2020年9月河南省南阳市第一中学2021届高三年级上学期第二次月考检测数学(理)答案
2020年8月河南省南阳一中2021届高三上学期第一次月考检测数学试题及答案

绝密★启用前河南省南阳市第一中学2021届高三年级上学期第一次月考检测数学试题2020年8月一:选择题(每小题5分,共60分)1.函数x x y 412-+=的最小值是( )A.1B.21 C.41 D.2 2.函数)1(42≥+=x x x y 的最小值是( ) A.5 B. 4 C.3 D.23.函数)12(-x f 的定义域是]2,1[,则函数)1(+x f 的定义域是( )A.]3,1[B. ]42[,C.]10[,D.]2,0[4.函数)(x f 满足x x f x f =--)1(2)(,则函数)(x f 等于( )A.32-x B. 32+x C.1-x D.1+-x 5.函数),3[,1223)(+∞∈++=x x x x f 的值域是( ) A. ),711[+∞ B. ),23[+∞ C.)2,711[ D.]711,23( 6.函数⎩⎨⎧≥<-+=.2,log ,2,4)21()(x x x a x a x f a 是R 上的增函数,则实数a 的范围是( ) A. ]2,1( B. ),21(+∞ C.)2,21( D.),1+∞( 7.已知函数)(x f 的值域是]5,1[,则)(52)()(x f x f x g -+=的值域是( )A. ]8,4[B. {}5C.]6,5[D.]6,4[8.函数)(x f 是R 上的奇函数,且函数())1(+=x f x g 是R 上的偶函数,则函数)2020(f 等于 ( )A. 1-B. 1C.0D.20209.函数)1(lg )(2++=mx mx x f 的定义域为R,则实数m 的范围是( )A.]4,0[B. )4,0(C.),4()0,(+∞-∞D.)4,0[ D10.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.如函数()21cos 21x x f x x +=-的图象大致是( ) A . B . C . D .11.函数()21||21()log 112x f x x =+--,则使得()(21)f x f x ≤-成立的x 取值范围是( )A . (,1]-∞B . 111[,)(,1]322⋃C .1,13⎡⎤⎢⎥⎣⎦D . 1,[1,)3⎛⎤-∞⋃+∞ ⎥⎝⎦ 12.设函数()f x 的定义域为R ,满足2(1)()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是( ) A .7[,)6-+∞B .5[,)3-+∞C .5[,)4-+∞ D .4[,)3-+∞二、填空题(每小题5分,共20分)13. 函数20)1()1lg()(-++=x x x x f 的定义域为 14.函数1)13()(2+-+=x a ax x f 的值域为R ,则实数a 的范围是 15.已知函数)3(ln )(2+-=ax x x f 在]4,3[上是增函数,则实数a 的范围是 16.若函数()22f x x x a =-+在()0,2内有两个零点,则a 的取值范围是______.。
河南省南阳市2024届高三上学期期中考试数学

2023年秋期高中三年级期中质量评估数学试题注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效。
2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损。
第I 卷 选择题(共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列集合中,表示空集的是A.{}0 B.{}2,2x x x <->且C.{}210x x ∈-=N D.{}4x x >2.命题“0x ∃∈R ,20010x x ++…”的否定为A.x ∀∈R ,210x x ++> B.x ∃∈R ,210x x ++>C.x ∀∈R ,210x x ++… D.x ∃∈R ,210x x ++<3.若复数z 满足()12z i +=,则z z -=A.2- B.2C.4i- D.4i4.公比不为1的等比数列{}n a 满足574816a a a a +=,若23964m a a a a =,则m 的值为A.8B.9C.10D.115.若函数()()24125xxf x a a =--+-有两个零点,则实数a 的取值范围为A.71,3⎛⎫- ⎪⎝⎭ B.(- C.73⎫⎪⎭D.53⎫⎪⎪⎭6.已知0,4πα⎛⎫∈ ⎪⎝⎭,()sin sin x αα=,()sin cos y αα=,()cos sin z αα=,则A.x y z<< B.x z y << C.y x z << D.z x y<<7.已知a ,b ,c 分别为ABC △的三个内角A ,B ,C 的对边,若点P 在ABC △的内部,且满足PAB PBC PCA ∠∠∠θ===,则称P 为ABC △的布洛卡(Brocard )点,θ称为布洛卡角.布洛卡角满足:cot cot cot cot A B C θ=++(注:tan cot 1x x =).则PA PB PC c a b++=A.2sin θB.2cos θC.2tan θD.2cot θ8.已知()212xf x ae x ax =+-在()0,+∞上单调递减,则实数a 的取值范围为A.(],1-∞- B.(),1-∞- C.()0,+∞ D.[)0,+∞二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.如图是函数()()sin f x x ωϕ=+的部分图象,则函数()f x =A.sin 3x π⎛⎫+⎪⎝⎭B.sin 23x π⎛⎫-⎪⎝⎭C.cos 26x π⎛⎫+⎪⎝⎭D.5cos 26x π⎛⎫-⎪⎝⎭10.已知n S 是数列{}n a 的前n 32n n S a =+,则A.{}n a 是等比数列 B.9100a a +>C.910110a a a > D.0n S >11.设,x y ∈R ,若2241x y xy ++=,则x y +的值可能为A.2- B.1- C.1D.212.设0a ≠,若x a =为函数()()()2f x a x a x b =--的极小值点,则下列关系可能成立的是A.0a >且a b >B.0a >且a b <C.0a <且a b< D.0a <且a b>第II 卷 非选择题(共90分)三、填空题(本题共4小题,每小题5分,共20分)13.一个正实数的小数部分的2倍,整数部分和自身成等差数列,则这个正实数是______.14.四边形ABCD 中,2AD =,3CD =,BD 是四边形ABCD 的外接圆的直径,则AC BD ⋅=______.15.奇函数()f x 满足()()21f x f x +=-,()12023f -=,则()2023f =______.16.互不相等且均不为1的正数a ,b ,c 满足b 是a ,c 的等比中项,则函数()2xxx f x a bc -=++的最小值为______.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)设数列{}n a 为等差数列,其前n 项和为()*n S n ∈N,数列{}nb 为等比数列.已知111ab ==,523a b =,424S S =.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n n a b ⋅的前n 项和n T .18.(本小题满分12分)已知函数()21cos sin 2f x x x x ωωω=-+,其中0ω>,若实数1x ,2x 满足()()122f x f x -=时,12x x -的最小值为2π.(1)求ω的值及()f x 的单调递减区间;(2)若不等式()22cos 22206f x a x a π⎛⎫⎡⎤++--< ⎪⎣⎦⎝⎭对任意,126x ππ⎛⎫∈- ⎪⎝⎭时恒成立,求实数a 的取值范围.19.(本小题满分12分)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若1a ,3a ,7a 成等比数列,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前2024项的和.20.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且满足_____.(从以下两个条件中任选一个补充在上面横线上作为已知,将其序号写在答题卡的横线上并作答.)条件①:()()sin sin sin 3sin b c B C a A b C ++=+条件②:25cos cos 24A A π⎛⎫++=⎪⎝⎭(1)求角A ;(2)若ABC △为锐角三角形,1c =,求ABC △面积的取值范围.21.(本小题满分12分)已知函数()3f x x x =-,()2g x x a =+,a ∈R ,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =,求a ;(2)求a 的取值范围.22.(本小题满分12分)(1)已知函数()ln f x x x =,判断函数()()()11g x f x f x =++-的单调性并证明;(2)设n 为大于1的整数,证明:()()1111211nnn n n +-+->.2023年秋期高中三年级期中质量评估数学参考答案一.选择题:1-8.BADCCDBA 二.选择题:9.BC10.ABD11.BC12.AC三.填空题:13.43或8314.5-15.2023-16.4四.解答题:17.解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由424S S =可得()114642a d a d +=+,即()6442d d +=+,解得2d =,所以,()()1112121n a a n d n n =+-=+-=-,25339b q a ===,∴3q =则1113n n n b b q--==;(2)()1213n n n a b n -=-⋅,则()0121133353213n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅①,可得()()12131333233213n n n T n n -=⋅+⋅+⋅⋅⋅+-⋅+-⋅②,①-②得:()()()()1121613212333213121313n n n nn T n n ----=+++⋅⋅⋅+--⋅=+--⋅-()2232n n =-⋅-,因此,()131nn T n =-⋅+18.