南阳市第一中学数学全等三角形综合测试卷(word含答案)

合集下载

河南省南阳市第一中学校2024届高三上学期第五次月考数学试题(含解析)

河南省南阳市第一中学校2024届高三上学期第五次月考数学试题(含解析)

南阳一中2023年秋期高三年级第五次月考数学试题一、单选题(每小题5分共40分)1.已知集合A ={x x ≤-3或x >2},B ={x x ≤a -1},若A B =R ,则实数a 的取值范围是( )A .(-4,+∞)B .[-4,+∞)C .(3,+∞)D .[3,+∞)2. 已知P (sin θ,cos θ)是角π3-的终边上一点,则tan θ=( )A.B. 3-C.3D.3.把ABC △按斜二测画法得到'''A B C △(如图所示),其中''''1B O C O == ,''AO =ABC △是一个( ) A.等边三角形 B.直角三角形5. 已知函数()f x 是定义域为R 的偶函数()1f x +为奇函数,当[]0,1x ∈时,()2x f x k a =⋅+,若()()036f f +=,则()2log 96f =( )A. 2B. 0C. -3D. -66.若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12 C .y =12x +1 D .y =12x +127.在三棱锥A-BCD 中,△ABD 与△CBD 均是边长为2的等边三角形,且二面角A-BD-C 的平面角为,则该三棱锥的外接球的表面积为( ) A.7π B.8π C.D.C .1l ,2l 在y 轴上的截距之差为2D .1l ,2l 在y 轴上的截距之积可能为1-二、多选题(每小题5分共20分) .给出下列命题,其中正确的是( ).若空间向量(3,1,3m =,()1,,n λ=--,且m n ∥,则实数.若a b ∥,则存在唯一的实数λ,使得a b λ=.若空间向量()1,0,1a =,(2,1,2b =-,则向量b 在向量a 上的投影向量是()3,2,1M -关于平面yOz 对称的点的坐标是()3,2,1--- 10. 将函数()3sin π23f x x ϕ⎛⎫=-+ ⎪⎝⎭的图象向左平移π12个单位长度后关于y 轴对称,则ϕ的值可能为( ) A. π3-B. π2C. 2π3D. 5π611. 已知,a b ∈R ,且22223a b a b ++=,则( )A. ab 的最大值为1B. ab 的最小值为-1C.11||||a b +的最小值为4 D. 222a b +的最小值为324a三、填空题(每小题20分).设向量(,2AB x =在向量(3,AC =-15AC ,则x = .8M m +=,则=a ______.15.甲、乙两队进行篮球比赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束),根据前期比赛成绩,甲队的主客场安排依次为“主客主主客客主”,设甲队主场取胜的概率为,客场取胜的概率为,且各场比赛结果相互独立,则甲队以获胜的概率是 . 16. 已知△ABC 的面积为1,且AB =2BC ,则当AC 取得最小值时, BC 的长为________. 四、解答题 (70分)17. (10分)已知向量()212cos ,sin ,,3cos 2a x xb x ⎛⎫== ⎪⎝⎭,函数()f x a b =⋅.(1)求()f x 的最小正周期和单调递减区间; (2)在ABC 中,()7π,1,12A B f A BC +===,求边AC 的长.19.(12分)如图,现有三棱锥A BCD -和E BCD -,其中三棱锥A BCD -的棱长均为2,三棱锥E BCD -有三个面是全等的等腰直角三角形,一个面是等边三角形,现将这两个三棱锥的一个面完全重合组成一个组合体ABCDE .(1)求这个组合体ABCDE 的体积;(2)若点F 为AC 的中点,求二面角E BC F --的余弦值.23124:220. (12分)数列 n a 的前n 项和n S ,已知214a a =+,()2n n S na n k n *=++∈N ,k 为常数.(1)求常数k 和数列{}n a 的通项公式; (2)数列 1n S ⎧⎫⎨⎬⎩⎭前n 项和为n T ,证明:4133212n T n -≤<+.21. (12分)如图所示的几何体是由等高的14个圆柱和半个圆柱组合而成,点G 为DE 的中点,D 为14圆柱上底面的圆心,DE 为半个圆柱上底面的直径,O ,H 分别为DE ,AB 的中点,点A ,D ,E ,G 四点共面,AB ,EF 为母线.(1)证明:OH ∥平面BDF ;(2)若平面BDF 与平面CFG ,求直线OH 与平面CFG 所成角的正弦值.22. (12分)已知函数 ()()()222ee ln 2e x x xf x ax a x x x ---=+--+-+.(1)若0a =,求曲线f (x )在1x =处的切线方程;(2)当2e x x ->时,不等式()0f x ≤恒成立,求a 的取值范围.第五次月考高三数学试题答案1.【答案】D 【详解】因为A B =R ,所以12a -≥,解得3a ≥. 