2019-2020年高三统一练习二(数学文)
2019-2020年高中数学 4.1.2圆的一般方程练习 新人教A版必修2

2019-2020年高中数学 4.1.2圆的一般方程练习 新人教A 版必修2基础梳理1.圆的一般方程的定义.当D 2+E 2-4F>0时,二元二次方程x 2+y 2+Dx +Ey +F =0称为圆的一般方程. 2.方程x 2+y 2+Dx +Ey +F =0表示的图形.已知点M(x 0,y 0)和圆的方程x +y +Dx +Ey +F =0.则其位置关系如下表:练习1:二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0在什么条件下表示圆的方程? 答案:A =C≠0,B =0且D 2+E 2-4AF >0练习2:圆x 2+y 2-2x +10y -24=0的圆心为(1,-5),半径为 ►思考应用1.圆的标准方程与圆的一般方程各有什么特点?解析:圆的标准方程(x -a)2+(y -b)2=r 2明确了圆心和半径,方程左边为平方和,右边为一个正数,且未知数的系数为1;一般方程体现了二元二次方程的特点,但未明确圆心和半径,需计算得到.当二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0中的系数A =C ≠0,B =0,D 2+E 2-4AF>0时,二元二次方程就是圆的一般方程.2.求圆的方程常用“待定系数法”,“待定系数法”的一般步骤是什么? 解析:(1)根据题意选择方程的形式——标准方程或一般方程;(2)根据条件列出关于a 、b 、r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F ,代入标准方程或一般方程.自测自评1.圆x 2+y 2+4x -6y -3=0的圆心和半径分别为(C ) A .(4,-6),r =16 B .(2,-3),r =4 C .(-2,3),r =4 D .(2,-3),r =16解析:由圆的一般方程可知圆心坐标为(-2,3), 半径r =1242+(-6)2+12=4.2.如果方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F>0)所表示的曲线关于y =x 对称,则必有(A )A .D =EB .D =FC .F =ED .D =E =F解析:由题知圆心⎝⎛⎭⎫-D 2,-E 2在直线y =x 上,即-E 2=-D2,∴D =E. 3.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是(B )A .RB .(-∞,1)C .(-∞,1]D .[1,+∞)解析:由D 2+E 2-4F =(-4)2+22-4×5k =20-20k >0得k <1.4.圆心是(-3,4),经过点M (5,1)的圆的一般方程为x 2+y 2+6x -8y -48=0. 解析:圆的半径r =(-3-5)2+(4-1)2=73, ∴圆的标准方程为(x +3)2+(y -4)2=73, 展开整理得,x 2+y 2+6x -8y -48=0为圆的一般方程. 5.指出下列圆的圆心和半径: (1)x 2+y 2-x =0;(2)x 2+y 2+2ax =0(a ≠0); (3)x 2+y 2+2ay -1=0.解析:(1)⎝⎛⎭⎫x -122+y 2=14,圆心⎝⎛⎭⎫12,0,半径r =12; (2)(x +a )2+y 2=a 2,圆心(-a ,0),半径r =|a |; (3)x 2+(y +a )2=1+a 2,圆心(0,-a ),半径r =1+a 2. 基础达标1.方程x 2+y 2+4x -2y +5=0表示的曲线是(C ) A .两直线 B .圆 C .一点D .不表示任何曲线2.x 2+y 2-4y -1=0的圆心和半径分别为(C )A .(2,0),5B .(0,-2),5C .(0,2), 5D .(2,2),5解析:x 2+(y -2)2=5,圆心(0,2),半径 5.3.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是(C ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0 D .x -y -1=0解析:x 2+2x +y 2=0配方得(x +1)2+y 2=1,圆心为(-1,0),故所求直线为y =x +1,即x -y +1=0.4.如果直线l 将圆x 2+y 2-2x -4y =0平分且不通过第四象限,那么l 的斜率的取值范围是(A )A .[0,2]B .[0,1]C.⎣⎡⎦⎤0,12D.⎣⎡⎭⎫0,12 解析:l 必过圆心(1,2),0≤k ≤2(几何意义知). 5.圆x 2+y 2-6x +4y =0的周长是________. 解析:(x -3)2+(y +2)2=13,r =13,C =2πr =213π. 答案:213π6.(1)已知点M 与两个定点A (4,2)、B (-2,6)的距离的比值为1,探求点M 的轨迹,然后求出它的方程;(2)已知点M 与两个定点A (4,2)、B (-2,6)的距离的比值为12时,M 点的轨迹又是什么?求出它的方程.解析:设M (x ,y )(1)因为点M 与两个定点A (4,2)、B (-2,6)的距离的比值为1,所以(x -4)2+(y -2)2(x +2)2+(y -6)2=1,化简得3x -2y +5=0.所以M 的轨迹是直线,它的方程是3x -2y +5=0;(2)因为点M 与两个定点A (4,2)、B (-2,6)的距离的比值为12,所以(x -4)2+(y -2)2(x +2)2+(y -6)2=12,化简得(x -6)2+(y -23)2=2089,故此时M 的轨迹是以(6,23)为圆心,半径为4313的圆,它的方程是(x -6)2+(y -23)2=2089.巩固提升7.已知A ,B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是________________________________________________________________________.答案:(x -1)2+(y +1)2=98.求经过两点P (-2,4),Q (3,-1),并且在x 轴上截得的弦长等于6的圆的方程. 解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,将P (-2,4),Q (3,-1)代入圆的方程得⎩⎪⎨⎪⎧2D -4E -F =20,3D -E +F =-10. 令y =0得x 2+Dx +F =0.设x 1,x 2为方程x 2+Dx +F =0的两根. 由|x 1-x 2|=6有D 2-4F =36,解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. ∴圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0. 9.已知点A 在直线2x -3y +5=0上移动,点P 为连接M (4,-3)和点A 的线段的中点,求P 的轨迹方程.解析:设点P 的坐标为(x ,y ), A 的坐标为(x 0,y 0).∵点A 在直线2x -3y +5=0上, ∴有2x 0-3y 0+5=0. 又∵P 为MA 的中点,∴有⎩⎨⎧x =4+x 02,y =-3+y 02,∴⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +3. 代入直线方程得2(2x -4)-3(2y +3)+5=0, 化简得:2x -3y -6=0即为所求.1.任何一个圆的方程都可写成x 2+y 2+Dx +Ey +F =0的形式,但方程x 2+y 2+Dx +Ey +F =0表示的曲线不一定是圆,只有D 2+E 2-4F >0时,方程才表示圆心为⎝⎛⎭⎫-D 2,-E 2,半径为r =12D 2+E 2-4F 的圆.2.在圆的方程中含有三个参变数,因此必须具备三个独立条件才能确定一个圆.求圆的方程时是选用标准方程还是一般方程的依据:当给出的条件与圆心坐标、半径有关,或者由已知条件容易求得圆心和半径时,一般用标准方程.当上述特征不明显时,常用一般方程,特别是给出圆上三点,用待定系数法求圆的方程时,常用一般式,这样得到的关于D,E,F的三元一次方程组,要比使用标准方程简便得多.3.要画出圆的图象,必须知道圆心和半径,因此应掌握用配方法将圆的一般方程化为标准方程.。
专题12 利用导数解决函数的单调性-学会解题之高三数学万能解题模板【2022版】(原卷版)

专题12 导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一 求无参函数的单调区间万能模板 内 容使用场景 知函数()f x 的解析式判断函数的单调性 解题模板第一步 计算函数()f x 的定义域; 第二步 求出函数()f x 的导函数'()f x ;第三步 若'()0f x >,则()f x 为增函数;若'()0f x <,则()f x 为减函数.例1 【河北省衡水市枣强中学2020届高三下学期3月调研】已知函数()ln xx af x e+=. (1)当1a =时,判断()f x 的单调性;【变式演练1】函数,的单调递增区间为__________.【来源】福建省三明第一中学2021届高三5月校模拟考数学试题【变式演练2】已知函数,则不等式的解集为___________.【来源】全国卷地区“超级全能生”2021届高三5月联考数学(文)试题(丙卷)【变式演练3】【黑龙江省哈尔滨六中2020届高三高考数学(文科)二模】已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .a c b <<【变式演练4】【湖南省湘潭市2020届高三下学期第四次模拟考试】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211x f x f x e -+=--,则下列命题中一定成立的是( )A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->类型二 判定含参数的函数的单调性万能模板 内 容使用场景 函数()f x 的解析式中含有参数解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例2 【黑龙江省大庆市第四中学2020届高三下学期第四次检测】已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【变式演练5】(主导函数是一次型函数)【福建省三明市2020届高三(6月份)高考数学(文科)模拟】已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;()2sin sin 2f x x x =⋅0,2x π⎡⎤∈⎢⎥⎣⎦()()2ln 1x xf x x e e -=+++()()2210f x f x --+≤【变式演练6】(主导函数为类一次型)【山东省威海荣成市2020届高三上学期期中考试】已知函数()x f x e ax -=+.(I )讨论()f x 的单调性;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥. (1)讨论()f x 的单调性;【变式演练8】(主导函数是类二次型)【山西省太原五中2020届高三高考数学(理科)二模】已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【变式演练9】已知函数,若在区间上单调递增,则的取值范围是( )A .B .C .D .【来源】江西省南昌市新建区第一中学2020-2021学年高三上学期期末考试数学(文)试题类型三 由函数单调性求参数取值范围万能模板 内 容使用场景 由函数单调性求参数取值范围解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 根据题意转化为相应的恒成立问题; 第三步 得出结论.例3.