解:(1)()21cos sin 2f x x x x ωωω=-+1cos2122x x ωω-=-+1cos22x x ωω=+sin 26x πω⎛⎫=+ ⎪⎝⎭因为实数1x ,2x 满足()()122f x f x -=时,12x x -的最小值为2π.所以()f x 的最小正周期22T ππω==,解得1ω=,所以()sin 26f x x π⎛⎫=+⎪⎝⎭,由()3222262k x k k Z πππππ+≤+≤+∈,得()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)不等式()22cos 22206f x a x a π⎛⎫⎡⎤++--< ⎪⎣⎦⎝⎭对任意,126x ππ⎛⎫∈- ⎪⎝⎭时恒成立,()22cos 2226f x a x a π⎛⎫⎡⎤++-- ⎪⎣⎦⎝⎭2sin 22cos 22266x a x a ππ⎛⎫⎛⎫=+++-- ⎪ ⎪⎝⎭⎝⎭2cos 22cos 22166x a x a ππ⎛⎫⎛⎫=-+++-- ⎪ ⎪⎝⎭⎝⎭,令cos 26t x π⎛⎫=+⎪⎝⎭,20,62x ππ⎛⎫+∈ ⎪⎝⎭,∴()cos 20,16x π⎛⎫+∈ ⎪⎝⎭22210t at a -+--<,()0,1t ∈()2211a t t -<+,2121t a t +>-恒成立令()11,0m t =-∈-,221222211t m m m t m m+++==++<--∴21a -…,解得:12a ≥-,故实数a 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭19.解:(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且*N n ∈,所以{}n a 是以1为公差的等差数列.(2)由(1)可得312a a =+,16a a =+又1a ,3a ,7a 成等比数列,所以()()211126a a a +=⋅+,解得12a =,所以1n a n =+∴()()111111212n n a a n n n n +==-++++.∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前2024项和为:111111111150623344520252026220261013⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭20.解:解析:(1)选择条件①:由题意及正弦定理知()223b c a bc +=+,∴222a b c bc =+-,∴2221cos 22b c a A bc +-==∵0A π<<,∴3A π=.选择条件②:因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=(2)由sin sin b cB C=可得sin sin 3sin sin C B b C Cπ⎛⎫+ ⎪⎝⎭==112tan C==+因为ABC △是锐角三角形,由(1)知3A π=,A B C π++=得到23B C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以122b <<.1sin 2ABC S bc A ==△,ABC S ∈△21.解:(1)由题意知,()10f =,()231f x x =-',()1312f =-=',则()y f x =在点()1,0处的切线方程为()21y x =-,22y x =-设该切线与()g x 切于点()()22,x g x ,()2g x x '=,则()2222g x x ==',解得21x =,则()11220g a =+=-=,解得1a =-;(2)因为()231f x x =-',则()y f x =在点()()11,x f x 处的切线方程为()()()32111131y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()()22,x g x ,()2g x x '=,则()222g x x '=,则切线方程为()()22222y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令()4329312424h x x x x =--+,则()()()329633311h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,()h x ',()h x 的变化情况如下表:则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞22.解:(1)函数()f x 的定义域为()0,+∞,函数()g x 的定义域为()1,1-函数()()()()()1ln 11ln 1g x x x x x =+++--在()1,0-上单调递减,在()0,1上单调递增证明:()()()()()1ln 11ln 1g x x x x x -=--+++,∴()()g x g x -=所以()g x 为()1,1-上的偶函数.()()()12ln 1ln 1lnln 1011x g x x x x x '+⎛⎫=+--==--> ⎪--⎝⎭对()0,1x ∀∈恒成立.所以函数()g x 在()1,0-上单调递减,在()0,1上单调递增(2)(证法一)要证明()()1111211nnn n n +-+->,需证明()()11111111111n nnnn n nn+-+-+⋅->⋅即证明()()1111111111ln 0n n n n n n n n +-+-⎡⎤+-⎢⎥⋅>⎢⎥⎢⎥⎣⎦,即11111ln 11ln 10n n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++--> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由(1)可知即证10g n ⎛⎫>⎪⎝⎭.∵()10,1n ∈且()g x 在()0,1单调递增,∴()100g g n ⎛⎫>= ⎪⎝⎭所以()()1111211nnn n n +-+->对*n N ∈,1n >成立.(证法二)要证明()()1111211nnn n n +-+->即证明()()111ln 11ln 12ln n n n n n ⎛⎫⎛⎫+++--> ⎪ ⎪⎝⎭⎝⎭,即证()()()()1ln 11ln 12ln n n n n n n +++-->,即证()()()()1ln 1ln ln 1ln 1n n n n n n n n ++->---设函数()()()1ln 1ln g x x x x x=++-()()ln 1ln 0g x x x =+->',故函数()g x 在()0,+∞上单调递增又1n n >-,∴()()1g n g n >-,故原不等式成立.。
河南省南阳市第一中学2021届高三上学期第二次月考(9月)数学(理)答案

南阳市一中2020年秋期高三第二次月考理数参考答案一、单选题1.B 2.C 3.B 4.A 5.A 6.C 7.C 8.D 9.D 10.C 11.D 12.D 二、填空题13.314.315.√216.①③ 三、解答题17.(1)根据指数幂的运算性质,可得原式22.5311536427110008-⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎢⎥=--⎨⎬ ⎪⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭1521335233431102⎛⎫⨯- ⎪⎝⎭⨯⎡⎤⎡⎤⎛⎫⎛⎫=--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦531022=--=. (2)由对数的运算性质,可得原式242lg 2lg32lg 2lg311231lg 0.6lg 21lg lg 22410++==⨯++++ 2lg 2lg 32lg 2lg 311lg 2lg 3lg10lg 22lg 2lg 3++===++-++.18.(1)因为奇函数定义域关于原点对称,所以230a b --+=.又根据定义在0x =有定义,所以()00210021a f ⋅-==+,解得1a =,1b =. (2)[]3,3x ∈-,令()2121x x f x t -==+,7799t ⎛⎫-≤≤⎪⎝⎭则方程()()20f x f x m +-=⎡⎤⎣⎦有解等价于20t t m +-=7799t ⎛⎫-≤≤⎪⎝⎭有解 也等价于2y t t =+7799t ⎛⎫-≤≤ ⎪⎝⎭与y m =有交点. 画出图形根据图形判断:由图可知:1112481m -≤≤时有交点,即方程()()20f x f x m +-=⎡⎤⎣⎦有解. 19.(1)令()2ln g x x x =-,则'2()1g x x=-,当2x e ≥时,'()0g x >,故()g x 在2[e ,)+∞上单调递增,所以22()(e )e 40g x g ≥=->, 即2ln x x >,所以2x e x >. (2)由已知,()2222(e )()()e1e e 1x x x xf x ax a ax x ==---++,依题意,()f x 有3个零点,即2e 0xax -=有3个根,显然0不是其根,所以2ex a x=有3个根,令2e ()x h x x=,则'3e (2)()x x h x x -=,当2x >时,'()0h x >,当02x << 时,'()0h x <,当0x <时,'()0h x >,故()h x 在(0,2)单调递减,在(,0)-∞,(2,)+∞上 单调递增,作出()h x 的图象,易得2e 4a >. 故实数a 的取值范围为2e(,)4+∞.20.解:(1)()()2xf x ax a e =-+',当0a =时,()20xf x e '=-<,∴()f x 在R 上单调递减.当0a >时,令()0f x '<,得2a x a -<;令()0f x '>,得2ax a->. ∴()f x 的单调递减区间为2,a a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,a a -⎛⎫+∞ ⎪⎝⎭.当0a <时,令()0f x '<,得2a x a ->;令()0f x '>,得2ax a-<. ∴()f x 的单调递减区间为2,a a -⎛⎫+∞ ⎪⎝⎭,单调递增区间为2,a a -⎛⎫-∞ ⎪⎝⎭.(2)当0a =时,()f x 在()1,+∞上单调递减,∴()()10f x f <=,不合题意. 当0a <时,()()()()22222222220f a e e a a e e e e =---=--+<,不合题意.