所以,实数a 的取值范围是[)3,+∞. 2.【答案】B 【详解】因为()sin ,cos P θθ是角π3-的终边上一点,所以π1πcos sin ,sin cos 323θθ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭sin tan cos 3θθθ==-,故选:B. 3.答案:A 解析:根据斜二侧画法还原直线ABC △在直角坐标系的图形,如下图所示:由图易得2AB BC AC === 故ABC △为等边三角形,故选A4. 【详解】在正方体1111ABCD A B C D -中,平面BEF I 平面11CDD C EF =,而B ∈平面11ABB A ,B ∈平面BEF ,平面11//CDD C 平面11ABB A ,则平面BEF 与平面11ABB A 的交线过点B ,且与直线EF 平行,与直线1AA 相交,令交点为G ,如图,而1DD ⊥平面ABCD ,1AA ⊥平面ABCD ,即,EFD GBA ∠∠分别为,EF GB 与平面ABCD 所成的角,而//EF GB ,则E F D G B ∠=∠,且有tan tan GA EDGBA EFD AB DF=∠=∠=,当F 与C 重合时,平面BEF 截该正方体所得的截面为四边形,12GA ED ==,G 为棱1AA 中点M ,当点F 由点C 向点D 移动过程中,GBA ∠逐渐增大,点G 由M 向点1A 方向移动, 当点G 为线段1MA 上任意一点时,平面BEF 只与该正方体的4个表面正方形有交线,即可围成四边形,当点G 在线段1MA 延长线上时,直线BG 必与棱11A B 交于除点1A 外的点, 而点F 与D 不重合,此时,平面BEF 与该正方体的5个表面正方形有交线,截面为五边形,如图,因此,F 为棱CD 上异于端点的动点,截面为四边形,点G 只能在线段1MA (除点M 外)上,即112GA <≤,显然,11[,1)22AB ED DF GA GA ⋅==∈,则11(0,]2CF DF =-∈, 所以线段的CF 的取值范围是1(0,]2.故选:D5. 【答案】C 【详解】因为()1f x +为奇函数,所以()()11f x f x -+=-+,又()f x 为偶函数,所以()()11f x f x -+=-,所以()()11f x f x -=-+,即()()2=-+f x f x ,所以()()()42f x f x f x +=-+=,故()f x 是以4为周期的周期函数;由()()11f x f x -+=-+,易得()10f =,()()()3110f f f =-==,所以()06f =,所以6k a +=,20k a +=,解得6k =-,12a =;所以()()()222log 965log 31log 3f f f =+=+()23log 2223log 31log 621232f f ⎛⎫⎛⎫=--=-=--⨯+=- ⎪ ⎪⎝⎭⎝⎭;故选:C . 6.D 设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +=相切,=两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+故选:D. 7.【答案】D 如图,取BD 的中点E,连接AE,CE,因为△ABD 与△CBD 均为等边三角形,所以AE⊥BD,CE⊥BD,所以∠AEC 为二面角A-BD-C 的平面角,所以∠AEC=.设△CBD 与△ABD 外接圆的圆心分别为O1,O2,该三棱锥外接球的球心为O,连接OO1,OO2,则OO1⊥平面CBD,OO2⊥平面ABD.由题意,得EO1=EO2=×2= ,CO1=AO2=×2=.连接OC,OE,设球O 的半径为R,则OO1=OO2= --,又OE=OE,所以△OEO1≌△OEO2,所以∠OEO1=∠OEO2=.所以tan∠OEO1=-,解得R2= ,所以该三棱锥的外接球的表面积S=4πR2=,故选D.8.【答案】C 【详解】对于A ,B ,()ln f x x =的图象如下:当01x <<时,()ln f x x =-,()1f x x'=-,当1x >时,()ln f x x =,()1f x x '=,若1201x x <<<,此时()()120,0f x f x ''<<,则120l l k k ⋅>,两切线不垂直;同理若121x x <<,此时()()120,0f x f x ''>>,则120l l k k ⋅>,两切线不垂直;1201x x <<<时,满足要求.所以1l ,2l 的斜率分别为111k x =-,221k x =,因为12l l ⊥,所以121211k k x x =-=-,得121=x x ,122x x +>=,(因为12x x <,所以这里不能取等号)A ,B 错误. 对于C ,D :1l 的方程为()1111ln y x x x x +=--,即1111ln y x x x =-+-,令0x =,得11ln y x =-,所以1l 在y 轴上的截距为11ln x -. 