【江苏省南通市2019-2020学年高三下学期期末】若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是( ) A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为( )A .4B .16C .20D .18()22ln f x x x =-()f x ()2,1m m +m 1,14⎡⎫⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭1,12⎡⎫⎪⎢⎣⎭[)0,1【变式演练12】(转化为变号零点)【山西省运城市2019-2020学年高三期末】已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( ) A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【变式演练13】(直接给给定单调区间)【辽宁省六校协作体2019-2020学年高三下学期期中考试】已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为( ) A .-4B .-2C .2D .4【变式演练14】(转化为存在型恒成立)【四川省仁寿第一中学北校区2019-2020学年高三月考】若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【高考再现】1.(2021·全国高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =-.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<2.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a 的取值范围. 3.已知函数. (1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【来源】2021年全国新高考Ⅰ卷数学试题 4.【2017山东文,10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,0a >1a ≠()(0)a x x f x x a=>2a =()f x ()y f x =1y =()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<则实数a 的取值范围是 ▲ .6.【2020年高考全国Ⅰ卷文数20】已知函数()()e 2xf x a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.7.【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 8.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.9.(2018年新课标I 卷文)已知函数f (x )=ae x −lnx −1∈ (1)设x =2是f (x )的极值点.求a ,并求f (x )的单调区间; (2)证明:当a ≥1e 时,f (x )≥0∈10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知函数f(x)=1x −x +alnx ∈ (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x 1,x 2,证明:f (x 1)−f (x 2)x 1−x 2<a −2.【反馈练习】1.【2020届广东省梅州市高三总复习质检(5月)】已知0x >,a x =,22xb x =-,()ln 1c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.【2020届山东省威海市高三下学期质量检测】若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为( )A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.【河南省十所名校2019—2020学年高三毕业班阶段性测试】若函数()sin24sin f x x x m x =--在[0,2π]上单调递减,则实数m 的取值范围为( ) A .(2,2)-B .[2,2]-C .(1,1)-D .[1,1]-4.【黑龙江哈尔滨市第九中学2019-2020学年高三阶段验收】函数()3f x x ax =+,若对任意两个不等的实数()1212,x x x x >,都有()()121233f x f x x x ->-恒成立,则实数a 的取值范围是( ) A .()2,-+∞B .[)3,+∞C .(],2-∞-D .(),3-∞5.【湖北省武汉市新高考五校联合体2019-2020学年高三期中检测】若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______. 6.【四川省宜宾市2020届高三调研】若对(]0,1t ∀∈,函数2()(4)2ln g x x a x a x =-++在(,2)t 内总不是单调函数,则实数a 的取值范围是______7.【河南省南阳市第一中学校2019-2020学年高三月考】若函数()22ln f x x x =-在定义域内的一个子区间()1,1k k -+上不是单调函数,则实数k 的取值范围______.8.若函数在区间是增函数,则的取值范围是_________.【来源】陕西省宝鸡市眉县2021届高三下学期高考模拟文科数学试题 9.已知函数,若对任意两个不同的,,都有成立,则实数的取值范围是________________【来源】江西省景德镇市2021届高三上学期期末数学(理)试题10.【黑龙江省哈尔滨师范大学附属中学2020-2021学年高三上学期开学考试】(1)求函数()sin cos (02)f x x x x x π=+<<的单调递增区间;()cos 2sin f x x a x =+,62ππ⎛⎫⎪⎝⎭a ()()1ln 1xf x x x+=>1x 2x ()()1212ln ln f x f x k x x -≤-k(2)已知函数2()ln 43f x a x x x =-++在1,22⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的范围.11.【黑龙江省哈尔滨三中2020届高三高考数学(文科)三模】函数()()21ln 1x f x x x -=-+. (1)求证:函数()f x 在()0,∞+上单调递增; (2)若m ,n 为两个不等的正数,求证ln ln 2m n m n m n->-+. 12.【湖北省黄冈中学2020届高三下学期适应性考试】已知函数()()ln 1ln f x ax x a x =-+,()f x 的导数为()f x '.(1)当1a >-时,讨论()f x '的单调性; (2)设0a >,方程()3f x x e =-有两个不同的零点()1212,x x x x <,求证121x e x e+>+. 13.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论()f x 的单调性;(2)当0x ≥时,()1xf x e ≥-,求实数a 的取值范围.14.【2020届山西省高三高考考前适应性测试(二)】已知函数()xf x ae ex =-,()()ln 1xg x x b x e =--,其中,a b ∈R .(1)讨论()f x 在区间()0,∞+上的单调性; (2)当1a =时,()()0f x g x ≤,求b 的值.15.【河南省2020届高三(6月份)高考数学(文科)质检】已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 16.【山东省2020年普通高等学校招生统一考试数学必刷卷】已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围.17.【福建省2020届高三(6月份)高考数学(理科)模拟】已知函数()()()2ln 222f x x a x x =++++,0a >.(1)讨论函数()f x 的单调性; (2)求证:函数()f x 有唯一的零点.18.【山东省潍坊市五县2020届高三高考热身训练考前押题】已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R . (1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x e x e a x x--<+-.19.【陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练】已知函数3()ln ()f x x a x a R =-∈.∈1)讨论函数()f x 的单调性∈∈2)若函数()y f x =在区间(1,]e 上存在两个不同零点∈求实数a 的取值范围.20.【2020年普通高等学校招生全国统一考试伯乐马模拟考试】已知函数()()22xxf x ax a e e =-++.(1)讨论函数()f x 的单调性; (2)若函数()()()2212x x g x f x ax x a e e =-++-存在3个零点,求实数a 的取值范围. 21.【金科大联考2020届高三5月质量检测】已知函数()()()()()22224ln 2144f x x ax x a x a a x a =--+++∈R .(∈)讨论函数()f x 的单调性;(∈)若0a ≤,证明:函数()f x 在区间)1,a e -⎡+∞⎣有且仅有一个零点.22.已知函数.(1)若,求函数的单调区间; (2)求证:对任意的,只有一个零点.【来源】全国Ⅱ卷2021届高三高考数学(理)仿真模拟试题 23.已知函数. (1)当时,判断的单调性;(2)若有两个极值点,求实数的取值范围.【来源】安徽省合肥六中2021届高三6月份高考数学(文)模拟试题 24.已知函数. (1)求的单调性;(2)设函数,讨论的零点个数. 【来源】重庆市高考康德卷2021届高三模拟调研卷数学试题(三) 25.已知函数, (1)讨论的单调性;(2)若,,,用表示,的最小值,记函数,,讨论函数的零点个数.【来源】山东省泰安肥城市2021届高三高考适应性训练数学试题(二) 26.已知() (1)讨论的单调性;(2)当时,若在上恒成立,证明:的最小值为. 【来源】贵州省瓮安中学高三2021届6月关门考试数学(理)试题27.已知函数.(1)讨论的单调性;()321()13f x x a x x =--+2a =-()f x a ∈R ()f x ()21ln 2f x x ax x ax =-+1a =()f x ()f x a ()()cos sin ,0,2f x x x x x π=-∈()f x ()()(01)g x f x ax a =-<<()g x ()ln()xf x x a x a=+-+a R ∈()f x 4a =()1cos (2sin )2g x x x mx x =++0m >}{min ,m n m n }{()min ()()h x f x g x =,[],x ππ∈-()h x ()ln f x x ax =+a R ∈()f x 1a =()()1f x k x b ≤++()0,∞+221k b k +--1e -+2()2ln ,()f x x ax x a R =+++∈()f x(2)若恒成立,求的最大值.【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题 28.已知函数. (1)若,证明:在单调递增; (2)若恒成立,求实数的取值范围.【来源】黑龙江省哈尔滨市第三中学2021届高三五模数学(理)试题 29.已知函数. (1)若在上为增函数,求实数a 的取值范围;(2)设,若存在两条相互垂直的切线,求函数在区间上的最小值.【来源】四川省达州市2021 届高三二模数学(文)试题 30.已知函数. (1)如果函数在上单调递减,求的取值范围; (2)当时,讨论函数零点的个数.【来源】内蒙古赤峰市2021届高三模拟考试数学(文)试题 31.已知函数. (1)若在R 上是减函数,求m 的取值范围;(2)如果有一个极小值点和一个极大值点,求证 有三个零点. 【来源】安徽省淮南市2021届高三下学期一模理科数学试题32.已知函数.(1)若函数在上为增函数,求实数的取值范围; (2)当时,证明:函数有且仅有3个零点. 【来源】重庆市第二十九中学校2021届高三下学期开学测试数学试题()xf x e ≤a ()ln x f x xe ax a x =--0a ≤()f x ()0,∞+()0f x ≥a 21()cos 2f x x ax x =++()f x [0,)+∞21()()2g x f x x =-()g x sin ()1()x g x F x x -+=,2ππ⎡⎤⎢⎥⎣⎦1()ln(1)1f x a x x =-+-()()22g x f x x =-+(1,)+∞a 0a >()y f x =21()e 1()2x f x x mx m =+-+∈R ()f x ()f x 1x 2x ()f x ()e sin 1xf x ax x =-+-()f x ()0,∞+a 12a ≤<()()()2g x x f x =-11/ 11。