当1a ≥时,()()20xf x ax a e '=-+>,()f x 在()1,+∞上单调递增,∴()()10f x f >=,故1a ≥满足题意. 当01a <<时,()f x 在21,a a -⎛⎫ ⎪⎝⎭上单调递减,在2,a a -⎛⎫+∞ ⎪⎝⎭单调递增,∴()()min 210a f x f f a -⎛⎫=<=⎪⎝⎭,故01a <<不满足题意. 综上,a 的取值范围为[)1,+∞.21.(1)()e sin x f x x '=-,令()e sin x g x x =-,0x ≥,则()e cos xg x x '=-.当[)0,πx ∈时,()g x '为增函数,()()00g x g ''≥=;当[)π,x ∈+∞时,()πe 10g x '≥->.故0x ≥时,()0g x '≥,()g x 为增函数,故()()min 01g x g ==,即()f x '的最小值为1. (2)令()e cos 2xh x x ax =+--,()e sin xh x x a '=--,则本题即证当π2x ≥-时,()0x h x ⋅≥恒成立.当1a ≤时,若0x ≥,则由(1)可知,()10h x a '≥-≥,所以()h x 为增函数,故()()00h x h ≥=恒成立,即()0x h x ⋅≥恒成立;若π,02x ⎡⎤∈-⎢⎥⎣⎦,则()e cos x h x x ''=-,()e sin xh x x '''=+在π,02⎡⎤-⎢⎥⎣⎦上为增函数,又()01h '''=,π2πe 102h -⎛⎫'''-=-< ⎪⎝⎭,故存在唯一0π,02x ⎛⎫∈- ⎪⎝⎭,使得()00h x '''=.当0π,2x x ⎛⎫∈- ⎪⎝⎭时,()0h x '''<,()h x ''为减函数;()0,0x x ∈时,()0h x '''≥,()h x ''为增函数.。
2021届河南省南阳市第一中学高三上学期第二次月考(9月)数学(理)试题解析

2021届河南省南阳市第一中学高三上学期第二次月考(9月)数学(理)试题一、单选题1.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4答案:B由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 解:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B. 点评:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2.命题p :0,2x π⎛⎫∀∈ ⎪⎝⎭,sin x x >,则命题p ⌝是( ) A .0,2x π⎛⎫∀∈ ⎪⎝⎭,sin x x ≤B .0,2x π⎛⎫∀∉ ⎪⎝⎭,sin x x > C .00,2x π⎛⎫∃∈ ⎪⎝⎭,00sin x x ≤ D .00,2x π⎛⎫∃∈ ⎪⎝⎭,00sin x x > 答案:C原命题是全称命题,其否定为存在性量词命题,故按规则可写出原命题的否定. 解:因为p :0,2x π⎛⎫∀∈ ⎪⎝⎭,sin x x >,故p ⌝:00,2x π⎛⎫∃∈ ⎪⎝⎭,00sin x x ≤. 故选:C. 点评:全称命题的一般形式是:x M ∀∈,()p x ,其否定为(),x M p x ∃∈⌝.存在性量词命题的一般形式是x M ∃∈,()p x ,其否定为(),x M p x ∀∈⌝. 3.函数()2log 21f x x x =+-的零点必落在区间( ) A .()1,2 B .1,12⎛⎫⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .11,84⎛⎫⎪⎝⎭答案:B由题意得()10f >,102f ⎛⎫< ⎪⎝⎭,()1 102f f ⎛⎫< ⎪⎝⎭,根据函数零点存在性定理可得出答案. 解: 由题得211log 111022f ⎛⎫=+-=-<⎪⎝⎭,()21log 12110f =+-=>, 而()1 102f f ⎛⎫< ⎪⎝⎭, 根据函数零点存在性定理可得函数()f x 在区间1,12⎛⎫⎪⎝⎭上存在零点. 故答案为B. 点评:本题考查了函数零点存在性定理的应用,属于基础题.4.已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()2x f x =,则()2log 12f =( ) A .43-B .2332 C .34D .38-答案:A利用周期性和奇函数的性质可得,()()()222log 12log 1244log 12f f f =-=--,再根据指数运算和对数运算即可求得结果. 解:由题意()(4)f x f x =+,故函数()f x 是周期为4的函数,由23log 124<<,则21log 1240-<-<,即204log 121<-<, 又函数()f x 是定义在R 上的奇函数,则()()()2244log 12222log 1224log 12log 1244log 12223f f f -=-=--=-=-=-,故选A. 点评:本题主要考查对数函数,奇函数,周期函数,以及抽象函数的性质,综合性较强,属中档题.5.函数()ln 1-=x x f x x的图象是( ) A . B .C .D .答案:A利用特殊点的函数值,由排除法得解. 解: 解:32(3)203ln f ln ==>,故排除D ; (1)20f ln -=-<,故排除C ; 11()022f ln =<,故排除B ; 故选:A . 点评:本题考查函数图象的确定,属于基础题.6.已知函数(2)1,(1)()log ,(1)a a x x f x x x --≤⎧=⎨>⎩,若()f x 在(,)-∞+∞上单调递增,则实数a的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,)+∞答案:C利用分段函数的单调性列出不等式组,可得实数a 的取值范围. 解:()f x 在(,)-∞+∞上单调递增,则()201211log 1a a a a ⎧->⎪>⎨⎪-⨯-≤⎩解得23a <≤ 故选:C 点评:本题考查函数单调性的应用,考查分段函数,端点值的取舍是本题的易错. 7.已知函数()()xxf x x e e-=-,对于实数a b ,,“0a b +>”是“()()0f a f b +>”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:C先判断出函数为奇函数,且为R 的单调增函数,结合单调性与奇偶性利用充分条件与必要条件的定义判断即可. 解:因为()()()()xx x x f x x ee x e ef x ---=--=--=-,所以()f x 为奇函数,0x >时,()1x x f x x e e ⎛⎫=- ⎪⎝⎭,()f x 在()0,∞+上递增,所以函数()f x 在R 上为单调增函数, 对于任意实数a 和b ,若0a b +>,则()(),a b f a f b >-∴>-, 函数()f x 为奇函数,()()f a f b ∴>-,()()0f a f b ∴+>,充分性成立;若()()0f a f b +>,则()()()f a f b f b >-=-,函数在R 上为单调增函数,a b ∴>-,0a b ∴+>,必要性成立,∴对于任意实数a 和b ,“0a b +>”,是“()()0f a f b +>”的充要条件,故选C. 点评:本题主要考查函数的单调性与奇偶性以及充分条件与必要条件的定义,属于综合题. 判断充分条件与必要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 8.已知函数()2sin tan 1cos a x b xf x x x+=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .102答案:D令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.解:令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 点评:本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.9.已知函数()f x 为R 内的奇函数,且当0x ≥时,()e 1cos xf x m x =-++,记()22a f =--,()1b f =--,()33c f =,则,,a b c 间的大小关系是( )。
南阳市第一中学2021届高三生物上学期第二次月考9月试题

河南省南阳市第一中学2021届高三生物上学期第二次月考(9月)试题一、选择题(每题1。
5分,40题共60分)1.细胞是多种元素和化合物构成的生命系统,下列相关叙述,正确的是()A。
C、H、O、N等化学元素是构成细胞中主要化合物的基础,在细胞中含量丰富B。
内环境中发生的丙酮酸氧化分解给细胞提供能量,有利于生命活动的进行C.酶、激素、抗体和神经递质等都是细胞中的微量高效物质,作用后都立即被分解D.同一种酶不可能存在于同一生物个体内分化程度不同的活细胞中2.下图为几种化合物的元素组成示意图,以下说法错误的是()A。
若①为某种具有催化作用的化合物,则其水解产物为氨基酸B。
若②为脂肪,则其大量积累于皮下和内脏器官周围C.若③为蓝藻的遗传物质,则其和蛋白质组成染色体D.若④为糖原,则其主要分布在人和动物的肌肉和肝脏中3。
从一动物细胞中得到两类大分子有机物x、y,已知细胞中x的含量大于y,用胃液处理,x被分解而y不变。
x含有化学元素N,有的还含有元素S,y含有化学元素N和P,它们与苏丹Ⅲ染液都没有颜色反应,细胞膜上有x而无y。
下列有关x、y的叙述,错误的是()A.x可能是蛋白质B.y的基本组成单位可能是核苷酸C.细胞膜上的x可能是胆固醇D。
y一般在于细胞核和细胞质中4。
下列说法正确的有( )①蓝藻细胞虽然没有核膜包被的细胞核,但是具有一个大型的DNA构建的拟核,用高倍显微镜清晰可见。
②淀粉和糖原属于多糖,都是细胞内的储能物质③DNA和RNA属于核酸,都是细胞内的遗传物质④检测生物组织中的脂肪实验必需使用显微镜观察⑤用植物根尖进行实验时,叶绿体的存在会干扰实验现象的观察⑥侵入细胞的病毒或病菌被细胞溶酶体中水解酶分解后的产物全部被排除细胞外A.一项B.二项C。
三项 D.四项5.下列情况中,使用普通光学显微镜不能观察到的是()A。
人红细胞在蒸馏水中体积增大、破裂的现象B。
洋葱鳞片叶表皮细胞膜的暗—亮-暗三层结构C。
河南省南阳市2024届高三上学期期末数学参考答案及评分细则