2l 的方程为()2221ln y x x x x -=-,即2211ln y x x x =-+,可得2l 在y 轴上的截距为21ln x -+,因为()()12121ln 1ln 2ln 2x x x x ---+=-=,()()121ln 1ln x x --+()()()21111ln 1ln ln 11x x x =--+=->-,(利用121=x x 将此式子中的2x 代换掉),所以C 正确,D 错误.故选:C 9.【答案】AC 【详解】对于A ,可知31113λλ=⇒=--,即A 正确; 对于B ,显然0b =时,a b ∥恒成立,此时λ不唯一或者不存在,故B 错误; 对于C ,向量b 在向量a 上的投影向量()()221,0,12,0,2a b a a⋅⋅=⨯=,故C 正确;对于D ,易知点()3,2,1M -关于平面yOz 对称的点的坐标是()3,2,1--,故D 错误.故选:AC10. 【答案】AC 【详解】将函数()3sin π23fx x ϕ⎛⎫=-+ ⎪⎝⎭图象向左平移π12个单位长度后,所得函数解析式为π3sin 23sin 2123ππ6y x x ϕϕ⎡⎤⎛⎫⎛⎫=+-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 因为所得函数图象关于y 轴对称,所以ππ,Z 2π6k k ϕ-+=+∈,即2ππ,Z 3k k ϕ=+∈, 当1,0,1k =-时,ϕ的值分别为π2π5π,,333-, 结合选项,所以ϕ的值可能为π2π,33-,故选:AC. 11. 【答案】AB 【详解】由于22223a b a b ++=,所以22222232a b a b a b ab =++≥+,即()()310ab ab +-≤,解得01ab ≤≤,即11ab -≤≤,故A 和B 均正确,令1,1a b ==,满足题干的式子,但是112||||a b +=,故C 错误, 将22223a b a b ++=变形可得22213ab a -=+,所以()222222241333321221a a b a a a a =-+=++-≥=+++,当且仅当21a =时等号成立,故D 错误,故选:AB.12.【答案】ACD 【详解】设截面与棱BD 的交点为P ,对于A 项,如图1,过棱AC 的截面为ACP △,易知当P 为棱BD 的中点时,,CP BD AP BD ⊥⊥,且AP CP ==,PC AP ⊂、平面APC ,故BD ⊥平面APC ,取AC 的中点E ,连接PE ,则PE AC ⊥,又PE ⊂平面APC ,PE BD ⊥,即PE是异面直线AC BD 、的公垂线,PE =,故此时ACP △的面积取得最小值,最小值为12S AC PE =⨯=A 正确;对于B 项,易知ABP CBP≅△△,故结合A 项,可设,AP CP t t a ⎫==∈⎪⎪⎣⎭,在A C P △中,由余弦定理222222222cos 1222AP CP AC t a a APC AP CP t t∠+--===-⋅,所以2241,3a a t t ⎛⎛⎤∈⇒∈ ⎥ ⎝⎦⎝⎦,即11cos 32APC ≤∠<,B 错误; 对于C 项,如图2,当截面EFNM 为平行四边形时,////EF NM AD ,////EM FN BC , 由正四面体的性质可知AD BC ⊥,故EM MN ⊥,从而平行四边形EFNM 为长方形.设EM x =,则MN a x =-,所以长方形EFNM 的面积()24a S x a x =-≤,当且仅当2aEM x ==时,等号成立,C 正确;对于D 项,与该木块各个顶点的距离都相等的截面分为两类.第一类:平行于正四面体的一个面,且到顶点和到底面距离相等,这样的截面有4个. 第二类:平行于正四面体的两条对棱,且到两条棱距离相等,这样的截面有3个. 故与该木块各个顶点的距离都相等的截面共有7个,D 正确.故选:ACD 13.【答案】1 【详解】向量(),2AB x x =在向量()3,4AC =-上的投影向量为 3825AB AC AC x xAC AC AC ⋅-⋅=,则138525x x --=,解得1x =. 故答案为:1.14.答案 1【详解】()22(6)sin(3)[(3)9]sin(3)(3)3f x x x x x a x x x a =--++=---+-++,设3[3,3]x t -=∈-,则2(9)sin 3y t t t a =-+++,记2()(3)(9)sin g t y a t t t =-+=-+,因为2()(9)sin ()g t t t t g t -=---=-, 所以()g t 是在[3,3]-上的奇函数,最大值为(3)M a -+,最小值为(3)m a -+, 所以(3)(3)0M a m a -++-+=,又因为8M m +=,所以1a =,故答案为:1.15.【解析】欲使甲队获胜,则第六场甲胜,前五场甲获胜三场负两场, 故所求概率为 . 16.