江苏南通市2019-2020学年度第二学期高三数学适应性测试(含答案)

2020届高三数学适应性练习参考公式:样本数据12n x x x L ,,,的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合{}13=A ,,{}2|20B x x x =-<,则集合A B I = . 2. 已知复数(1i)43i z -=-(i 为虚数单位),则复数z 的模为 . 3. 现有5位病人,他们服用某种药物后的康复时间(单位:天)记录如下:10,11,12,13,14,则康复时间的方差为 . 4. 一个算法的伪代码如图所示,执行此算法,则最后输出的S 的值是 .5. 一张方桌有四个座位,A 先坐在如图所示的座位上,B ,C ,D 三人随机坐到其他三个位置上,则A 与B 相对而坐的概率为 .6. 已知向量,,a b c 在正方形网格中的位置如图所示.若λμλμ=+∈R (,)a b c ,则λμ+的值为 .7. 将函数()π()sin 23f x x =+的图象向右平移ϕ个单位长度,所得函数为偶函数,则ϕ的最小正值是 .8. 已知{}n a 是等比数列,n S 是其前n 项和.若31412a a -=,4217S S =,则2a 的值为 .I ← 1While I < 6 I ← I +2 S ←2I +3 End While Print S(第4题)(第5题)cba(第6题)(第11题)BCDEFA(第14题)9. 过双曲线2221(0)5y x b b-=>的右焦点F 作渐近线的垂线,垂足为P .若△POF 的面积5,则该双曲线的离心率为 . 10.已知直线80ax by +-=()a b ∈,R 经过点(12)-,,则124a b +的最小值是 .11.过年了,小张准备去探望奶奶,到商店买了一盒点心.为了美观起见,售货员用彩绳对点心盒做了一个捆扎(如图(1)所示),并在角上配了一个花结.彩绳与长方体点心盒均相交于棱的四等分点处.设这种捆扎方法所用绳长为l 1,一般的十字捆扎(如图(2)所示)所用绳长为l 2.若点心盒的长、宽、高之比为2:2:1,则12l l 的值为 . 12.已知函数()f x x =,则不等2(2)()f x f x ->式的解集是 .13.已知A (x 1,y 1)、B (x 2,y 2)为圆M :224x y +=上的两点,且121212x x y y +=-,设00()P x y ,为弦AB 的中点,则00|3410|x y +-的最小值为 .14.已知等边ABC △的边长为1,点D ,E ,F 分别在边AB ,BC ,AC 上,且ADF DEF S S =△△13ABC S =△.若AD =x ,CE =y ,则yx的取值范围为 .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在ABC △中,角A B C ,,所对的边分别为a ,b ,c ,sin sin sin sin sin sin sin B C B AA B C--=+. (1)若ABC △3ab 的值; (2)若223c b a +=,求cos A .16.(本小题满分14分)如图,已知EA 和DC 都垂直于平面ABC ,AB=AC =BC =AE =2CD ,F 是BE 的中点. (1)若G 为AF 中点,求证:CG ∥平面BDE ; (2)求证:AF ⊥平面BDE .17.(本小题满分14分)如图,某度假村有一块边长为4百米的正方形生态休闲园ABCD ,其内有一以正方形中心O 为圆心,2百米为半径的圆形观景湖.现规划修建一条从边AB 上点P 出发,穿过生态园且与观景湖相切的观赏道PQ (其中Q 在边AD 上). (1)设APQ θ∠=,求观赏道PQ 的长l 关于θ的函数关系式()f θ; (2)试问如何规划设计,可使观赏道PQ 的长l 最短?G (第16题)BDFE CA(第17题)θQOAD18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)y x a b a b+=>>的离心率为22,点(21,在椭圆上.若直线l 与椭圆有且只有一个公共点P ,且l 与直线2-=x 相交于Q .(1)求椭圆的方程;(2)当直线l 的斜率为21时,求直线l的方程;(3)点T 是x 轴上一点,若总有0uu u r uu u rPT QT ⋅=,求T 点坐标.19.(本小题满分16分)设数列{a n }的前n 项和为S n ,且满足1(2)0n n n S nS n ---+=,N 2n n *∈,≥,22a =.(1)求数列{a n }的通项公式;(2)记221111i i i b a a +=++,1(1)nn i i T b ==-∑.① 求T n ;② 求证:11ln ln n n n T T T ++<.20.(本小题满分16分)已知函数2()(1)f x ax a x =-+-,21()ln 2g x x x ax x =--.(1)若函数f (x )与g (x )在(0)+∞,上均单调递减,求实数a 的取值范围; (2)当(e 0]a ∈-,(其中e 为自然对数的底数)时,记函数()g x 的最小值为m .求证:312em -<-≤;(3)记()()()2ln h x g x f x x '=--,若函数h (x )有两个不同零点,求实数a 的取值范围.(第18题)POxy Q2020届高三数学适应性练习附加21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在.........答题卡...相应的答题区......域内作答.....若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换](本小题满分10分)已知a b ∈,R ,矩阵13a b ⎡⎤=⎢⎥⎣⎦M 的特征值3λ=所对应的一个特征向量为11⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)若曲线1C :292y x x =-在矩阵M 对应的变换作用下得到另一曲线2C ,求曲线2C 的方程.B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为3112x y t ⎧=+⎪⎨⎪=⎩,(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4cos ρθ=,求直线l 被曲线截得的弦长.C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 是正实数,且=5x y z ++,求证:222210≥x y z ++.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中, 已知点A (0,1),点B 在直线:1l y =-上,点T 满足TB u u r ∥OA u u u r,()2AB AB TB ^-u u u r u u u r u u r ,T 点的轨迹为曲线C .(1)求曲线C 的方程;(2)过点P ()()00t t ,>的直线交曲线C 于点M N ,,分别过M ,N 作直线l 的垂线,垂足分别为11M N ,.① 若1190M PN ?°,求实数t 的值;② 点M 关于y 轴的对称点为Q (与N 不重合),求证:直线NQ 过一定点,并求出这个定点的坐标.23.(本小题满分10分)已知数列}{n a 满足:11||n n a a n n*+-∈N ≤,.(1)证明:||n k n k a a n k n*+-∈≤,,N ;(2)证明:221(1)||2m i mi m m a a m *=--∈∑≤,N .y A TBO(第22题)参考答案及评分细则一、填空题:本大题共14小题,每小题5分,共计70分.1. {}1; 2. 522; 3. 2; 4. 17;5.13; 6. 0; 7. 512π; 8. 4±;9. 35; 10. 32; 11. 2; 12. -21(,); 13.5710-; 14.130222⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U ,,. 二、解答题:本大题共6小题,共计90分.15.【解】(1)因为 (sin sin )(sin sin )sin (sin sin )B C B C A B A +-=-,在ABC V 中,由正弦定理sin sin sin a b cA B C==, 得()()()b c b c a b a +-=-,化简得222a b c ab +-=, ……3分在ABC V 中,由余弦定理得,2221cos 22a b c C ab +-==, ……4分 因为(0,)C π∈,所以3πC =,又ABC V 3,可得1sin 32ab C =,所以4ab =. ……7分(2)因为223c b a +=,在ABC V 中,由正弦定理sin sin sin a b c A B C ==,所以2sin sin 2sin 3C B A += 因为A B C π++=,所以2sin sin()2sin 3C A C A ++= ……9分由(1)得3πC =,所以2sin sin()2sin 333ππA A ++=, 化简得333sin 2A A -=,所以1sin()63πA -=. ……11分 因为203A π<<,所以662πππA -<-<,所以222cos()1sin ()66ππA A -=--=所以22311261cos cos ()6632ππA A -⎡⎤=-+=-⋅=⎢⎥⎣⎦. ……14分16.(本小题满分14分)证明:(1)取EF 中点Q ,连结GQ , 因为G 为AF 中点,所以GQ ∥AE ,且12GQ AE =. ……2分 因为EA 和DC 都垂直于平面ABC , 所以CD ∥AE ,又AE =2CD , 所以GQ ∥CD ,且GQ CD =. 所以四边形CDQG 为平行四边形,所以CG ∥DQ , ……4分 又CG ⊄平面BDE ,DQ ⊂平面BDE ,所以CG ∥平面BDE . ……6分(2)取AB 中点P ,连结FP ,CP , 因为F 是BE 的中点, 所以FP ∥AE ,且12FP AE =.因为EA 和DC 都垂直于平面ABC ,所以CD ∥AE. 又AE =2CD ,所以CD ∥PF ,且CD =PF , 所以四边形CDFP 是平行四边形.所以CP ∥DF . ……8分 因为AC =BC ,P 为AB 中点, 所以CP ⊥AB ,所以DF ⊥AB .因为EA 垂直于平面ABC ,CP ⊂平面ABC ,所以CP ⊥AE ,所以DF ⊥AE . ……10分 因为AB AE A =I ,AB AE ⊂,平面ABE ,所以DF ⊥平面ABE . 因为AF ⊂平面ABE ,所以DF ⊥AF . ……12分 因为AB=AE ,F 是BE 的中点, 所以AF ⊥BE .因为BE DF F =I ,BE DF ⊂,平面BDE ,所以AF ⊥平面BDE . ……14分17.(本小题满分14分)解:(1)以点A 为原点,AB 所在直线为x 轴建立平面直角坐标系, 则(22)O ,,(cos 0)P l θ,,(0sin )Q l θ,, 所以直线PQ 的方程为sin (cos )cos l y x l l θθθ=--,即sin cos sin cos 0x y l θθθθ⋅+⋅-=. ……3分 因为直线PQ 与圆O 相切, 所以圆心到直线PQ 的距离为222sin 2cos sin cos 2sin cos l d θθθθθθ+-==+,化简得2sin 2cos sin cos 20l θθθθ+-=, ……5分 解得2sin 2cos 2l θθ+-=,2sin 2cos 2()f θθθ+-=π5π1212θ⎡⎤∈⎢⎥⎣⎦,. ……7分(2)因为2sin 2cos 2()f θθθ+-=,则(cos sin )(2sin 2cos 22sin cos )()f θθθθθθθ-+--'=9分因为π5π1212θ⎡⎤∈⎢⎥⎣⎦,2220θθ+-≤,2222sin cos 0θθθθ+--< 令()0f θ'=,得π4θ=, ……11分则ππ124θ⎛⎫∈ ⎪⎝⎭,时,()0f θ'<,()f θ单调递减,π5π412θ⎛⎫∈ ⎪⎝⎭,时,()0f θ'>,()f θ单调递增,所以π4θ=时,()f θ取得最小值为22. 