2023年秋期高中三年级期终质量评估数学试题参考答案一.选择题1-8.CBDC BDAC 二.选择题9.AC 10.ACD 11.ABD12.CD三.填空题13.-1214.),()(∞+-10,1 15.8916.四.解答题(答案仅供参考,各小题若有其他解法,请酌情给分)17.解析:(1)(),m a b =,()sin ,n B A = ,且0m n ⋅=,sin cos 0a B A -=∴,∴由正弦定理得sin sin cos 0A B B A -=.……………………………………………2分0πB << ,sin 0B ∴≠,sin A A =∴,tan A =.0πA << ,π3A ∴=.………………………………………………………………………5分(2)10a = ,∴由余弦定理得22222cos 10a b c bc A =+-=,即22100b c bc +-=.…………………………………………………………………………7分222b c bc +≥ ,1002bc bc ∴+≥,100bc ∴≤.1sin 1002S bc A ==≤= 8分∴当且仅当b c =时,ABC △面积有最大值,最大值为.…………………………10分18.解析:(1)因为11122n n n n n a a a a a +++++=-+,所以1131122n n n n a a a a ++=---,则111111111n n n n n n n n a a a a a a a a ++++--==+++++1121122n n n n a a a a ++-=-,所以12n n b b +-=,……………………………………………………………………………2分又10a =,所以11111b a ==+,故数列{}n b 是首项为1,公差为2的等差数列,所以12(1)21n b n n =+-=-,……………………………………………………………5分1122112121n n na b n n -=-=-=--.…………………………………………………………6分(2)证明:(方法一)由(1)可得2n S n =,所以211n S n=.当1n =时,1117=14T S =<.…………………………………………………………………7分当2n ≥时,22111111211n n n n ⎛⎫<=- ⎪--+⎝⎭,…………………………………………8分1231111n nT S S S S =++++ 111111111111232435211n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫<+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111221n n ⎛⎫=+⨯+-- ⎪+⎝⎭711174214n n ⎛⎫=-+<⎪+⎝⎭.………………………………11分综上可得7.4n T <…………………………………………………………………………12分(方法二)由(1)可得2n S n =,所以211n S n=.当1n =时,1117=14T S =<.…………………………………………………………………7分当2n =时,22111157=+1+=444T S S =<.…………………………………………………8分当3n ≥时,21111(1)1n n n n n<=---,…………………………………………………9分1231111n nT S S S S =++++ 11111111++423341n n <+--++-- 71744n =-<.…………………………………11分综上可得7.4n T <…………………………………………………………………………12分19.解析:(1)证明:如图,连接1A C ,在AC A 1∆中,12A A =,1AC =,160A AC ∠=︒,由余弦定理,得222111112cos 4122132A C AA AC AA AC A AC =+-⋅⋅∠=+-⨯⨯⨯=,所以1A C =,所以22211AC AC A A +=,所以1A C AC ⊥,…………………………………………2分同理1A C BC ⊥,又BC AC C ⋂=,,AC BC ⊂平面ABC ,所以1A C ⊥平面ABC ,又1AC ⊂平面11A ACC ,所以平面ABC ⊥平面11A ACC .……………………………………………5分(2)由平面几何知识可知,AC ⊥CP ,……………………………………………6分以C 为坐标原点,以CA,CP,CA 1为,x y z ,轴,建立如图所示的空间直角坐标系C xyz -,则(1,0,0)A,1(2B -,1A ,……………………………………………7分所以1(AA =-,3(,22AB =- 设平面1A AB 的法向量为111(,,)m x y z =,则111110,3·0,22m AA x m AB x ⎧⋅=-+=⎪⎨=-+=⎪⎩令11z =,得m =.…………………………………………………………9分又平面P CA 1的法向量为)0,0,1(=n , (10)分13391933=++=∴…………………………………………11分所以二面角11B P A C --的正弦值为13130.……………………………………………12分(若用综合几何法求解,请按照步骤酌情给分)20.解析:(1)∵前四组频数成等差数列,∴设a =0.2+d ,b =0.2+2d ,c =0.2+3d ,∴0.5×(0.2+0.2+d +0.2+2d +0.2+3d +0.2+d +0.1+0.1+0.1)=1,解得d =0.1,∴a =0.3,b =0.4,c =0.5.居民月用水量在2~2.5内的频率为0.5×0.5=0.25.……………………………4分(2)由题图及(1)可知,居民月用水量小于等于2.5的频率为0.7<0.8,∴为使80%以上居民月用水价格为4元/立方米,应规定83.215.07.08.05.2≈-+=w …………………………………………………8分(3)将频率视为概率,设A (单位:立方米)代表居民月用水量,可知P (A ≤2.5)=0.7,由题意,知X ~B (3,0.7),P (X =0)=C 03×0.33=0.027,P (X =1)=C 13×0.7×0.32=0.189,P (X =2)=C 23×0.72×0.3=0.441,P (X =3)=C 33×0.73=0.343.∴X 的分布列为X 0123P0.0270.1890.4410.343………11分∵X ~B (3,0.7),∴E (X )=3×0.7=2.1.…………………………………………………12分21.解析:(1)设),(y x P ,则x a b y Q -=,y bax R -=,由题意可得,2|)(21||)(21|aby b a y x a b x =-∙+-∙,即12222=+b y a x ,故点P 的轨迹C 的方程为12222=+by a x ;……………4分(2)由(1)可知C:1422=+y x 假设存在常数n,使λ=∙AE AD (常数),设直线n my x l +=:,代入C,整理得0)4(24(222=-+++n mny y m ),设),(),,(2211y x E y x D 则44,422221221+-=+-=+m n y y m mn y y ……………6分所以),4(),4(2211y x y x AE AD +∙+=∙21212121)4)(4()4)(4(y y n my n my y y x x +++++=+++=221212)4())(4()1(++++++=n y y n m y y m ……………7分λ=++++-+-+=222222)4(4)4(24)4)(1(n m n n m m n m (算法一)整理化简得:0460325)12(22=-+++-λλn n m 对R m ∈∀恒成立.……9分故0460325,0122=-++=-λλn n 舍去)或(652012325,122--=∴=++=∴n n n λ……………11分当直线l 为x 轴时12=∙AE AD 综上,存在常数52-=n ,对任意直线l ,使12=∙AE AD (为定值)……………12分(算法二)λ=+++-+---=++++-+-+=22222222222)4(4)4()48()4(4)4(24)4)(1(n m n m n n n m n n m m n m 根据对应系数成比例得:444822-=---n n n .……………9分整理得0123252=++n n ,解得652-=-=n n 或当6-=n 不能保证任意l 成立,故舍去.将52-=n 代入上式可得12=∙AE AD ……………11分当直线l 为x 轴时12=∙AE AD 综上,存在常数52-=n ,对任意直线l ,使12=∙AE AD (为定值)……………12分22.解析:(1)依题意知:()0,x ∈+∞,()'ln a x a f x =+,)1(11)(2xa x x x a x g -=-='…………………1分①0≤a 时,0)(<'x g 恒成立,)(x g 在),(∞+0上单调递减;……………………3分②0>a 时,由,10,0)(a x x g <<<'得,1,0)(ax x g >>'得)(x g 在,(a 10上单调递减,),(∞+a1上单调递增.……………………5分(2)依题意,要证:ln e sin 1x x x x <+-,①当01x <≤时,ln 0,1sin 0x x x e x ≤-+>,故原不等式成立,…………………………7分②当1x >时,要证:ln e sin 1x x x x <+-,即要证:ln sin 10x x x e x --+<,令()ln sin 1,(1)x h x x x e x x =--+>则()ln cos 1xh x x e x '=--+,()1sin x h x e x x''=-+,………………………………8分0)(,1<''∴>x h x ………………………………9分()h x '∴在()1+∞,单调递减()()11cos10h x h e ''∴<=--<………………………10分()h x ∴在()1+∞,单调递减,()(1)1sin10h x h e ∴<=--<,即:ln sin 10x x x e x --+<,故原不等式成立.…………………………………12分。
【精编精校卷】2021-2022学年河南省南阳市第一中学校高三上学期第二次月考数学(理)试题 解析版