【答案】【详解】记,,BC a AB c AC b ===,由已知2c a =,4:232221122323211211112111()()C ()()C C ()()322332223322P =⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯13119272736108=++=21sin sin 12ABC S ac B a B ===△,2222254cos 2cos 54cos sin B b a c ac B a a B B-=+-=-=, 令()54cos ,0,πsin B y B B -=∈,则22224sin 5cos 4cos 45cos sin sin B B B By B B-+-'==, 所以当4cos 0,5B ⎛⎫∈ ⎪⎝⎭时,0'>y ,当4cos ,15B ⎛⎫∈ ⎪⎝⎭时,0'<y ,设()4cos ,0,π5θθ=∈,则(),πB θ∈时,()54cos ,0,πsin B y B B-=∈单调递增, 当()0,B θ∈时,()54cos ,0,πsin By B B-=∈单调递减, 所以当,B θ=即43cos ,sin 55==B B 时,()54cos ,0,πsin B y B B-=∈,即AC 取得最小值, 此时215sin 3a B ==,a =.17.【小问1详解】由题意得2()cos cos f x x x a b x ⋅==11cos 2222x x =++π1sin 262x ⎛⎫=++ ⎪⎝⎭, 所以()f x 的最小正周期2ππ2T ==,令()ππ3π2π22π262k x k k +≤+≤+∈Z ,解得()π2πππ63k x k k +≤≤+∈Z , 所以()f x 的单调递减区间为π2ππ,π()63k k k ⎡⎤++∈⎢⎥⎣⎦Z 【小问2详解】 由(1)知,π1()sin 2162f A A ⎛⎫=++= ⎪⎝⎭,则π1s i n 262A ⎛⎫+= ⎪⎝⎭,由()0,πA ∈,得ππ13π2,666A ⎛⎫+∈ ⎪⎝⎭, 则π5π266A +=,解得π3A =, 又由7π12A B +=,得π4B =,已知BC =, 则由正弦定理sin sin AC BCB A=,得sin sin BC B AC A ===18.【详解】(1)证明:设11(,)M x y ,则11(,)N x y --,∵(4,0)A ,(0,3)B ,∴114AM y k x =-+,114AN y k x =+,∵11(,)M x y 在椭圆上,∴22119(16)16y x =-∴22112211169916161616AM AN y x k k x x -⋅==⋅=---为定值. (2)设3:4l y x b =+,依题意:0k >,M 点在第一象限,∴33b -<<. 联立:22341169y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩得:229128720x bx b ++-=,∴1243b x x +=-,212889x x b ⋅=-, 设A 到l 的距离为1d ,B 到l 的距离为2d ,∴1|124|44|3|(3)555b d b b +==⋅+=+,2|124|44|3|(3)555b d b b -+==⋅-=-,∴12245d d +=.又∵12||||MN x x -=0b =时取等号),∴121124||()225AMBNS MN d d =⋅+≤⋅=AMBN的面积的最大值为19.【详解】(1)因为三棱锥E BCD -有三个面是全等的等腰直角三角形,BCD △是等边三角形,所以BE DE CE ===111332E BCD CDE V S BE -⎛=⋅=⨯ ⎝△; 因为三棱锥A BCD -的棱长均为2,所以正三棱锥A BCD -个三棱锥,即311432A BCD V -⎛=-⨯⨯ ⎝ABCDE A BCD E BCD V V V --=+==(2)如图所示,以E 为坐标原点,EC ,ED ,EB 分别为x,y,z 轴建立空间直角坐标系E xyz -, 则()0,0,0E,(B,)C,F ⎭,(2,0,BC =,2,BF ⎛= ⎭,设平面EBC 的法向量为1n ,易得()10,1,0n =,设平面BCF 的法向量为()2,,n x y z =u u r,因为2200BC n BF n ⎧⋅=⎪⎨⋅=⎪⎩,得00y z ⎧=⎪=,取1x =,可得()21,1,1n =-设二面角E BC F --的平面角大小为θ,由图易知,二面角E BC F --为钝角,则12121cos n n n n θ⋅=-=-=故二面角E BC F --的余弦值为20.【小问1详解】由2n n S na n k =++得()11211n n S n a n k --=-+-+,()2n ≥, 两式相减的()1211n n n a na n a -=+--,整理得()()1121n n n a n a --=-+, 当2n =时,得11a =,2145a a =+=,当3n ≥时,()()1111121221n n a a n n n n n n --⎛⎫-==-- ⎪------⎝⎭, 12112332n n a a n n n n --⎛⎫-=-- ⎪----⎝⎭,L ,3211212a a ⎛⎫-=-- ⎪⎝⎭,相加得2111112111223211n a a n n n n n -⎛⎫-=--+-++-=- ⎪----⎝⎭L ,所以43n a n =-,3n ≥, 当1n =,2时符合43n a n =-,所以43n a n =-,则()1222n n n a a S n n +==-,22432222n n na n k n n n k kS n n ++-++===-+,则02k =,即0k =.