答:设计成π4APQ ∠=时,可使观赏道PQ 的长l 最短. ……14分18.(本小题满分16分) 【解】(1)设椭圆的焦距为2c ,由题意,得2222211+=1222.a b c aa b c ⎧⎪⎪⎪=⎨⎪⎪=+⎪⎩,,解得21.a b ⎧=⎪⎨=⎪⎩,所以椭圆的方程为2212x y +=. ……3分(2)由题意,设直线l 的方程为m x y +=21, 联立方程组221212y x m x y ⎧=+⎪⎨⎪+=⎩,,得 0444322=-++m mx x ,因为直线l 与椭圆有且只有一个公共点,所以()221612440m m ∆=--= 解得6m = , 所以直线l 的方程为2621±=x y . ……6分 (3)当直线l 的斜率不存在时,l 与直线2-=x 无交点,不符合题意,故直线l 的斜率一定存在,设其方程为y =kx +m , 由2212y kx m x y =+⎧⎪⎨+=⎪⎩,,得()022412222=-+++m kmx x k , 因为直线l 与椭圆有且只有一个公共点,所以()()22221681210k m m k ∆=--+=,化简得:2221m k =+, ……8分所以412,P P P k x y kx m m m =-=+=,即⎪⎭⎫⎝⎛-m m k P 1,2, 因为直线l 与直线2-=x 相交于Q ,所以)2,2(k m Q --,……10分 设(0)T t ,,所以021)2(2=-+--⎪⎭⎫⎝⎛--=⋅m k t t m k ,即0)1(12=+⎪⎭⎫ ⎝⎛++t t m k 对任意的k ,m 恒成立, ……14分 所以01=+t ,即1-=t ,所以点T 坐标为()0,1-. ……16分19.(本小题满分16分)解:(1)因为1(2)0n n n S nS n ---+=, 所以2n =时,11S =,即11a =. 因为2n ≥时,1(2)0n n n S nS n ---+=,即2n n S na n =+. n =1时也适合该式.所以2n ≥时,2n n S na n =+,112(1)1n n S n a n --=-+-,两式相减得1(2)(1)10n n n a n a ----+=, 则1(1)10n n n a na +--+=,两式相减得112(1)(1)(1)02n n n n a n a n a n -+-----=,≥. 所以11202n n n a a a n -+--=,≥,所以11n n n n a a a a +--=-. 所以数列{a n }为等差数列.因为11a =,22a =,所以公差1d =,所以1(1)1n a n n =+-⨯=. ……4分(2)①因为a n =n ,所以2222222211(1)(1)1(1)(1)i i i i i b i i i i ++++=++=++ (1)111111(1)(1)1i i i i i i i i ++==+=+-+++, ……6分所以111111111()()()()1122334111n n T n n n n =-+-+-+⋅⋅⋅+-=-=+++,…8分 ②要证11ln ln n n n T T T ++<,只要证11ln ln212n n n n n n ++<+++, 只要证+12(1)ln (2)ln1n n n n n n ++>++,即证+1+122ln ln11+1+2111n n n n n n n n n n n n ++++>--+.…10分 设+1n x n =,x >1,令ln ()11x xf x x x =>-,, 则21ln ()(1)x xf x x --'=-, ……12分 易证1ln 0x x -->,故()0f x '>在()1+∞,上恒成立. 所以()f x 在()1+∞,上单调递增, 因为121n n n n ++>+,所以12()()+1n n f f n n ++>.所以所证不等式成立. ……16分 20.(本小题满分16分)【解】(1)因为函数2()(1)f x ax a x =-+-在(0)+∞,上单调递减,所以0102a a a-<⎧⎪⎨-⎪-⎩,≤,解得1a ≥.因为21()ln 2g x x x ax x =--在(0)+∞,上单调递减,所以()ln 110g x x ax '=+--≤在(0)+∞,上恒成立, 即ln 0x ax -≤在(0)+∞,上恒成立,所以ln x a x≥在(0)+∞,上恒成立. ……2分令ln ()x t x x =,则21ln ()x t x x-'=,令()0t x '=,得e x =, 当()0e x ∈,时,()0t x '>,()t x 单调递增; 当()e +x ∈∞,时,()0t x '<,()t x 单调递减, 所以max 1()e t x =,所以1ea ≥.故实数a 的取值范围为[)1+∞,. ……4分 (2)因为()ln g x x ax '=-,所以11()ax g x a x x -''=-=.当(e 0]a ∈-,时,[0e)a -∈,,所以11()0ax g x a x x -''=-=>恒成立,所以()ln g x x ax '=-在(0,+∞)上单调递增. 因为1e (1)()10e e ea a g a g +''=-=--=-<≥0,,所以(011e x ⎤∃∈⎥⎦,,使得0()0g x '=.,即00ln 0x ax -=.所以当00x x <<时,()0g x '<,()g x 单调递减;当0x x <时,()0g x '>,()g x 单调递增. 从而2000min00000ln ()()ln 22ax x x m g x g x x x x x ===--=-. ……8分令(ln 1()12e x x x x x ϕ⎤=-∈⎥⎦,,,则ln 1()02x x ϕ-'=<.所以ln ()2x x x x ϕ=-在(11e ⎤⎥⎦,单调递减,因此()(1)1x ϕϕ=-≥,13()()e 2ex ϕϕ<=-.所以312em -<-≤. ……10分(3) 因为2()(1)f x ax a x =-+-,21()ln 2g x x x ax x =--,所以2()()()2ln (1)ln 112ln h x g x f x x ax a x x ax x '=--=+-++---, 即2()ln h x ax x x =--.所以2121()21ax x h x ax x x--'=--=, 当0a ≤时,()0h x '<在(0)+∞,上恒成立,则h (x )在(0)+∞,上单调递减,故h (x )不可能有两个不同的零点. ……12分当0a >时,22ln ()x x h x x a x ⎛⎫+=- ⎪⎝⎭,令2ln ()x x F x a x +=-, 则函数()h x 与函数()F x 零点相同.因为312ln ()x x F x x -+'=,令()12ln G x x x =-+,则2()10G x x'=+>在(0)+∞,上恒成立,因为(1)0G =,则x(01),1 (1)+∞,()F x '- 0 + ()F x递减极小值递增所以()F x 的极小值为(1)1F a =-,所以要使()F x 由两个不同零点,则必须(1)10F a =-<,所以a 的取值范围为()01,. ……14分 因为(1)0F <,1()0e F >,又()F x 在()01,内连续且单调, 所以()F x 在()01,内有唯一零点. 又()()()()22222222ln 2022a a a a a a F a a a a⋅--+=->=,且21a >, 又()F x 在()1+∞,内连续且单调,所以()F x 在()1+∞,内有唯一零点. 所以满足条件的a 的取值范围为()01,. ……16分21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)【解】(1)因为11⎡⎤⎢⎥⎣⎦是矩阵13a b ⎡⎤=⎢⎥⎣⎦M 的特征值3λ=所对应的一个特征向量, 所以1111λ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M ,即1113311a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以1333a b +=⎧⎨+=⎩,,解得20a b =⎧⎨=⎩,.所以矩阵2130⎡⎤=⎢⎥⎣⎦M ……4分 (2)设曲线1C 上任一点00()Q x y ,在矩阵M 的作用下得到曲线2C 上一点()P x y ,, 则002130x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以00023x y x x y +=⎧⎨=⎩,,解得00323y x y x y ⎧=⎪⎨⎪=-⎩,.因为200092y x x =-, 所以()2292333yy x y -=-⋅,即曲线2C 的方程为2y x =. ……10分B .[选修4-4:坐标系与参数方程](本小题满分10分)【解】曲线的直角坐标方程为2240x y x +-=, ……3分即22(2)4x y -+=,圆心(20),,半径2r =,直线l 的普通方程为310x -=, ……6分 所以圆心(20),到直线l 的距离12d =,所以直线l 被曲线C 截得的线段长度()22221222152L r d =-=-=……10分C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 是正实数,且=5x y z ++,求证:222210≥x y z ++. 证明:由柯西不等式得()()22222222211x z x y z ⎡⎤⎡⎤⎢⎥++++++⎢⎥⎣⎦⎢⎥⎣⎦≥ …… 6分 因为=5x y z ++, 所以2225(2)252≥x y z ++⋅,所以222210≥x y z ++,当且仅当2a b c ==时取等号.……………… 10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)设T 的坐标为(),x y ,则B 为(),1x -,因为 A (0,1),所以()0,1TB y =--u u r ,(),2AB x =-u u u r因为()2AB AB TB ^-u u u r u u u r u u r ,所以()20AB AB TB ?=u u u r u u u r u u r,所以220AB AB TB -?u u u r u u u r u u r,所以()24440x y +-+=,即 24x y =,所以曲线C 的方程为24x y = ……4分 (2)法一:由题意,直线MN 的斜率必存在,设为k则直线MN 的方程为:y kx t =+, 由24y kx tx yì=+ïí=ïî可得:2440x kx t --= 设()()1122,,,M x y N x y , 则21212Δ1616044k t x x k x x t ì=+>ïï+=íï?-ïî①因为1190M PN ?°,所以110PM PN ?u u u u r u u u u r因为()()1112,1,,1PM x t PN x t =--=--u u u u r u u u u r所以()21210x x t ++=,所以()2410t t -++=解得:1t = ……6分 ②因为点M 关于y 轴的对称点为Q ,所以()()1112,0Q x y x x -+?xyPN 1MNM 1O所以222121212121444QNx x y y x x k x x x x ---===++ 所以直线NQ 的方程为:()21114x x y y x x --=+ 令0x =得:()22211121112144444xx x x x x x x x y y t -=+=-+==- 所以直线NQ 过定点,定点坐标为()0,t - ……10分(2)法二:设()()222,,2,M m m N n n ()m n ¹,因为,,M N P 三点共线,所以MP NP k k =,所以2222m t n t m n --=,化简得:()()0mn t m n +-= 因为m n ¹,所以mn t =- ①由题意:()()112,1,2,1M m N n --,所以()()112,1,2,1PM m t PN n t =--=--u u u u r u u u u r因为1190M PN ?