河南省南阳市第一中学校2021-2022学年高三上学期第二次月考数学〔理〕试题一、单项选择题1.全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,那么以下结论正确的选项是A .M N N =B .()U M N ⋂=∅C .M N U ⋃=D .()U M N ⊆【答案】A【分析】求函数定义域得集合M,N 后,再判断.【详解】由题意{|1}M x x =<,{|01}N x x =<<,,MN N =,应选A,【点睛】此题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.2.设x ∈R ,那么“250x x -<〞是“|1|1x -<〞的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】分别求出两不等式的解集,根据两解集的包含关系确定.【详解】化简不等式,可知05x <<推不出11x -<;由11x -<能推出05x <<,故“250x x -<〞是“|1|1x -<〞的必要不充分条件,应选B .【点睛】此题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.3.假设函数()()113e sin 1e x x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,那么p q +的值为〔 〕.A .2B .1C .6D .3【答案】C【详解】 因为()()()1113e sin 1sin 13e e x x x x x f x ---⋅---==-所以()1sin 1sin 313e ex x x x f x f x ---=-∴+-=-(),() 因为函数13f x +-()为奇函数,所以它在区间[]4,4-上的最大值、最小值之和为0,也即330p q -+-=,所以6p q +=4.直线1y m=是曲线x y xe =的一条切线,那么实数m 的值为〔 〕 A .1e-B .e - C .1eD .e 【答案】B【分析】首先设切点为1,⎛⎫ ⎪⎝⎭n m ,根据直线1y m =是曲线x y xe =的一条切线得到1n =-,再将切点代入曲线方程即可得到答案.【详解】设切点坐标为1,⎛⎫ ⎪⎝⎭n m ,x x y e xe '=+. 因为直线1y m=是曲线x y xe =的一条切线, 所以0+=n n e ne ,解得1n =-.将切点11,⎛⎫- ⎪⎝⎭m 代入x y xe =得到11-=e m ,解得m e =-. 应选:B【点睛】此题主要考查导数的几何意义,属于简单题.5.tan()1αβ+=-,1tan()2αβ-=,那么sin 2sin 2αβ的值为〔〕 A .13B .13-C .3D .3- 【答案】A【分析】利用()(),+-αβαβ凑出2,2αβ,然后结合两角和差的正弦公式以及齐次式求值问题即可求出结果.【详解】因为tan()1αβ+=-,1tan()2αβ-=, 应选:A.6.函数()ln |||sin |,(f x x x x ππ=+-≤≤且0)x ≠的图象大致是〔 〕 A .B .C .D .【答案】B【分析】根据解析式判断奇偶性,在0x π>>上0x +→有()f x →-∞,利用导函数,结合函数图象分析0x π>>内极值点的个数,即可确定正确函数图象.【详解】函数()ln |||sin()|ln |||sin |()f x x x x x f x -=-+-=+=,(x ππ-≤≤且0)x ≠是偶函数,A 不合要求.当0x π>>时,()ln sin f x x x =+:当0x +→,()f x →-∞,C 不合要求;而1()cos 0f x x x'=+=时,1,cos y y x x==-在0x π>>上只有一个交点(如以下图示),即区间内只有一个极值点. D 不合要求,B 符合要求.应选:B.【点睛】关键点点睛:利用导函数,应用数形结合分析函数的交点情况,判断函数在区间上极值点个数.7.假设02<<πα,02πβ-<<,1cos()43πα+=,cos()42πβ-那么cos()2βα+=〔 〕A .D . 【答案】C【分析】 由于cos()cos[()()]2442βππβαα+=+--cos()cos()442ππβα=+-sin()sin()442ππβα++-,所以先由条件求出sin()4πα+,sin()42πβ-的值,从而可求出答案 【详解】cos()cos[()()]2442βππβαα+=+--cos()cos()442ππβα=+-sin()sin()442ππβα++-, 因为02<<πα,02πβ-<<, 所以3(,)444πππα+∈,(,)4242πβππ-∈,因为1cos()43πα+=,cos()42πβ-所以sin()4πα+sin()42πβ-=,那么1cos()23βα+== 应选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于根底题.8.某公司为鼓励创新,方案逐年加大研发资金投入.假设该公司2021年全年投入研发资金130万元,在此根底上,每年投入的研发资金比上一年增长12%,那么该公司全年投入的研发资金开始超过200万元的年份是〔参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈〕〔〕A .2021年B .2021年C .2022年D .2023年【答案】D【分析】根据题意,设第n 年开始超过200万元,可得2019130(112%)200n -⨯+>,从而可得n 的取值范围,分析即可得答案.【详解】解:根据题意,设第n 年开始超过200万元,那么2019130(112%)200n -⨯+>,化为:(2019)lg1.12lg2lg1.3n ->-, 解可得:lg2lg1.32019 3.8lg1.12n -->≈;那么2023n ,所以该公司全年投入的研发资金开始超过200万元的年份是2023年.应选:D .9.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当 []0,1x ∈时,()2cos x f x x =-,那么以下结论正确的选项是〔 〕A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .20202019(2018)32f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .20192020(2018)23f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .20192020(2018)23f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】C【分析】先确定函数()f x 的周期为4,再化简得到(2018)(0)f f =,20191()()22f f =,20202()()33f f =.接着判断当[]0,1x ∈时函数单调递增,最后判断20192020(2018)23f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭即可. 【详解】解:因为()f x 在R 上是奇函数,且(2)()f x f x +=-,所以(2)()f x f x +=-,故(4)()f x f x +=,()f x 的周期为4.因此(2018)(2)(0)f f f ==,20191()()22f f =,20202()()33f f =. 又[]0,1x ∈时,()2ln 2sin 0x f x x =+>',()2cos x f x x =-单调递增, 所以12(0)23f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 故20192020(2018)23f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭. 应选:C【点睛】此题考查利用函数的奇偶性对称性的应用、利用函数的周期性求函数值、利用函数的单调性判断函数值的大小关系,是中档题.10.函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,那么方程22[()]3()20f x f x --=实根的个数为 A .2B .3C .4D .5【答案】B【分析】由()()22320f x f x --=⎡⎤⎣⎦得到()2f x =或()12f x =-,再根据()f x 的图象来判断当()2f x =或()12f x =-时对应的x 有几个,即为实根个数 【详解】由()()22320f x f x --=⎡⎤⎣⎦可得()2f x =或()12f x =-,当0x ≥时,()()21212121f x x x x x '=-=-,当()0,1∈x 时,0f x ,()f x 单调递减,当()1,∈+∞x 时,0f x ,()f x 单调递增,∴函数()f x 在1x =处取得极小值,极小值为()14611f =-+=-,绘制函数()f x 的图象如下图,观察可得,方程22[()]3()20f x f x --=的实根个数为3,应选B此题考查函数与方程中,导数在研究函数中的应用,图像法处理零点个数问题,找到变量关系,灵活利用图象,是解题关键11.()f x 是定义在R 上的奇函数,且当0x >时,()()f x f x '<,那么〔〕A .)4e ()(3f f >B .2)4e ()(2f f >C .2)4e )2((f f ->-D .)e (43)(f f ->-【答案】C【分析】根据当0x >时,()()f x f x '<,构造()()x f x g x e =,借助新函数的单调性比拟大小. 【详解】设()()x f x g x e =,那么()()()xf x f xg x e '-'=, 又当0x >时,()()f x f x '<,∴()()()0xf x f xg x e '-'=<, ∴()()x f x g x e=在()0+∞,上单调递减, ∵430>>,∴()()4343,f f e e<即4e ()()3f f <,故A 错误; ∵420>>,∴()()4242,f f e e <即24e ()(2)f f <,故B 错误; ∵24e ()(2)f f <,∴2()(24)e f f ->-,又()f x 是定义在R 上的奇函数,∴2)4e )2((f f ->-,故C 正确;∵4e ()()3f f <,∴()()4e 3f f ->-,即4e ()()3f f ->-,故D 错误.应选:C12.关于x 的不等式()x x x x me me ->有且仅有两个正整数解〔其中 2.71828...e =为自然对数的底数〕,那么实数m 的取值范围是A .43169(,]54e e B .3294(,]43e e C .43169[,)54e e D .3294[,)43e e【分析】化简不等式可得me x,21xx+,根据两函数的单调性得出正整数解为1和2,列出不等式组解出即可.