動法, APT)
F
0 水 平 掃 描 訊 號
T Frame 1 1234
DT

直+D
影 像
0
訊號-D
Frame 2 N 1 2 3 Column 1
Frame 1
1234
F+D
Row 1 Row 2
•Pulse High Modulation, PHM :
液晶的頻率響應
Vertical Crosstalk of STN LCDs
Vertical Crosstalk 的抑制 (一)
每兩條水平線變換一次驅動電壓極性
Vertical Crosstalk 的抑制 (二)
採用補償驅動週期
一條水平掃描線的掃描週期分割成兩部份, 一半的掃描時間是採用正極性的驅動訊號, 另一半的時間是採用負極性的驅動訊號。
T
100% 90%
Vns
Vs
TN
TN
10%
Vns Vs
V
STN STN
TN 與 STN 的電壓漂移
T
100%
TN Mode
T
100%
STN Mode
V
V
LCDs 驅動方式
•直接驅動法 (Direction Addressing)
•靜態驅動法 (Static Addressing) •多工驅動法 (Multiplex Addressing) •主動驅動法 (Active Addressing / Multi-Line Selection)
LCD行业-富相科技-LCD 液晶显示器驱动系統
2020/9/8
液晶物質的相變化
加熱 冷卻
加熱 冷卻
固體結晶
液晶
液體
液晶分子的種類
Smectic LC 層狀液晶
Nematic LC 線狀液晶
Cholesteric LC 膽固醇狀液晶
液晶分子的排列
Crystalline Liquid
Crystalline
ON OFF
+D -D
F-D +D F+D -D
Row 3
ON +D
-D
Row N
OFF +D
-D
N
0
0
0
F-D
0
液晶畫素電壓
多工驅動法的限制
1.3
1.2
1.1
1.0
100
200
APT 驅動波形
IAPT 驅動波形
APT Addressing
IAPT Addressing
APT 與 IAPT 方式比較
•Output Range of Segment Driver is about 44V. •Common Driver of Common Driver is about 3V.
Segment Voltage of Active Addressing
Active Addressing 的矩陣運算
STN LCDs Drivers 架構
串列輸入訊號 (HLHL...H)
DCLK
......移位暫存器(Shifter Register) 並列輸出
LP 偏 F+D 壓0 位 F-D 準 2D
...閂鎖暫存器(Latch Register)
HL H
H
............................ ............................
•主動矩陣驅動法 (Active Matrix Addressing)
•兩端元件 (MIM, Diode..) •三端元件 (A-Si:H TFT, Ploy-Si TFT ..)
•Plasma Addressing (PALC) •熱掃描驅動法 (雷射掃描) •光掃描驅動法 (電子速掃描
LCDs 靜態驅動法
TN 型 LCDs 顯示原理
Field OFF
Twist 90
Field ON
液晶分子
利用液晶的旋光特性 調變穿透光線
液晶的旋光特性消失
STN LCDs 顯示原理
Twist 270
Field OFF
利用液晶的雙折射 特性調變穿透光線
液晶分子
Field ON
TN & STN 電光轉移曲線 V-T Curve
行(Row)
Column Sequential 硬體架構
相关文档
最新文档