°,所以110PM PN ?u u u u r u u u u r,所以()()2,12,10m t n t --?-=,所以()2410mn t ++=,所以()2410t t -++=,解得:1t = ……6分②因为点M 关于y 轴的对称点为Q ,所以()22,Q m m -()0m n +?所以22222QNn m n m k n m --==+, 所以直线NQ 的方程为:()222n my m x m --=+ 令0x =得:()222n m my m mn t -=+==- 所以直线NQ 过定点,定点坐标为()0,t - ……10分23.(本小题满分10分)【解析】(1)证明:||=n k n a a +-1121|()()()|n k n k n k n k n n a a a a a a ++-+-+-+-+-++-L1121||||||n k n k n k n k n n a a a a a a ++-+-+-+-+-++-L ≤11112n k n k n ++++-+-L ≤kn≤. ……3分(2)用数学归纳法证明.① 当1=m 时,左边0||22=-=a a =右边;当2=m 时,由(1)得左边||||4424a a a a -+-=2222||12a a +=-=≤=右边;② 设当k m =时,结论成立,即有221(1)||2k i ki k k a a =--∑≤, ……5分 则当1+=k m 时,∑+=-+1122||1k i i k a a||221221i k k k a a a aki -+-=∑=+1221||k k ki a a +=-∑≤∑=-+ki i ka a122||由(1)得||221k k a a -+||222k kk a a -=+212kk =≤,所以1221||k k ki a a k +=-∑≤, ……8分所以∑+=-+1122||1k i i k a a 221||k i ki k a a =+-∑≤(1)2k k k -+≤(1)[(1)1]=2k k ++- 所以1+=k m 时结论成立.由①②可知原不等式成立. ……10分。
2019_2020学年新教材高中数学第二章等式与不等式2.2.1不等式及其性质练习新人教B版必修第一册

2.2.1 不等式及其性质一、选择题1.若0a b <<,那么下列不等式中正确的是( )A .2ab b <B .2ab a >C .11a b <D .11a b> 【答案】D【解析】若0a b <<,则20ab b >>,故A 错, 20a ab >>,故B 错,110b a a b ab--=>, 故选D.2.已知实数,,a b c 满足c b a <<且0ac <,则下列选项中不.一定成立的是( ) A .ab ac >B .()0c b a ->C .()0ac a c -<D .22cb ab <【答案】D【解析】因为c b a <<且0ac <,故0,0c a <>,所以ab ac >,故A 正确;又0b a -<,故()0c b a ->,故B 正确;而0,0a c ac -><,故()0ac a c -<,故C 正确;当0b =时,22cb ab =,当0b ≠时,有22cb ab <,故22cb ab <不一定成立, 综上,选D.3.已知,则“”是“”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】A【解析】a ∈R ,则“a>1”⇒“”,“”⇒“a>1或a <0”, ∴“a>1”是“”的充分非必要条件. 故选:A .4.若a >b ,c >d ,下列不等式正确的是( )A .c b d a ->-B .ac bd >C .a c b d ->-D .a b d c> 【答案】A【解析】由题意,因为a b >,所以a b -<-,即b a ->-,又因为c d >,所以c b d a ->-,故选:A .5.已知a ,b ,c ,d R ∈,则下列不等式中恒成立的是( ).A .若a b >,c d >,则ac bd >B .若a b >,则22ac bc >C .若0a b >>,则()0a b c ->D .若a b >,则a c b c ->- 【答案】D【解析】 A 选项:若1a =,0b =,1c =-,2d =-,则1-=ac ,0bd =;此时ac bd <,可知A 错误;B 选项:若0c =,则220ac bc ==,可知B 错误;C 选项:a b >,则0a b ->;若0c ≤,则()0a b c -≤,可知C 错误;D 选项:若a b >,根据不等式性质可知a c b c ->-,D 正确.本题正确选项:D6.(2019年天津文)设x R ∈,则“05x <<”是“11x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B11x -<等价于02x <<,故05x <<推不出11x -<; 由11x -<能推出05x <<。
2019数学(文)通用版二轮精准提分练习第二篇 第18练 概率与统计的综合问题

第18练概率与统计的综合问题[中档大题规范练][明晰考情]1。
命题角度:概率与统计知识的交汇处是高考命题的考点。
2.题目难度:中档难度。
考点一古典概型与几何概型要点重组(1)古典概型的两个特征①试验中所有可能出现的基本事件只有有限个;②每个基本事件发生的可能性相等.(2)几何概型将古典概型的有限性推广到无限性,几何概型的测度包括长度、面积、角度、体积等。
1.已知A,B两个盒子中分别装有标记为1,2,3,4的大小相同的四个小球,甲从A盒中等可能地取出1个球,乙从B盒中等可能地取出1个球。
(1)用有序数对(i,j)表示事件“甲抽到标号为i的小球,乙抽到标号为j的小球”,试写出所有可能的事件;(2)甲、乙两人玩游戏,约定规则:若甲抽到的小球的标号比乙大,则甲胜;反之,则乙胜。
你认为此游戏是否公平?请说明理由。
解(1)甲、乙两人抽到的小球的所有情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种不同的情况。
(2)甲抽到的小球的标号比乙大,有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6种情况,故甲胜的概率P 1=错误!=错误!,乙胜的概率为P 2=1-错误!=错误!。
因为错误!≠错误!,所以此游戏不公平。
2.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于错误!的概率. 解 (1)集合M 内的点形成的区域面积S =8。
因为圆x 2+y 2=1的面积S 1=π,故所求概率为P 1=错误!=错误!。
文科高考数学重难点05 概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。
(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)
第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。
高中数学选择性必修二 专题5 3 导数在研究函数中的应用(A卷基础篇)(含答案)
专题5. 3导数在研究函数中的应用(2)(A 卷基础篇)(新教材人教A 版,浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·全国高二课时练习)设()f x 是区间[,]a b 上的连续函数,且在(,)a b 内可导,则下列结论中正确的是( )A .()f x 的极值点一定是最值点B .()f x 的最值点一定是极值点C .()f x 在区间[,]a b 上可能没有极值点D .()f x 在区间[,]a b 上可能没有最值点【答案】C【解析】根据函数的极值与最值的概念知,()f x 的极值点不一定是最值点,()f x 的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A ,B ,D 都不正确,若函数()f x 在区间[,]a b 上单调,则函数()f x 在区间[,]a b 上没有极值点,所以C 正确.故选:C.2.(2020·全国高二单元测试)如图是函数y =f (x )的导数y =f '(x )的图象,则下面判断正确的是( )A .在(﹣3,1)内f (x )是增函数B .在x =1时,f (x )取得极大值C .在(4,5)内f (x )是增函数D .在x =2时,f (x )取得极小值【答案】C【解析】根据题意,依次分析选项:对于A ,在(﹣3,32-)上,f ′(x )<0,f (x )为减函数,A 错误; 对于B ,在(32-,2)上,f ′(x )>0,f (x )为增函数,x =1不是f (x )的极大值点,B 错误; 对于C ,在(4,5)上,f ′(x )>0,f (x )为增函数,C 正确; 对于D ,在(32-,2)上,f ′(x )>0,f (x )为增函数,在(2,4)上,f ′(x )<0,f (x )为减函数,则在x =2时f (x )取得极大值,D 错误;故选:C .3.(2020·横峰中学高三月考(文))已知函数()ln f x x ax =-在2x =处取得极值,则a =( ) A .1B .2C .12D .-2【答案】C【解析】 ()'1f x a x=-,依题意()'20f =,即110,22a a -==. 此时()()'112022x f x x x x -=-=>,所以()f x 在区间()0,2上递增,在区间()2,+∞上递减,所以()f x 在2x =处取得极大值,符合题意. 所以12a =. 故选:C4.(2020·霍邱县第二中学高二月考(文))已知函数()31f x ax bx =++的图象在点()1,1a b ++处的切线斜率为6,且函数()f x 在2x =处取得极值,则a b +=( )A .263-B .7C .223D .263【答案】C【解析】由题可知:()'23f x ax b =+,则36,120,a b a b +=⎧⎨+=⎩解得23a =-,8b =. 经检验,当23a =-,8b =时,()f x 在2x =处取得极大值,所以223a b +=. 故选:C 5.(2020·北京高二期末)已知函数31()43f x x x =-,则()f x )的极大值点为( ) A .4x =-B .4x =C .2x =-D .2x = 【答案】C【解析】 由31()43f x x x =-, 得:()24f x x '=-.由()240f x x '=->,得:2x <-,或2x >. 由()240f x x '=-<,得:22x -<<. 所以函数()f x 的增区间为()(),2,2,-∞-+∞.函数()f x 的减区间为()2,2-.所以,2x =-是函数的极大值点,2x =是函数的极小值点.故选:C.6.(2020·河南信阳市·高二期末(文))设()21cos 2=+f x x x ,则函数()f x ( ) A .有且仅有一个极小值B .有且仅有一个极大值C .有无数个极值D .没有极值【答案】A【解析】 ()sin f x x x '=-,()1cos 0f x x ''=-≥,∴()f x '单调递增且()00f '=,∴当0x <时,()0f x '<,函数()f x 单调递减,当0x >时,()0f x '>,函数()f x 单调递增,故()f x 有唯一的极小值点.故选:A.7.(2020·绵阳市·四川省绵阳江油中学高二月考(理))函数()33f x x ax a =--在()0,1内有最小值,则a 的取值范围为( )A .01a ≤<B .01a <<C .11a -<<D .102a << 【答案】B【解析】 ∵函数f (x )=x 3﹣3ax ﹣a 在(0,1)内有最小值,∴f′(x )=3x 2﹣3a=3(x 2﹣a ),①若a ≤0,可得f′(x )≥0,f (x )在(0,1)上单调递增,f (x )在x=0处取得最小值,显然不可能,②若a >0,f′(x )=0解得x=当x f (x )为增函数,0<x f (x )在 所以极小值点应该在(0,1)内,符合要求.