【详解】当x,0时,由x2,mxe x,me x,0,可得me x,21xx+,x,0,,显然当m≤0时,不等式me x,21xx+,x,0〕,在〔0,+∞〕恒成立,不符合题意;当m,0时,令f〔x〕=me x,那么f〔x〕在〔0,+∞〕上单调递增,令g〔x〕=21xx+,那么g′〔x〕=()2221(1)x x xx+-+=222(1)x xx++,0,,g〔x〕在〔0,+∞〕上单调递增,,f,0,=m,0,g〔0〕=0,且f〔x〕,g〔x〕有两个正整数解,那么,()()()()()()112233f gf gf g⎧⎪⎨⎪≥⎩<<,即23124394mememe⎧⎪⎪⎪⎨⎪⎪≥⎪⎩<<,解得394e≤m,243e,应选D.【点睛】此题考查了不等式整数解问题,考查函数与方程思想,数形结合思想,属于中档题.二、填空题13.2cos xdxπ+⎰⎰________ .【答案】14π+【分析】根据微积分根本定理,可计算22cos sinxdx xππ=⎰,根据定积分的几何意义,画出函数图像,即可求解⎰.【详解】画出函数y那么⎰的几何意义为阴影局部面积,那么4π=⎰那么有20cos 14xdx ππ+=+⎰⎰ 故答案为:14π+ 【点睛】 此题考查微积分根本定理和定积分几何意义,属于中等题型.14.函数()f x 的导函数为()f x ',且4431()sin cos 3(0)443x x f x x xf '=-++,()0f '的值为____________.【答案】0【分析】根据求导公式求出函数得导函数,即可得出答案.【详解】 解:由4431()sin cos 3(0)443x x f x x xf '=-++, 得33211()4sin cos 4cos sin 3(0)444444x x x x f x x f ⎛⎫''=⋅⋅-⋅⋅-++ ⎪⎝⎭ ()2sin cos 3044x x x f '=⋅++, 所以()()030f f '=',所以()00f '=.故答案为:0.15.sin αα+=tanα=______________.【详解】由sinα〔α+Φ即sin 〔α+Φ〕=1,其中tanΦ于是α+Φ=2kπ+2π〔k,Z 〕所以tanα=tan 〔2kπ+2π-Φ〕=cotΦ考点:三角函数性质16.当0x ≥时,()ln 11xxe a x x ≥++恒成立,那么a 的取值范围为____________. 【答案】(],1-∞【分析】先别离参数,再构造函数,利用导数判断函数的单调性,分0,0x x =>两种情况讨论,再用极限思想结合洛必达法那么求出答案即可,注意最后取交集.【详解】解:当0x 时,ln(1)1xxe a x x ++恒成立,那么ln(1)0x +≥, 当ln(1)0x +=,即0x =时,()0ln 11xxe a x x ==++,对任意a 都成立, 当ln(1)0x +>,即0x >时,那么(1)ln(1)xxe a x x ++, 设()(1)ln(1)xxe f x x x =++,0x >, 那么()()()222222(1)ln(1)()(1)ln (1)(1)ln (1)1ln 1ln 11x x x e e x x xe f x x x x x x x x x x ++-'⎡==++⎡⎤+++-++⎣+⎤⎦+⎣⎦,设2()(1)ln(1)g x x x x x =+++-,0x >,那么()()()()()22121ln 1121ln 1011x x x g x x x x x x x ++=+++-=+++>++'恒成立, ()g x ∴在()0,∞+上单调递增,()()00g x g ∴>=,()0f x '∴>,()f x ∴在()0,∞+上单调递增,()(0)f x f ∴>,根据洛必达法那么可得 ()()()()0011lim lim 11ln 11ln 11x x x x e x xe x x x →→+===++++, 1a ∴,综上所述a 的取值范围为(-∞,1].故答案为:(-∞,1].三、解答题17.〔1〕设tan(5)2πα+=,求()sin 3cos()119cos()sin()22πααππαπα-++--++的值; 〔2〕()7sin cos 013x x x π+=-<<,求2c s in o s x x -的值. 【答案】〔1〕3;〔2〕2213-. 【分析】〔1〕求出tan α,利用诱导公式化简所求得sin cos sin cos αααα+-,在化弦为切即可得出答案;〔2〕由可得cos 0,sin 0x x <>,利用平方关系求得2sin x cos x ,然后可求得sin x -cos x ,即可求得sin x ,cos x ,即可得出答案. 【详解】解:〔1〕由tan(5)tan 2a πα+==,sin(3)cos sin()cos()19cos()sin()cos()sin()2222πααπαπαπππαπααα-++++-=-+++++sin cos sin cos sin cos sin cos αααααααα-+==+-=tan 13tan 1αα+=-;〔2〕∵()7sin cos 013x x x π+=-<<, ∴cos 0,sin 0x x <>,即sin cos 0x x ->,把7sin cos 13x x +=-,两边平方得1+2sin x cos x =49169,即2sin x cos x =-120169,∴(sin x -cos x )2=1-2sin x cos x =289169,即sin x -cos x =1713,联立7sin cos 1317sin cos 13x x x x ⎧+=-⎪⎪⎨⎪-=⎪⎩,解得sin x =513,cos x =1213-,∴cos x -2sin x =2213-. 18.集合A 是函数y =lg 〔20﹣8x ﹣x 2〕的定义域,集合B 是不等式x 2﹣2x +1﹣a 2≥0〔a >0〕的解集,p :x ∈A ,q :x ∈B .〔1〕假设A ∩B =∈,求实数a 的取值范围;〔2〕假设¬p 是q 的充分不必要条件,求实数a 的取值范围. 【答案】〔1〕{}1|1a a ≥;〔2〕{}|01a a <≤. 【分析】〔1〕分别求函数y =lg 〔20﹣8x ﹣x 2〕的定义域和不等式x 2﹣2x +1﹣a 2≥0 (a >0)的解集,化简集合A ,B ,由A ∩B =∅得到区间端点值之间的关系,解不等式组得到a 的取值范围; 〔2〕求出¬p 对应的x 的取值范围,由¬p 是q 的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解a 的范围 【详解】解:〔1〕由条件得:A ={x |﹣10<x <2},B ={x |x ≥1+a 或x ≤1﹣a }假设A ∩B =,,那么必须满足121100a a a +≥⎧⎪-≤-⎨⎪>⎩,解得:1110a a a ≥⎧⎪≥⎨⎪>⎩,所以11a ≥,所以,a 的取值范围的取值范围为:{}1|1a a ≥; 〔2〕易得:¬p :x ≥2或x ≤﹣10, ,¬p 是q 的充分不必要条件,,{x |x ≥2或x ≤﹣10}是B ={x |x ≥1+a 或x ≤1﹣a }的真子集,那么121100a a a +≤⎧⎪-≥-⎨⎪>⎩,解得:1110a a a ≤⎧⎪≤⎨⎪>⎩,所以0<a ≤1.,a 的取值范围的取值范围为:{}|01a a <≤.19.,0,,2παβ⎡⎤⎢∈⎥⎣⎦它们的终边分别与单位圆相交于()(),2,,3A a a B b b(1)求αβ+; (2)求3()sin αβ+的值.【答案】(1)34π;(2). 【分析】(1)根据三角函数的定义,求tan α,tan β,再利用两角和的正切公式求tan()αβ+,结合αβ+的范围求αβ+,(2)根据同角关系求sin β,cos β,再根据二倍角公式求sin 2β,cos 2β,结合(1)由两角和的正弦公式求3()sin αβ+. 【详解】由()(),2,,3A a a B b b 可得:2, 3tan tan αβ== (1)()11tan tan tan tan tan αβαβαβ++==--由,0,2παβ⎡⎤∈⎢⎥⎣⎦得[]0,αβπ+∈(2)由(1)得3tan β=sin β∴=cos β=故3324()sin sin αβπβ⎛⎫⎪⎝=+⎭+20.设()()21,2xf x xeg x x x ==+. 〔1〕令()()()F x f x g x =+,求()F x 的最小值;〔2〕假设任意[)12,1,x x ∈-+∞且12x x >有()()()()1212m f x f x g x g x ⎡⎤->-⎣⎦恒成立,求实数m 的取值范围.【答案】〔1〕112e ---;〔2〕m e ≥.【详解】试题分析:〔1〕由题意的()F x ,得()F x ',进而得到()F x 的单调性,即可求解()F x 的最小值;〔2〕根据题意,转化为()()()()1122mf x g x mf x g x ->-恒成立,设()()()h x mf x g x =-在[)1,-+∞为单调递增函数,别离参数得到1xm e ≥恒成立,即可求解实数m 的取值范围. 试题解析:解:〔1〕∵()()()x21F x f x g x xe x x 2=+=++,∴()()()x x xF x e xe 1x 1x e 1=+++=++',∵x e 0>,∴x e 11+>,∴()F x 在(),1∞--为减函数,()F x 在()1,∞-+上为增函数, ∴()()1min 1F x F 1e 2-=-=--.〔2〕假设()()()()121212x x 1,m f x f x g x g x ⎡⎤>≥-->-⎣⎦恒成立, 即:()()()()1122mf x g x mf x g x ->-,令()()()h x mf x g x =-,那么()h x 在[)1,∞-+上为增函数,∴()()()()()x x xh x m e xe x 1x 1me 10=+-+=+-≥',∵x 1≥-, ∴x me 1≥,即x1m e ≥, ∴x max1m e e ⎛⎫≥= ⎪⎝⎭.点睛:此题主要考查了导数在函数中的综合应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值,恒成立问题的求解和别离参数思想的应用,着重考查了学生分析问题和解答问题的能力,此题的解答中,把不等式恒成立问题转化为函数的单调性,进而利用导数求解是解答的关键. 21.函数()e cos x f x x x =-∈〔Ⅰ〕求曲线()y f x =在点(0,(0))f 处的切线方程; 〔Ⅱ〕求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(Ⅰ)1y =,,Ⅱ〕最大值1;最小值2π-.【详解】试题分析:〔Ⅰ〕根据导数的几何意义,先求斜率,再代入切线方程公式00y f f x 中即可;〔Ⅱ〕设()()h x f x =',求()h x ',根据()0h x '<确定函数()h x 的单调性,根据单调性求函数的最大值为()00h =,从而可以知道()()0h x f x '=<恒成立,所以函数()f x 是单调递减函数,再根据单调性求最值.