【小问2详解】由(1)得()()()2112211222121212121n S n n n n n n n n ==>=----+-+, 所以111111114135572121321n T S n n n ⎛⎫≥+-+-++-=- ⎪-++⎝⎭L , 因为()1211222222n S n n n n<=---,2n ≥, 所以111111113132446222222n T S n n n ⎛⎫≤+-+-++-=-< ⎪-⎝⎭L , 综上可得,4133212n T n -≤<+. 21.【小问1详解】证明:取EF 的中点M ,连接OM ,HM ,又O 为DE 的中点,所以OM DF ∥,又DF ⊂平面BDF ,OM ⊄平面BDF ,所以OM ∥平面BDF ,因为AB EF ∥,AB EF =,H ,M 分别为AB ,EF 的中点,所以BH FM ∥,且BHFM =,所以四边形BFMH 为平行四边形,所以HM BF ∥,又BF ⊂平面BDF ,HM ⊄平面BDF ,所以HM ∥平面BDF ,又OM ,HM ⊂平面OMH ,OM HM M ⋂=,所以平面OMH ∥平面BDF ,因为OH ⊂平面OMH ,所以OH ∥平面BDF . 【小问2详解】由题意知CB ,CF ,CD 两两垂直,故以点C 为原点,建立如图所示的空间直角坐标系:设14圆柱底面半径为r ,高为h ,则(),0C ,(),0,0B r ,()0,,0F r ,()0,0,D h ,,,22r r G h ⎛⎫- ⎪⎝⎭,0,,2r O h ⎛⎫⎪⎝⎭,,0,2h H r ⎛⎫ ⎪⎝⎭,所以(),,0B F r r =-,()0,,DF r h =-,()0,,0CF r =,,,22r r CG h ⎛⎫=- ⎪⎝⎭,,,22r h OH r ⎛⎫=-- ⎪⎝⎭.设平面BDF 的一个法向量(),,n x y z =r ,则0,0,n BF n DF ⎧⋅=⎪⎨⋅=⎪⎩,即00rx ry ry hz -+=⎧⎨-=⎩令x h =,解得y h =,z r =,所以(),,n h h r =;设平面CFG 的一个法向量(),,m a b c =,则0,0,m CF m CG ⎧⋅=⎪⎨⋅=⎪⎩,即0022rb r ra b hc =⎧⎪⎨-++=⎪⎩ 令2a h =,解得0b =,c r =,所以()2,0,m h r =,所以222cos ,52m n m n m nh ⋅====⋅ 化简,得22220r h -=,所以h r =,所以()2,0,m r r =,,,22r r OH r ⎛⎫=--⎪⎝⎭.设OH 与平面CFG 所成的角为θ,所以22sin cos ,6r OH m OH m OH mr θ-⋅====⋅⋅22.【小问1详解】当0a =时,()()()222ln 2ln 3x x x f x x x x x x x ---=⋅-+-+=⋅-+-ee e ,()211f =-e ,()()221ln 311x x f x x x x --⎛⎫'=-++-- ⎪⎝⎭e e ,则()211f '=-e , 所以曲线()f x 在1x =处的切线方程为()22111y x ⎛⎫⎛⎫--=--⎪ ⎪⎝⎭⎝⎭e e ,即21y x ⎛⎫=- ⎪⎝⎭e . 【小问2详解】不等式()0f x ≤可整理为2221ln 10x x x x x x a a---⎛⎫-+-+≤ ⎪⎝⎭e e e ,令()2e x xp x -=,()21ex xp x --'=,所以当()(),1,0x p x '∈-∞>,()p x 单调递增,当()()1,,0x p x '∈+∞<,()p x 单调递减,所以()()1e p x p ≤=,又2e x x ->,所以令(]21,e e x xt -=∈,则11ln 1a t t ≤--,令()(]()11,1,e ln 1x x x h x -∈-=,则()()()()()22221111ln 1ln 1x h x x x x x x x ⎡⎤'=-+=-+⎢⎥--⎢⎥⎣⎦,令()()()(]()221ln 1,e x s x x x x -=-∈,则()212ln 2ln 11x x x x s x x x x-+'=-+=, 令()(]()12ln ,1,e q x x x x x =-+∈,则()()(]()22212110,1,e x q x x x x x--'=--=<∈, 所以()q x 单调递减,()()10q x q <=,所以()0s x '<,()s x 单调递减,()()10s x s <=,所以()()(]()221ln 1,e x x x x-<∈,所以()()221ln 1xx x >-,()()()22110ln 1x h x x x x ⎡⎤'=-+<⎢⎥-⎢⎥⎣⎦, 所以()h x 单调递减,()()111e e h x h ≥=--, 所以1e 11a ≤--.。