综上所述,a 的取值范围为(0,1)故答案为B8.(2020·佳木斯市第二中学高二期末(文))若函数()321233f x x x =+-在区间(),3a a +内既存在最大值也存在最小值,则a 的取值范围是( )A .()3,2--B .()3,1--C .()2,1--D .()2,0-【答案】A【解析】由()22(2)0f x x x x x '=+=+=得2x =-或0x =, 可以判断()f x 在0x =处取得极小值()203f =-,在2x =-处取得极大值()223f -=. 令()23f x =-,得3x =-或0x =,令()23f x =,得2x =-或1x =, 由题意知函数()f x 在开区间(),3a a +内的最大、最小值只能在2x =-和0x =处取得,结合函数()f x 的图象可得:03132a a <+≤⎧⎨-≤<-⎩,解得32a -<<-, 故a 的取值范围是()3,2--.故选:A 9.(2020·全国高三专题练习(文))函数()sin xf x ae x =-在0x =处有极值,则a 的值为( ) A .1-B .0C .1D .e【答案】C【解析】 由题意得:()cos x f x ae x '=-()f x 在0x =处有极值 ()0cos010f a a '∴=-=-=,解得:1a =经检验满足题意,本题正确选项:C10.(2020·湖北宜昌市·高二期末)若1x =是函数3221()(1)(33)3f x x a x a a x =++-+-的极值点,则a 的值为( )A .-3B .2C .-2或3D .–3或2【答案】D【解析】由题意,知:22()2(1)(33)f x x a x a a '=++-+-且()01f '=,∴260+-=a a ,解得:3a =-或2a =.当3a =-时,2()43(1)(3)f x x x x x '=-+=--,即在1x =的左侧(0)30f '=>,右侧(2)10f '=-<,所以1x =是极值点,而非拐点;当2a =时,2()67(1)(7)f x x x x x '=+-=-+,即在1x =的左侧(0)70f '=-<,右侧(2)90f '=>,所以1x =是极值点,而非拐点;故选:D第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2020·四川成都市·高三开学考试(文))已知函数()sin 2f x x x =-,则()f x 在[,]22ππ-上的最小值是_______________.【答案】1-π【解析】在[,]22ππ-上,有()cos 20f x x '=-<,知:()f x 单调递减, ∴min ()()sin 21222f x f ππππ==-⨯=-,故答案为:1-π.12.(2020·昆明呈贡新区中学(云南大学附属中学呈贡校区)高三月考(理))若x =2是f (x )=ax 3-3x 的一个极值点,则a =________. 【答案】14 【解析】因为3()3f x ax x =-,所以2()33f x ax '=-,因为x =2是f (x )=ax 3-3x 的一个极值点,所以(2)1230f a '=-=,故14a =, 经验证当14a =时,2x =是()f x 的一个极值点. 所以14a =. 故答案为:1413.(2019·浙江高三专题练习)若函数321()3f x x x =-在[1,1]-,则函数的最小值是 _______ ;最大值是_________. 【答案】43-0 【解析】由题得2()=2f x x x '-,令2()=2=0f x x x '-得x=2(舍去)或0, 因为42(1),(0)0,f(1)33f f -=-==-, 所以函数的最小值是43-,最大值为0. 故答案为4;0.3- 14.(2020·东台创新高级中学高二月考)已知函数()ln f x x x =,则()y f x =的极小值为______. 【答案】1e -【解析】因为()ln f x x x =,所以()ln 1f x x '=+,由()0f x '>得1x e >;由()0f x '<得10x e<<; 所以函数()ln f x x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()y f x =的极小值为1111ln f e e e e ⎛⎫==- ⎪⎝⎭. 故答案为:1e-. 15.(2019·西藏拉萨市·拉萨那曲第二高级中学高二月考(文))函数()327f x x x =-的极值是:________和________.【答案】-54 54【解析】由函数()327f x x x =-有()()()2327=333f x x x x '=--+ 令()0f x '>解得3x >或3x <-.令()0f x '<解得33x -<<所以函数()f x 在(),3-∞-上单调递增,在()3,3-上单调递减,在()3+∞,上单调递增. 所以当3x =-时,函数()f x 有极大值()()()33327354f -=--⨯-=, 当3x =时,函数()f x 有极小值()33327354f =-⨯=-. 故答案为:54-, 54.16.(2019·浙江绍兴市·高二期末)函数()2()1xf x x x e =--(其中2.718e =…是自然对数的底数)的极值点是________;极大值=________.【答案】1或-225e【解析】由已知得 ()()'22()1212( 2) (1)x x x f x x x x e x x e x x e =--+-=+-=+-,e 0x >,令'()0f x =,可得2x =-或1x =,当2x <-时'()0f x >,即函数()f x 在(,1)-∞-上单调递增; 当21x -<<时,()0f x '<,即函数()f x 在区间(1,0)-上单调递减;当1x >时,'()0f x >,即函数()f x 在区间(0,)+∞上单调递增.故()f x 的极值点为2-或1,且极大值为25(2)f e -=. 故答案为(1). 1或-2 (2). 25e . 17.(2020·全国高三专题练习)设()f x '是奇函数()f x 的导函数,()23f -=-,且对任意x ∈R 都有()2f x '<,则()2f =_________,使得()e 2e 1x x f <-成立的x 的取值范围是_________.【答案】3 ()ln 2,+∞【解析】∵()f x 是奇函数,∴()()223f f =--=,设()()2g x f x x =-,则()()22g f =-41=-,()()20g x f x ''=-<,∴()g x 在R 上单调递减,由()e 2e 1x x f <-得()e e 21x x f -<-,即()()2e x g g <,∴e 2x >,得ln 2x >,故答案为:3;()ln 2,+∞.三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.(2020·全国高三(文))已知函数3()31f x x x =-+.(1)求()f x 的单调区间;(2)求函数的极值;(要列表).【答案】(1)增区间为()(),1,1,-∞-+∞,减区间为()1,1-;(2)极大值为3,极小值为1-.【解析】(1)3()31f x x x =-+,/2()333(1)(1)f x x x x ∴=-=-+,设'()0f x =可得1x =或1x =-.①当/()0f x >时,1x >或1x <-;②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-.(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:当1x =-时,()f x 有极大值,并且极大值为(1)3f -=当1x =时,()f x 有极小值,并且极小值为(1)1f =-.19.(2020·海南省直辖县级行政单位·临高二中高二月考)若()32133f x x x x =+-,R x ∈,求: (1)()f x 的单调增区间;(2)()f x 在[]0,2上的最小值和最大值.【答案】(1) 增区间为()()3,1-∞-+∞,,;(2) ()max 2,3f x = ()min 53f x =-. 【解析】(1)()/223f x x x =+-,由 ()0f x '>解得31x x -或,()f x 的增区间为()()3,1-∞-+∞,,;(2)()2230f x x x =+-=', 3x =-(舍)或1x =, ()15113-33f =+-=, ()00f =, ()32122223233f =⨯+-⨯=, ()max 2,3f x = ()min 53f x =- 20.(2020·北京通州区·高二期末)已知函数3()31f x x x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在[1,2]上的最大值和最小值.【答案】(1)310x y +-= ;(2)最大值f (2)3=,最小值f (1)1=- .【解析】(1)由3()31f x x x =-+得,'2()33f x x =-,所以(0)1f =,'(0)3f =-, 所以曲线()y f x =在点(0,(0))f 处的切线方程13(0)y x -=--即310x y +-=;(2)令'()0f x >可得1x >或1x <-,此时函数单调递增,令'()0f x <可得11x -<<,此时函数单调递减,故函数()f x 在[1,2]上单调递增,所以()f x 的最大值f (2)3=,最小值f (1)1=-.21.(2020·江苏宿迁市·宿豫中学高二月考)已知函数1()(cos sin )(0)22x f x e x x x π=+≤≤, (1)计算函数()f x 的导数()f x '的表达式; (2)求函数()f x 的值域.【答案】(1)()cos xf x e x '=;(2)211,22e π⎡⎤⎢⎥⎣⎦. 【解析】(1)因为1()(cos sin )(0)22x f x e x x x π=+≤≤, 所以11()(cos sin )(sin cos )cos 22x x x f x e x x e x x e x '=++-+=. 故函数()f x 的导数()cos x f x e x '=;(2)02x π≤≤, ()cos 0x f x e x '∴=≥,函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数, 所以m n 0i ()(0)11(cos0sin 0)22e f x f +===, 所以22max 11(cos sin ()()222)22f x e f e πππππ+===; 故函数()f x 的值域为211,22e π⎡⎤⎢⎥⎣⎦. 22.(2020·哈尔滨市第十二中学校高二期末(文))已知函数321()23f x x bx x a =-++,2x =是()f x 的一个极值点.(1)求()f x 的单调递增区间; (2)若当[1,?3]x ∈时,22()3f x a ->恒成立,求实数a 的取值范围. 【答案】(1) ()y f x =的单调递增区间为(,?1)-∞,(2,?+)∞ (2) 01a <<【解析】(Ⅰ)2()22f x x bx '=-+. ∵2x =是的一个极值点,∴2x =是方程2220x bx -+=的一个根,解得32b =. 令()0f x '>,则,解得1x <或2x >.∴函数()y f x =的单调递增区间为(,?1)-∞,(2,?+)∞. (Ⅱ)∵当(1,2)x ∈时()0f x '<,(2,3)x ∈时()0f x '>, ∴在(1,2)上单调递减,在(2,3)上单调递增. ∴(2)f 是在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1,?3]x ∈时,要使22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<.。
9.1.2分层随机抽样-【新教材】2020-2021学年人教A版(2019)高中数学必修第二册练习