试题解析:〔Ⅰ〕因为()e cos x f x x x =-,所以()()()e cos sin 1,00x f x x x f -''=-=.又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.〔Ⅱ〕设()()e cos sin 1x h x x x =--,那么()()e cos sin sin cos 2e sin x xh x x x x x x =--=-'-.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<.所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=- ⎪⎝⎭.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比拟有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x =',再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果.22.函数()()122ln x e f x a x a R x x -⎛⎫=-+∈ ⎪⎝⎭.假设()f x 在()0,2上有两个极值点1x 、()212x x x <.〔1〕求实数a 的取值范围; 〔2〕求证:121x x <.【答案】〔1〕1,2e ⎛⎫⎪⎝⎭;〔2〕答案见解析.【分析】〔1〕分析可知()1x g x eax -=-在(0,2)上有两个不同的零点,对实数a 的取值进行分类讨论结合条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围〔21212ln ln x x x x --,由条件可得出1212ln ln x x x x -=-,再利用不等式可证得结论成立121x x < 【详解】 〔1〕()()()312x x e f a x x x -'--=.要使()f x 在()0,2上有两个极值点1x 、()212x x x <,那么()1x g x e ax -=-在(0,2)上有两个不同的零点.①当1a ≤时()11x x g x eax e x --=-≥-,令()1,x S x e x -=-故()11,x S x e -'=-所以()S x 在(0,1)上为减函数,在(1,2)上为增函数,所以()()01S x S ≥=,故g (x )>0,所以g (x )在(0,2)上无零点,舍去;②当a e ≥时,因为x ∈(0,2),11,x ee e -⎛⎫∈ ⎪⎝⎭,()10x g x e a -'=-<,那么g (x )在(0,2)上单调递减,故g (x )最多只有一个零点,不合题意;舍去; ③当1<a <e 时,()1x g x ea -'=-.当0<x <ln a +1时,()g x '<0;当ln a +1<x <2时,()g x '>0,所以,函数g (x )在(0,ln a +1)上单调递减,在(ln a +1,2)上单调递增.所以()()min ln 1ln ,g x g a a a =+=- 即只需()()()100ln 1ln 0220g e g a a a g e a ⎧=>⎪⎪+=-<⎨⎪=->⎪⎩,解得12ea <<.综上所述,a 的取值范围为1,2e ⎛⎫⎪⎝⎭.〔2〕由(1)知,()()12120,012g x g x x a x ==<<+<<ln .1212ln ln x x x x --,其中0<x 1<x 2<2.即证12ln ln x x ->=12ln x x令t =(0,1),即证()12ln 01t t t t>-<<. 构适函数()()12ln 01t t t t t ϕ=-+<<,那么()()22212110t t t t tϕ-'=--=-<,所以,函数()t ϕ在区间(0,1)上单调递减,故()()10t ϕϕ>=1212ln ln x x x x --.由可得121112x x e ax e ax --⎧=⎨=⎩,故11221ln ln 1ln ln x a x x a x -=+⎧⎨-=+⎩,所以1212ln ln x x x x -=-,那么12121ln ln x x x x -=-,1212ln ln x x x x --,因此121x x <.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x > (或()()f x g x <)转化为证明()()0f x g x -> (或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;〔2〕适当放缩构造法:一是根据条件适当放缩;二是利用常见放缩结论;〔3〕构造形似函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
2020-2021学年河南省南阳市第一中学高二上学期第二次月考数学试题 Word版

河南省南阳市第一中学2020-2021学年高二上学期第二次月考数学试题一、选择题(每小题5分,共60分)1.已知等差数列{}n a 的公差为2,且3a 是1a 与7a 的等比中项,则n a 等于( )A .22n +B .24n +C .21nD .23n -2.已知ABC ∆的三边长成公比为2的等比数列,则其最大角的余弦值为( ).A .24-B .2 C .23D .2-3.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A .10,45,60b A C ===B .6,5,60a c B ===C .7,5,60a b A ===D .14,16,45a b A ===4.已知等差数列{}n a 的前n 项和为n S ,若47a =,520S =,则10a =( )A .16B .19C .22D .255.等比数列{}n a 的各项均为正数,且562918a a a a +=,则3132310log log log a a a +++的值为( )A .12B .10C .8D .325log +6.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且,若1a =,321c b -=,则角B 为( )A .6π B .65π C .3π D .566ππ或7.ABC ∆的内角,,A B C 的对边分别为,,a b c ,面积为S ,若222,44b a c S =+-=,则ABC∆外接圆的半径为( )A 2B .2C .2D .48.为了测量河对岸两地A 、B 之间的距离,先在河这岸选择一条基线CD ,测得CD =a 米,再测得∠ACD =90°,∠BCD =30°,∠ADC =45°,∠CDB =105°,据此计算A 、B 两地之间的距离是( ) A .6a B .62a C .(31)a +D .3a9.在中,,BC 边上的高等于,则A .B .C .D .10.如图所示的三角形数阵满足:其中第一行共有一项是 ,第二行共有二项是122,2,第三行共有三项是3452,2,2 ,依此类推第行共有项,若该数阵的第15行中的第5个数是2m ,则m=( ) A .105 B .109C .110D .21511.在ABC ∆中,60B ∠=︒,3AC =,则2BC AB -的最大值为()A .22B .23C .2D .不存在12.已知1()12F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,*121(0)(1)()n n a f f f f f n n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭N ,则数列{}n a 的通项公式为( ). A .n a n =B .2n a n =C .1n a n =+D .223n a n n =-+二、填空题(每小题5分,共20分) 13.已知在等差数列中,首项为20,公差是整数,从第8项开始为负项,则公差为______.14.已知在ABC ∆中,三个内角为,,A B C ,sin 2sin 2A B =,则ABC ∆是______三角形.15.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=︒,则AD 的长为______16.将边长分别为()*1,2,3,,,n n ∈N 的正方形叠放在一起,形成如图所示的图形,把各阴影部分所在图形的面积由小到大依次记为(1),(2),(3),,(),f f f f n ,则()f n =_________,前n 个阴影部分图形的面积的平均值为__________.三、解答题(共70分)17.(10分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且22cos a b c A +=.(1)求C ;(2)若2a =,AB 边上的中线CE 的长为1,求ABC ∆的面积.18.(12分)已知数列{}n a 满足1a a =,()*121n n a a n N +=+∈.(1)若数列{}n a 是等差数列,求通项公式n a ;(2)已知2a =,求证数列{}1n a +是等比数列,并求通项公式n a .19.(12分)在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,且232cos cos a c bA B-=. (1)若5sin b B =,求a ; (2)若6a =, ABC ∆的面积为5,求b c +.20.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .21.(12分)已知()1221*0,0,nn n n n n u a ab a b ab a b b n ---+>>=++++∈N .(1)当2a =,3b =时,求n u ; (2)若a b =,求数列{}n u 的前n 项和n S .22.(12分)已知递增数列{a n }前n 项和为S n ,且满足a 1=3,4S n ﹣4n +1=a n 2,设b n 11n n a a +=(n ∈N *)且数列{b n }的前n 项和为T n(Ⅰ)求证:数列{a n }为等差数列; (Ⅱ)若对任意的n ∈N *,不等式λT n <n 23+•(﹣1)n +1恒成立,求实数λ的取值范围.高二数学月考2答案1-5AADDB 6-12AAB DBDC 13.14.等腰或直角 15.65123- 16.41n -21n17.