南阳市第一中学数学三角形填空选择综合测试卷(word含答案)

南阳市第一中学数学三角形填空选择综合测试卷(word含答案)

南阳市第一中学数学三角形填空选择综合测试卷(word 含答案)一、八年级数学三角形填空题(难)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.【答案】2b-2a【解析】【分析】【详解】根据三角形的三边关系得:a ﹣b ﹣c <0,c +a ﹣b >0,∴原式=﹣(a ﹣b ﹣c )﹣(a +c ﹣b )=﹣a +b +c ﹣a ﹣c +b =2b ﹣2a .故答案为2b ﹣2a【点睛】本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.2.如图,在∆ABC 中, ∠A =80︒, ∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……; ∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为_________..【答案】516【解析】【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=12∠A ,再依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】解:根据三角形的外角得:∠ACD=∠A+∠ABC.又∵∠ABC 与∠ACD 的平分线交于点A 1, ∴1111222A ABC A ABC ∠+∠=∠+∠ ∴∠A 1=12∠A依此类推得,∠A 2= 212∠A ,……,∠A 8= 812∠A=180256=516 故答案为516. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..3.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.【答案】360 °【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和; (2)四边形内角和定理:四边形内角和为360°.4.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_____cm 或_____cm .【答案】22cm, 26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm 和6cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm 时,周长=6+6+10=22cm ;(2)当腰长为10cm 时,周长=10+10+6=26cm ,所以其周长是22cm 或26cm .故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.6.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内时,∠A 与∠1+∠2之间有始终不变的关系是__________.【答案】2∠A =∠1+∠2【解析】【分析】根据∠1与∠AED 的2倍和∠2与∠ADE 的2倍都组成平角,结合△AED 的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2),即2∠A=∠1+∠2.故答案为:2∠A=∠1+∠2.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.7.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.【答案】242cm.【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=12×12×4=24cm2.考点:1.三角形的面积;2.三角形三边关系.8.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.9.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.【答案】﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.10.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)11.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320【答案】B【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得y=43x,再根据△ABC的面积是3即可求得x、y的值,从而求解.【详解】连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1∴△ABD的面积是4x+2y∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=43x.又∵△ABC的面积为3∴4x+x=32,x=310.则四边形PDCE的面积为x+y=710.故选B.【点睛】此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.12.如图,ABC 的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到111A B C .再分别倍长A 1B 1,B 1C 1,C 1A 1得到222A B C .…… 按此规律,倍长2018次后得到的201820182018A B C 的面积为( )A .20176B .20186C .20187D .20188【答案】C【解析】 分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此类推写出即可.详解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,S △A 1B 1C 1=7S △ABC ,同理S △A 2B 2C 2=7S △A 1B 1C 1=72S △ABC ,依此类推,S △AnBnCn =7n S △ABC .∵△ABC 的面积为1,∴S △AnBnCn =7n ,∴S △A 2018B 2018C 2018=72018.故选C .点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.13.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A.4 B.5 C.6 D.7【答案】D【解析】【分析】连接AO,利用等高不等底的三角形面积比等于底长的比,可求出△COD与△BOE的面积.列出关于△AOE与△AOD的面积的方程即可求出四边形AEOD的面积.【详解】连接OA,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.14.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )A .20B .35C .50D .70【答案】B【解析】【分析】 依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.【详解】如图,C'D'//AC ,,又DAC 20∠=,AGH 70∠∴=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,1AEF GFE AGH 352∠∠∠∴===, 故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.15.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点.若∠A =60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.16.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积与△BCE的面积相等;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③B.②③④C.①③④D.①②③④【答案】A【解析】根据三角形中线的性质可得:△ABE的面积和△BCE的面积相等,故①正确,因为∠BAC=90°,所以∠AFG+∠ACF=90°,因为AD是高,所以∠DGC+∠DCG=90°,因为CF是角平分线,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因为∠DGC=∠AGF,所以∠AFG=∠AGF,故②正确,因为∠FAG+∠ABC=90°,∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因为CF是角平分线,所以∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正确,④假设BH=CH,∠ACB=30°,则∠HBC=∠HCB =15°,∠ABC=60°,所以∠ABE=60°-15°=45°,因为∠BAC=90°,所以AB=AE,因为AE=EC,所以AB=12AC,这与在直角三角形中30°所对直角边等于斜边的一半相矛盾,所以假设不成立,故④不一定正确,故选A.17.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】C【解析】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.18.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.19.如果一个多边形的内角和是1800°,这个多边形是( )A .八边形B .十四边形C .十边形D .十二边形 【答案】D【解析】【分析】n 边形的内角和可以表示成(n ﹣2)•180°,设这个正多边形的边数是n ,就得到方程,从而求出边数.【详解】这个正多边形的边数是n ,根据题意得:(n ﹣2)•180°=1800°解得:n =12.故选D .【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n ﹣2)×180°.20.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B.【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.。