9.1.2分层随机抽样同步练习一.选择题1.要从1 000个球中抽取100个进行抽样分析,其中红球共有50个,如果用分层抽样的方法对球进行抽样,则应抽取红球()A.33个B.20个C.5个D.10个2.某校为了解高一学生的生涯规划情况,在高一年级6个班级中任选两个班级,并在所选的班级中按男女比例抽取样本,则应采用的抽样方法是()A.简单随机抽样B.分层抽样C.先用分层抽样,再用随机数表法D.先用抽签法,再用分层抽样3.某校高中生共有900人,其中高一年级有300人,高二年级有200人,高三年级有400人,现采用分层抽样方法抽取一个容量为45的样本,则高一、高二、高三年级抽取的人数分别为()A.10,15,20B.15,15,15C.20,5,20D.15,10,20 4.某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B 专业有420名学生,则在该学院的C专业应抽取的学生是()A.42名B.38名C.40名D.120名5.某中学有高中生3000人,初中生2000人,高中生中男生、女生人数之比为3:7,初中生中男生、女生人数之比为6:4,为了解学生的学习状况,用分层抽样的方法从该校学生中抽取一个容量为N的样本,已知从初中生中抽取男生12人,则从高中生中抽取的女生人数是()A.12B.15C.20D.216.某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8B.11C.16D.107.某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2:1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是( ) A .8B .12C .16D .248.某工厂生产A 、B 、C 三种不同型号的产品,其中某月生产的产品数量之比依次为:3:2m ,现用分层抽样的方法抽取一个容量为120的样本,已知A 种型号产品抽取了45件,则(m = )A .1B .2C .3D .49.某运动队由足球运动员18人,篮球运动员12人,乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,都不用剔除个体,那么样本容量n 的最小值为( ) A .6B .12C .18D .2410.某高中在校学生2000人.为了响应“阳光体育运动”号召,学校举行了跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如表:其中::2:3:5a b c =,全校参与登山的人数占总人数的35,为了了解学生对本次活动的满意程度,现用分层抽样方式从中抽取一个100个人的样本进行调查,则高二级参与跑步的学生中应抽取( ) A .6人B .12人C .18人D .24人11.(多选)某工厂生产A 、B 、C 三种不同型号的产品,其相应产品数量之比为2:5:3,现用分层抽样方法抽出一个容量为n 的样本,样本中A 型号产品有16件,则( ) A .此样本的容量n 为20 B .此样本的容量n 为80 C .样本中B 型号产品有40件D .样本中B 型号产品有24件12.(多选)某中学高一年级半期考试后将进行新高考首选科目的选择,每位同学必须在“物理”、“历史”中二选一,学校采用分层抽样的方法,抽取了该年级部分男、女学生选科意愿的一份样本,并根据统计结果绘制如右两个等高堆积条形图.根据这两幅图中的信息,下列统计结论正确的是( )A.该年级男生数量多于女生数量B.样本中对物理有意愿的学生数量多于对历史有意愿的数量C.样本中对物理有意愿的男生人数多于对历史有意愿的男生人数D.样本中对历史有意愿的女生人数多于对物理有意愿的女生人数13.(多选)甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,考生成绩都分布在[70,150]内,并作出了如下频数分布统计表,规定考试成绩在[120,150]内为优秀,则下列说法正确的有()分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]甲校频数3481515x32乙校频数12891010y3 A.计算得10x=,7y=B.估计甲校优秀率为25%,乙校优秀率为40%C.估计甲校和乙校众数均为120D.估计乙校的数学平均成绩比甲校高二.填空题14.每年的3月15日是“国际消费者权益日”,某地市场监管局在当天对某市场的20家肉制品店、100家粮食加工品店和15家乳制品店进行抽检,要用分层抽样的方法从中抽检27家,则粮食加工品店需要被抽检家.15.今年第6号台风“米克拉”于8月10日正面登陆福建,影响波及面较大,为做好民众的安全防护工作,当地政府及有关部门做了大量的宣传及预防工作,事后某自由媒体从A、B、C三个社区按社区人数之比4:4:3,采用分层抽样的方法抽取n位居民进行问卷检测,了解其对突发事件的防护等安全知识的掌握情况.若A社区抽取了20位居民,则n的值是.16.某校高一、高二、高三共有200名学生,为调查他们的体育锻炼情况,通过分层抽样获得了20名学生一周的锻炼时间,数据如表(单位:小时):高一6 6.577.58高二6789101112高三3 4.567.5910.51213.5则根据上述样本数据估计该校学生一周的锻炼时间不小于7小时的人数为.17.已知某地区中小学生人数和近视情况分别如图甲和乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取3%的学生进行调查,则样本容量为;抽取的高中生中近视的人数为.18.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别A B C 产品数量(件)1300样本容量130由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员只记得A产品的样本容量比C产品的样本容量多10,请你根据以上信息填补表格中数据.9.1.2分层随机抽样同步练习答案1.解:要从1000个球中抽取100个进行抽样分析,其中红球共有50个,∴抽样比1001100010f==,用分层抽样的方法对球进行抽样,则应抽取红球:150510⨯=个.故选:C.2.解:某校为了解高一学生的生涯规划情况,在高一年级6个班级中任选两个班级,利用抽签法,并在所选的班级中按男女比例抽取样本,利用分层抽样法,∴应采用的抽样方法是先用抽签法,再用分层抽样.故选:D.3.解:根据题意得,用分层抽样在各层中的抽样比为451 90020=,则在高一年级抽取的人数是13001520⨯=人,高二年级抽取的人数是12001020⨯=人,高三年级抽取的人数是14002020⨯==人,故选:D.4.解:C专业的学生有1200380420400--=,由分层抽样原理,应抽取400120401200⨯=名.故选:C.5.解:某中学有高中生3000人,初中生2000人,高中生中男生、女生人数之比为3:7,初中生中男生、女生人数之比为6:4,∴高中生男生有73000210037⨯=+人,初中男生有:62000120064⨯=+人,从初中生中抽取男生12人,设从高中生中抽取的女生人数为x,∴1221001200x=,解得21x=,故选:D.6.解:设高一学生有x 人,则高三有2x ,高二有300x +, 高一、高二、高三共有学生3500人,23003500x x x ∴+++=, 800x ∴=,按1100的抽样比用分层抽样的方法抽取样本, ∴应抽取高一学生数为18008100⨯= 故选:A .7.解:根据题意,绿色公共自行车和橙黄色公共自行车的数量比为2:1, 所以样本中绿色公共自行车和橙黄色公共自行车的数量比也为2:1, 所以绿色公共自行车的辆数为2362421⨯=+, 故选:D .8.解:某工厂生产A 、B 、C 三种不同型号的产品, 其中某月生产的产品数量之比依次为:3:2m , 现用分层抽样的方法抽取一个容量为120的样本,A 种型号产品抽取了45件,则4512032mk mk k k=++, 解得3m =. 故选:C .9.解:总体容量6121836++=,则系统抽样的间隔为36n ,采用分层抽样的比例是36n,分层抽样乒乓球运动员人数为6366n n ⨯=,篮球运动员人数为12363n n⨯=,足球运动员人数为18362n n⨯=,可知n 应为6的倍数,36的约数,故样本容量最小的6n =. 故选:A .10.解:根据题意可知样本中参与跑步的人数为2100405⨯=人,所以高二级参与跑步的学生中应抽取的人数为3401210⨯=人. 故选:B .11.解:工厂生产A 、B 、C 三种不同型号的产品,其相应产品数量之比为2:5:3, 现用分层抽样方法抽出一个容量为n 的样本,样本中A 型号产品有16件,设样本为n ,则21680253kn k k k=÷=++,故A 错误,B 正确;样本中B 型号产品有:58040253kk k k⨯=++件,故C 正确,D 错误.故选:BC .12.解:由图2知,样本中的女生数量多于男生数量, 样本中的男生、女生均偏爱理科,故A 错误,B 正确;由图1知,样本中有理科意愿的学生数量多于有文科意愿的学生数量,故C 正确,D 错误, 故选:BC .13.解:A :甲校抽取的人数为:12001106012001000⨯=+人,乙校抽取人数为1106050-=人,所以348153260x ++++++=,解得10x =;同理可得12891010350y +++++++=可得7y =,所以A 正确;B ,由表可得甲校的优秀人数为32103215x ++=++=,所以优秀率为1525%60=, 乙校的优秀人数310731020y ++=++=,所以乙校的优秀率为2040%50=所以B 正确; C 甲的众数是105和115,乙的众数115和125,所以C 不正确;D :甲校的平均成绩为10125135314523754858951051511515109.560⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=,乙校的平均成绩为135314517528589591051011510125114.650⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=,所以D 正确, 故选:ABD .14.解:根据分层抽样原理知,粮食加工品店需要被抽检10027202010015⨯=++(家).故答案为:20.15.解:根据分层抽样方法原理知, 204443n =++, 解得55n =, 所以n 的值是55. 故答案为:55.16.解:样本数据中该校学生一周的锻炼时间不小于7小时的人数为20614-=(人),估计该校学生一周的锻炼时间不小于7小时的人数为1420014020⨯=(人). 故答案为:140.17.解:样本容量为:(350020004500)3%300++⨯=; 抽取的高中生人数为:20003%50%30⨯⨯=. 故答案为:300;30.18.解:设样本的总容量为x ,则130********x⨯=, 300x ∴=.A ∴产品和C 产品在样本中共有300130170-=(件).设C 产品的样本容量为y , 则10170y y ++=,80y ∴=.C ∴产品的数量为300080800300⨯=. A 产品的数量为30001300800900--=.故:。
上海市普陀区2021届高三3月模拟练习(二模)数学试题
1.B
【解析】
【分析】
先由题意得到OA、OB、OC两两垂直,结合几何体,设 为ABC所在平面截球所得圆的圆心,由勾股定理即可求出结果.
【详解】
显然OA、OB、OC两两垂直,如图,设 为ABC所在平面截球所得圆的圆心,
,且 , .
为 的中心 .由 ,可得 .
故选:B.
【点睛】
本题主要考查点到平面的距离,结合勾股定理即可求解,属于基础题型.
【解析】
【分析】
先由题意得到 ,再进一步计算即可得出结果.
【详解】
由题意得
解得: .
故答案为: .
上海市普陀区2019届高三3月模拟练习(二模)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为 ,则球心O到平面ABC的距离为
A. B. C. D.
【详解】
将 代入得: ,进而求出平移后 的坐标,
将函数 图象上的点 向左平移 个单位,
得到点 ( ),若 位于函数 的图象上,
则 ,
则 , ,
则 , ,
由 得:当 时,s的最小值为 ,
故选C.
【点睛】
本题主要考查三角函数的图像变换,熟记平移原则以及三角函数性质即可,属于常考题型.
4.A
【分析】
由目标函数作出可行域,根据 可得 ,由换元法令 ,则 ,可将存在 ,使得 成立,转化为存在 ,使得 成立,进而可确定x, 所满足的平面区域,继而可求出结果.
故选A.