(1)由正弦定理得sin 2sin 2sin cos +=A B C A ,所以sin sin()sin cos cos sin B A C A C +A C =+=,则sin 2sin cos 0A A C +=, 又因为sin 0A ≠,所以1cos 2C =-,(0,)C π∈, 所以23C π=;……………………………………………………5分 (2)由题意知,在ABC 中,有||2==CB a ,因为2CA CBCE +=则||2||2+==CA CB CE ,平方得22||2||4CA CA CB CB +⋅+=,所以224cos443++=b b π,即2b =,……………………………………………8分 所以ABC 的面积为12sin 323==S bc π.……………………………………………10分18.(1)数列{}n a 是等差数列,1a a =,()*121n n a a n N +=+∈,设数列的公差为d ,则()11n n a a n d a a nd +=+-=+,,()211a nd a n d ∴+=+-+⎡⎤⎣⎦,即21nd d a =--对*n N ∈成立,0,1d a ∴==-.1n a a ∴==-,所以()*1n a n N =-∈.………………………………………5分(2)2a =,()*121n n a a n N +=+∈,()()*1121n n a a n N +∴+=+∈.1130a +=≠,∴数列{}1n a +是以()11a +为首项,公比为2的等比数列.…………………………………10分()11111223n n n a a --∴+=+⋅=⋅,()1*321n n a n N -∴=⋅-∈.…………………………………………………12分 19.(1)由正弦定理得:2322sin 3sin 2sin cos cos cos cos a c b A C BA B A B--=⇒=, 即2sin cos 3sin cos 2sin cos A B C A B A =-,∴,∵sin 0C ≠,∴2cos 3A =,则sin 5A = ∵5sin bB =,∴由正弦定理得:5sin sin 3b a A B =⋅=………………………………………6分(2)∵ABC ∆1sin 2bc A =,得3bc =,∵a =22463b c bc +-=,∴()21063b c bc +-=,即()216b c +=,∵00b c >>,,∴4b c +=.…………………………………………………12分20.(1)3A π=;(2)sin 4C =(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈3A π∴=(2)22a b c +=sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin 222C C C ++=整理可得:3sin C C =22sin cos 1C C +=(()223sin 31sin C C ∴=-解得:sin C =因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故sin 4C =(2)法二:22a b c +=sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin2sin222C C C++=整理可得:3sin C C=,即3sin6C C Cπ⎛⎫-=-=⎪⎝⎭sin62Cπ⎛⎫∴-=⎪⎝⎭由2(0,),(,)3662C Cππππ∈-∈-,所以,6446C Cππππ-==+sin sin()46Cππ=+=.21.(1)当2a=,3b=a时,()1221*22323233n n n n nnu n---=+⋅+⋅++⋅+∈N,两边除以2n,得213333122222n nnnu-⎛⎫⎛⎫⎛⎫=+++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1111332112322321212n nn nnn nu++++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭===---,因此,1132n nnu++=-;…………………5分(2)若a b=,则()1nnu n a=+,所以()232341nnS a a a n a=+++++,①当1a=时,()()32312nn nS n+=++++=;……………………………………7分当1a≠时,在①的两边同乘以a,得()23412341nnaS a a a n a+=+++++,与①式作差,得()()()()2311112111nn n nna aa S a a a a n a a n aa++--=++++-+=+-+-,所以()()()1211111n nna a n aaSa aa+-+=+----.综上,()()()()123,1211,0,111nn nn naSa aa n aa aa a+⎧+=⎪⎪=⎨--+⎪+>≠⎪--⎩.……………………………………12分22.(Ⅰ)证明:依题意,当n≥2时,由4S n﹣4n+1=a n2,可得4S n﹣1﹣4(n﹣1)+1=a n﹣12,两式相减,可得4a n ﹣4=a n 2﹣a n ﹣12,化简整理,得(a n +a n ﹣1﹣2)(a n ﹣a n ﹣1﹣2)=0, ∴a n +a n ﹣1﹣2=0,或a n ﹣a n ﹣1﹣2=0, ∵数列{a n }是递增数列,∴a n ≥a n ﹣1,则a n +a n ﹣1≥2a n ﹣1≥2a 1=2×3=6,∴a n +a n ﹣1﹣2=0不符合题意, ∴a n ﹣a n ﹣1﹣2=0,即a n ﹣a n ﹣1=2,∴数列{a n }是首项为3,公差为2的等差数列.……………………………………5分 (Ⅱ)由(Ⅰ)知,a n =3+2•(n ﹣1)=2n +1,n ∈N*,则b n ()()111121232n n a a n n +===++(112123n n -++), 故T n =b 1+b 2+…+b n 12=(1135-)12+(1157-)12++(112123n n -++)12=(11111135572123n n -+-++-++)12=(11323n -+)()323n n =+,……………8分 将T n ()323n n =+代入不等式,可得λ•()323n n <+n 23+•(﹣1)n +1, 化简整理,得λ1n<(2n +3)[3n +2•(﹣1)n +1],构造数列{c n }:令c n 1n=(2n +3)[3n +2•(﹣1)n +1],则①当n 为奇数时,n +2为奇数,c n 1n =(2n +3)[3n +2•(﹣1)n +1]1n = (2n +3)(3n +2), c n +212n =+[2(n +2)+3][3(n +2)+2•(﹣1)n +3]12n =+ (2n +7)(3n +8),c n +2﹣c n 12n =+(2n +7)(3n +8)1n-(2n +3)(3n +2)()()()()()()2738223322n n n n n n n n ++-+++=+()()212212n n n n +-=+,∵n 为奇数,∴n 2+2n ﹣1>0,∴c n +2﹣c n >0,即c n +2>c n ,∴数列{c n }的奇数项为单调递增数列,即c 1<c 3<c 5<… ②当n 为偶数时,n +2也为偶数,c n 1n =(2n +3)[3n +2•(﹣1)n +1]1n =(2n +3)(3n ﹣2), c n +212n =+[2(n +2)+3][3(n +2)+2•(﹣1)n +3]12n =+ (2n +7)(3n +4),c n +2﹣c n 12n =+(2n +7)(3n +4)1n-(2n +3)(3n ﹣2)()212(1)2n n n +=>+0, 故数列{c n }的偶数项为单调递增数列,即c 2<c 4<c 6<…∵c1=25,c2=14,c3=33,c4552=,∴λ<{c n}min=c2=14,∴实数λ的取值范围为(﹣∞,14).……………………………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将 去分母得 ,将 代入,得 ,所以曲线C的直角坐标方程为 .
(2)由(1)可设曲线C的参数方程为 ( 为参数),
则曲线C上的点到 的距离
,
当 ,即 时, ,
此时, ,
所以曲线C上的点到直线 距离的最大值为 ,该点坐标为 .
23.(1) ,
①由 ;②由 ;
③由 ;所以解集为
当 时, 为增函数, ;当 时, .故 时, , 为增函数,故 ,即 的最小值为1.
(2)令 , ,则本题即证当 时, 恒成立.
当 时,若 ,则由(1)可知, ,所以 为增函数,故 恒成立,即 恒成立;
若 ,则 , 在 上为增函数,又 , ,故存在唯一 ,使得 .
当 时, , 为减函数; 时, , 为增函数.
绝密★启用前
河南省南阳市第一中学
2021届高三年级上学期第二次月考检测
数学(理)试题参考答案
2020年9月
一、单选题
1.B2.C3.B4.A5.A6.C
7.C8.D9.D10.C11.D12.D
二、填空题
13.314. 15. 16.①③
三、解答题
17.(1)根据指数幂的运算性质,可得原式
.
(2)由对数的运算性质,可得原式
.
18.(1)因为奇函数定义域关于原点对称,所以 .
又根据定义在 有定义,所以 ,解得 , .
(2) ,令 ,
则方程 有解等价于 有解
也等价于 与 有交点.
画出图形根据图形判断:
由图可知: 时有交点,即方程 有解.
19.(1)令 ,则 ,当 时, ,
故 在 上单调递增,所以 ,
即 ,所以 .
(2)由已知, ,
当 时,令 ,得 ;令 ,得 .
∴ 的单调递减区间为 ,单调递增区间为 .
(2)当 时, 在 上单调递减,∴ ,不合题意.
当 时, ,不合题意.
当 时, , 在 上单调递增,
∴ ,故 满足题意.
当 时, 在 上单调递减,在 单调递增,
∴ ,故 不满足题意.
综上, 的取值范围为 .
21.(1) ,令 , ,则 .
依题意, 有3个零点,即 有3个根,显然0不是其根,所以
有3个根,令 ,则 ,当 时, ,当
时, ,当 时, ,故 在 单调递减,在 , 上
单调递增,作出 的图象,易得 .
故实数 的取值范围为 .
20.解:(1) ,
当 时, ,∴ 在 上单调递减.
当 时,令 ,得 ;令 ,得 .
∴ 的单调递减区间为 ,单调递增区间为 .
又 , ,故存在唯一 使得ቤተ መጻሕፍቲ ባይዱ.
故 时, , 为增函数; 时, , 为减函数.
又 , ,
所以 时, , 为增函数,故 ,即 恒成立;
当 时,由(1)可知 在 上为增函数,且 , ,故存在唯一 ,使得 .则当 时, , 为减函数,所以 ,此时 ,与 恒成立矛盾.
综上所述, .
22.解:(1)由 (t为参数),得 .
(2) , ,
, .
设 ,
当 时,函数单调递减,所以 ;
当 时,函数单调递减,所以 ;
当 时,函数单调递增,所以
所以 .