南阳市第一中学八年级数学上册第一单元《三角形》检测(有答案解析)

南阳市第一中学八年级数学上册第一单元《三角形》检测(有答案解析)

一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )A .三角形两边之和大于第三边B .三角形具有稳定性C .三角形的内角和是180D .直角三角形两个锐角互余2.下列四组线段中,不可以构成三角形的是( )A .4,5,6B .1.5,2,2.5C .13,14,15D .1,2,3 3.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 4.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒5.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒ 6.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .12 7.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60° 8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( )A .3cmB .10cmC .4cmD .6cm 9.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30° 10.下列长度的三条线段,能组成三角形的是( ) A .3,5,6 B .3,2,1 C .2,2,4 D .3,6,10 11.如图,已知AE 交CD 于点O ,AB ∥CD ,∠A =50°,∠E =15°,则∠C 的度数为( )A .50°B .65°C .35°D .15°12.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA二、填空题13.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.14.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;15.七边形的外角和为________.16.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.17.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 18.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.19.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.20.如图,在ABC 中,E 、D 、F 分别是AD 、BF 、CE 的中点,若DEF 的面积是1,则ABC S =______.三、解答题21.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.22.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.23.一个多边形的内角和比它的外角和多720°,求该多边形的边数.24.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.25.一个多边形的每个外角都等于40°,求这个多边形的内角和.26.如图,在ABC 中,60,80,BAC C AD ︒︒∠=∠=是ABC 的角平分线,点E 是边AC 上一点,且12ADE B ∠=∠,求CDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的稳定性可以解决.【详解】因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性.故选:B .【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键.3.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.4.C解析:C【分析】根据三角形的外角性质求解.【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=130°-55°=75°,故选C.【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.5.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒, 18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.6.B解析:B【分析】根据三角形的三边关系定理可得7-4<x <7+4,计算出不等式的解集,再确定x 的值即可.【详解】设第三边长为x ,则7-4<x <7+4,3<x <11,∴A 、C 、D 选项不符合题意.故选:B .【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.7.A解析:A【分析】延长BC 交刻度尺的一边于D 点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt △CDE 中,利用内角和定理求解.【详解】如图,延长BC 交刻度尺的一边于D 点,∵AB ∥DE ,∴∠β=∠EDC ,又∵∠CED =∠α=47°,∠ECD =90°,∴∠β=∠EDC =90°﹣∠CED =90°﹣47°=43°.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 8.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.C解析:C【分析】先依据平行线的性质可求得∠ABC 的度数,然后在直角三角形CBD 中可求得∠BCD 的度数.【详解】解:∵//BC AE ,150∠=︒,∴∠1=∠ABC=50°.∵CD AB ⊥于点D ,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C .【点睛】本题主要考查平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.10.A解析:A【分析】根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意, 故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.11.C解析:C【分析】先根据平行线的性质,得出A DOE ∠=∠,再根据DOE ∠是OCE ∆的外角,即可得到C ∠的度数.【详解】解:∵AB//CD ,45A ∠=︒,∴45DOE ∠=︒,∵DOE E C ∠=∠+∠,∴501535C DOE E ∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,正确得出DOE ∠的度数是解题的关键. 12.C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE 是△ABC 的边BC 上的高,故不符合题意;B.线段BA 不是任何边上的高,故不符合题意;C.线段BD 是△ABC 的边AC 边上的高,故符合题意;D.线段DA 是△ABD 的边BD 上的高,故不符合题意;故选C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.二、填空题13.