【点睛】
本题主要考查线性规划问题,只需作出可行域,再根据题意确定x, 所满足的平面区域,即可求解,属于常考题型.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三统一练习二(数学文)一、选择题:本大题共8小题,共40分。
1.集合{}Z x x x A ∈<-=,21的真子集的个数是 ( )A.3B.4C.7D.8 2.等差数列{}n a 中,已知33,4,31521==+=n a a a a ,则n 为 ( ) A.48 B.49 C.50 D.513.函数()012≥--=x x y 的反函数图象大致为 ( )A B C D 4.若函数()ax x x f 22+-=与函数()1+=x ax g 在区间[]2,1上都是减函数,则实数a 的取值范围是 ( ) A.()()1,00,1 - B.()(]1,00,1 - C.()1,0 D.(]1,05. 设⎩⎨⎧<≥=1||,1||,)(2x x x x x f ,)(x g 是二次函数,若))((x g f 的值域是[)+∞,0,则)(x g 的值域是( )A (][)+∞-∞-,11,B (][)+∞-∞-,01,C [)+∞,0D [)+∞,1 6.若函数()x f y =的图像与xy 2=的图像关于y 轴对称,若()x fy 1-=是()x f y =的反函数,则()x xfy 221-=-的单调递增区间是 ( )A.[)+∞,1B.()+∞,2C.(]1,∞- D ()0,∞-7.已知数列{}n a 中,n S a ,211=为数列的前n 项和,且n S 与n a 1的一个等比中项为n,则3S 的值为 ( )A.43 B.23 C.32D 18、已知函数①()3ln f x x =;②cos ()3x f x e =;③()3x f x e =;④()3cos f x x =.其中对于()f x 定义域内的任意一个自变量1x ,都存在唯一一个自变量2x 3=成立的函数是( )A .①②B .①②③C .③D .④二.填空题(本大题共6小题,每小题5分,共30分。
把答案填在题中横线上)9.函数()21223lg xx x y -+-=的定义域为______________10.设集合A={}2|2||,01|<-=⎭⎬⎫⎩⎨⎧<-x x B x x x ,那么“""""B m A m ∈∈是的_____________条件11.数列{}n a 的前n 项和()*223N n n n S n ∈-=,则=n a _____________;此时n S 与n na 大小关系是_____________12.设,函数且0a 0≠>a )32lg(2)(+-=x x a x f 有最大值,则不等式0)75(log 2>+-x x a的解集为________________13.对于函数()x f 定义域中任意的()2121,x x x x ≠有如下结论: ①()()()2121x f x f x x f =+②()()()()2121x f x f x f x f += ③()()02121<--x x x f x f ④()()222121x f x f x x f +<⎪⎭⎫⎝⎛+当()x x f 21log =时,上述结论中正确的序号是____________(写出全部正确结论的序号)14.若关于x 的方程()1,021≠>=-a a a a x 且有两个不相等的实数根,则a 的取值范围是____________三.解答题(本大题共6小题,共80分)15.(本小题满分13分)已知数列}{n a 是等差数列,且21=a ,12321=++a a a (1)求数列}{n a 的通项公式;(2)设数列nn n a b 2⋅=(R x ∈),求数列}{n b 的前n 项和公式.16. (本题满分13分)已知函数()()10≠>=+a a ax f kx 且的图像过点()1,1-,其反函数()x f1-的图像过点()2,8. (1)求k a ,的值(2)若将()x fy 1-=的图像向左平移2个单位,再向上平移1个单位,就得到函数()x g y =的图像,写出()x g y =的解析式 (3)若函数()()()x f x g x F 12--=,求()x F 的最小值及取得最小值时x 的值17. (本题满分14分)已知函数()x f 对一切实数y x ,均有()()()12++=-+y x x y f y x f 成立,且()01=f . (1)求()0f 的值 (2)求()x f 的解析式(3)若函数()()()()[]x x f a x f x x g -+-+=11在区间()2,1-上是减函数,求实数a 的取值范围18. (本题满分14分)已知二次函数()()()*22,1006193102Nn n n x n x x f ∈+-+--=(1)设函数()x f y =的图像的顶点的横坐标构成数列{}n a ,求证数列{}n a 是等差数列 (2)设函数()x f y =的图像的顶点到y 轴距离构成数列{}n b ,求数列{}n b 的前n 项和 (3)在(1)的条件下,若数列{}n c 满足()*225411N n a n c nn ∈+-+=,求数列{}n c 中值最大的项和最小项19. (天津)设函数2()()f x x x a =--(x ∈R ),其中a ∈R . (1) 当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (2) 当0a ≠时,求函数()f x 的极大值和极小值;(3) 当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.20、对于函数)(x f ,若存在000)(,x x f R x =∈使成立,则称)(0x f x 为的不动点.如果函数),()(2N c b c bx a x x f ∈-+=有且只有两个不动点0,2,且,21)2(-<-f(1)求函数)(x f 的解析式;(2)已知各项不为零的数列1)1(4}{=⋅nn n a f S a 满足,求数列通项n a ;(3)如果数列}{n a 满足)(,411n n a f a a ==+,求证:当2≥n 时,恒有3<n a 成立.北京一零一中2008—2009学年度统考二高三数学(文科)答案9.)2,3-( 10.充分不必要 11.-4n+5 , n n na S ≥ 12.(2,3) 13.③④ 14.)21,0(15.解(1) a 1=2 1=2 a 1=2由 ⇒ ⇒ ⇒ a n =2na 1+a 2+a 3=12 3a 1+3d=12 d=2(2)∵12222+⋅=⋅=⋅=n n n n n n n a b 设{}n b 的钱n 项和为n S 则1543222423222+⋅⋅⋅⋅+⨯+⨯+⨯+=n n n S ①2165432224232222++⋅+⋅+⋅⋅⋅+⨯+⨯+⨯+=n n n n n S ②①- ②⇒215432222222++⋅-+⋅⋅⋅++++=-n n n n S2222242221)21(2+++⋅--=⋅---=n n n n n n ∴42)1(422222-⋅-=--⋅=+++n n n n n n S 16.解: 1)1(=-f 11=+-ka1=k(1)由已知得 ⇒ ⇒2)8(='f 82=+ka2=a(2)由(1)得1log )(2)(11-=⇒==-+xx x fx f 2将)(1x fy -=的图象向左移2 上移1得)2(log 1)2(21+=-+-x x f∴)2(log )(2+=x x g (x >-2)(3) x x x fx g x f x(1log )2(log )()()(22212+-+=-=->0)1)2(log 1log 2222++=+=+xx xx∴x >0 ∴222≥+xx 当且仅当2=x 时取 ∴25122log )2(min )2=+==F x F (17.解:(1)令0,1==y x ⇒2)0()1(=-f f ∴2)0(0)1(-=⇒=f f (2)令2)1()0()(02-+=++=⇒=x x x x f x f y (3)∵[][]x x x a x x x x x f a x f x x g --+++--++=-+-+=2)1()1()2)(1()1()()1()(222)21()2(222232223-+--+=---++-+=x a x a x ax ax x x x x x)21()2(23)(2a x a x x g +--+=')(x g 在(-1,2)上是减函数即 0)(≤'x g 在(-1,2)上恒成立 即0)21()2(232≤+--+a x a x 在(-1,2)上恒成立 令 0)1(≤g 021423≤---+a a⇔ ⇒ ⇒619≥a 0)2(≤g 0214812≤---+a a18.解:(1) )(x f y =顶点横坐标为2)310(22n a b x ---=-= ∴n a n 310-= ∴31-=--n n a a ∴{}n a 是等差数列 (2) )(x f y =的顶点坐标到y 轴的距离 n d 310-=n 310- 3≤n103-n 4≥n ∴(3)∵5221310225411225411-+=-+-+=+-+=n nn an n c n ∴{}n c 中的最小项为12-=c {}n c 中的最大项为33=c19.解:(1)当1=a 时 2)2(2)1()(232-=⇒-+-=--=f x x x x x x f 且143)(2-+-='x x x f 5)2(-='f∴)(x f y =在))2(,2(f 处的切线方程为:)2(52--=+x y 即:085=-+y x(2)∵x a ax x a x x x f 2322)()(-+-=--= ∴))(3(43)(22a x a x a ax x x f ---=-+-=' 令30)(ax x f =⇒='或a x = ∴0≠x ∴当a >0时 a >3a ∴∴)(x f 的极小值为3274)3(a a f -= )(x f 的极大值为0)(=a f 当a <0时 a <3a∴)(x f 的极小值为0)(=a f )(x f 的极大值为3274)3(a a f -= (3)∵a >33a⇒>1 当[]0,1-∈k时 1cos ≤-x k 1cos 22≤-x k由(2)可知)(x f 在),(a -∞上是减函数,要使)cos ()cos (22x k f x k f -≥-对R x ∈恒成立,只需)(cos cos 22R x x k x k ∈-≤-即可 也即)(cos cos 22R x k k x x ∈-≤-恒成立①∴41)21(cos cos cos )(22--=-=x x x g ∴2)(max =x g ∴①22≥-⇔k k 即 2≥k 或1-≤k ∴在区间[]0,1-上存在1-=k )cos ()cos (22x k f x k f -≥-对R x ∈恒成立20.解:设0)1(22=++-⇒=-+a cx x b x c bx a x ⇒ bc--+10=ba---102 0=a⇒ 代入cx c x x f -+=⇒)21()(2由c f +-=-12)2(<21-21c b += ⇒c <3,N ac ∈,N b ∈ 若1,0==b c ,则)(x f 不能有两个不动点∴2,2==b c 于是)1()1(2)(2≠-=x x x x f(2)由题设得2221)11(2)1(4n n n nn n a a S a a S -=⇒=-⋅①且1≠n a 将1-n 代入得 21112----=n n n a a S ② 由①—②0)1)((11=+--⇒--n n n n a a a a ∴1--=n n a a或11-=--n n a a 由①⇒ 0212111=⇒--a a a a (舍)或11-=a 由11-=a 若11=⇒-=-n n n a a a 与1≠a 矛盾∴11-=--n n a a 即{}n a 是以-1为首项 -1为公差的等差数列 ∴n a n -= (3)证明 (反证明)假设n a >3()2≥n 由(1)22)(2111-==⇒+n nn a a a f a ∴)111(21)1(21-+⋅=-=+n n n n n a a a a a <43)211(21=+< 1 即1+n a <n a ),2(N n n ∈≥∴n a <1-n a <2a ⋅⋅⋅而当2=n 时 38221212=-=a a a <3 ∴n a <3 法二 由2121)211(21,22)(121≤+--=-=⇒+++31=n n n n n n n a a a a a a f a 1+⇒n a <0或2≥+1n a 若1+n a <0则1+n a <0<3成立若2≥+1n a 此时2≥n 从而0)1(2)2(≤---=-+n n n n n a a a a a 1即数列{}n a 在2≥n 时单减 由3222=a 可知322211-≤a a <3 在2≥n 上成立。