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC 的三边长分别是abc ∴必须满足两边之和大于第三边两边的差小 解析:3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.14.38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数已知∠P =90°根据三角形内角和定理易求∠PBC +∠PCB 的度数进而得到∠1+∠2的度数【详解】∵∠A =52°∴∠ABC +∠ACB =18解析:38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数.已知∠P =90°,根据三角形内角和定理易求∠PBC +∠PCB 的度数,进而得到∠1+∠2的度数.【详解】∵∠A =52°,∴∠ABC +∠ACB =180°−52°=128°,∵∠P =90°,∴∠PBC +∠PCB =90°,∴∠ABP +∠ACP =128°−90°=38°,即∠1+∠2=38°.故答案为:38°.【点睛】本题考查的是三角形内角和定理以及直角三角形的性质等知识,注意运用整体法计算,解决问题的关键是求出∠ABC +∠ACB ,∠PBC +∠PCB 的度数.15.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵ 多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 16.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.17.【分析】题目给出等腰三角形有两条边长为11和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】分两种情况:当腰为11时11+11>511-11<5所以能构成三解析:27cm【分析】题目给出等腰三角形有两条边长为11和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm ;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.18.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B的度数.【详解】∵把△ABC的∠B折叠,点B落在P的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B=180°,∴∠B=180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.19.25【分析】依据角平分线的定义即可得到∠DBC的度数再根据三角形外角的性质即可得到∠CAE的度数【详解】解:∵∠ABC=30°BD平分∠ABC∴∠DBC=∠ABC=×30°=15°又∵AE⊥BD∴∠解析:25【分析】依据角平分线的定义即可得到∠DBC的度数,再根据三角形外角的性质,即可得到∠CAE 的度数.【详解】解:∵∠ABC=30°,BD平分∠ABC,∴∠DBC=12∠ABC=12×30°=15°,又∵AE⊥BD,∴∠BEA=90°-15°=75°,∵∠AEB是△ACE的外角,∴∠CAE=∠AEB-∠C=75°-50°=25°,故答案为:25.【点睛】本题考查了三角形内角和定理,解决问题的关键是掌握三角形外角的性质.三角形的一个外角等于和它不相邻的两个内角的和.20.7【分析】连接CDBEAF由三角形中线等分三角形的面积求得S△AEC=2S△DEFS△ABD=2S△DEFS△BFC=2S△DEF由S△ABC=S△AEC+S△ABD+S△BFC+S△DEF即可得出解析:7【分析】连接CD,BE,AF,由三角形中线等分三角形的面积,求得S△AEC=2S△DEF,S△ABD=2S△DEF,S△BFC=2S△DEF,由S△ABC=S△AEC+S△ABD+S△BFC+S△DEF即可得出结果.【详解】解:连接CD,BE,AF,如图所示:∵AE=ED,由三角形中线等分三角形的面积,可得S△AEF=S△DEF,同理S△AEF=S△AFC,∴S△AEC=2S△DEF;同理可得:S△ABD=2S△DEF,S△BFC=2S△DEF,∴△ABC=S△AEC+S△ABD+S△BFC+S△DEF=2S△DEF+2S△DEF+2S△DEF+S△DEF=7S△DEF=7cm2,故答案为:7.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,解答关键是通过作辅助线,运用三角形中线等分三角形的面积得出结果.三、解答题21.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解; (2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.22.50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线, ∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.23.8【分析】先根据一个多边形的内角和比它的外角和多720°得出其内角和度数,再设这个多边形的边数为n,根据内角和公式建立关于n的方程,解之即可.【详解】解:∵一个多边形的内角和比它的外角和多720°,∴这个多边形的内角和为360°+720°=1080°,设这个多边形的边数为n,则(n﹣2)•180°=1080°,解得n=8,答:该多边形的边数为8,故答案为:8.【点睛】本题考查了多边形的内角与外角,解题的关键是掌握多边形的外角和为360°、多边形内角和定理:(n-2)•180° (n≥3且n为整数).24.∠DAC=20°,∠ADC=80°【分析】设∠1=∠2=x,再用x表示出∠3的度数,由三角形内角和定理得出∠2+∠4的度数,进而可得出x的值,由此得出结论.【详解】设∠1=∠2=x,则∠3=∠4=2x,∵∠BAC=60°,∴∠2+∠4=180°-60°=120°,即x+2x=120°,∴x=40°,即∠ADC=80°,∴∠DAC=∠BAC-∠1=60°-40°=20°.【点睛】本题考查的是三角形内角和外角的相关知识,熟知三角形内角和是180°是解答此题的关键.25.1260【分析】先利用外角和360度除以每个外角的度数求出边数,再利用多边形内角和公式计算得出答案.【详解】解:这个多边形的边数为36040=9(条), ∴180(92)1260︒⨯-=︒,∴这个多边形的内角和是1260︒.【点睛】此题考查多边形的角度计算,多边形的外角和定理,多边形的内角和计算公式,根据多边形的每个外角都等于40°求出多边形的边数是解题的关键.26.50︒【分析】根据角平分线的性质求出∠BAD 的度数,利用三角形内角和求出∠B 的度数,由此得到∠ADE 的度数,利用三角形外角性质求出∠ADC ,即可得到答案.【详解】解:∵AD 平分BAC ∠, ∴1302BAD DAC BAC ∠=∠=∠=︒, ∵180180608040B BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∴403070ADC B BAD ∠=∠+∠=︒+︒=︒, ∴1202ADE B ∠=∠=︒, ∴702050CDE ADC ADE ∠=∠-∠=︒-︒=︒.【点睛】 此题考查三角形内角和定理,角平分线的性质,三角形外角定理,正确分析图形掌握各角直角的位置关系是解题的关键.。

南阳市第一中学小升初数学期末试卷综合测试卷(word含答案)

南阳市第一中学小升初数学期末试卷综合测试卷(word含答案)

南阳市第一中学小升初数学期末试卷综合测试卷(word含答案)一、选择题1.小明用棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起摆出了一个立体图形,这个立体图形的表面积是()平方厘米。

A.194 B.196 C.206 D.2342.李强承包一块地,前年收获粮食5.6吨,去年比前年增产三成,求去年收获粮食多少吨。

正确的算式是()。

A.5.6×(1+30%)B.5.6×(1+3%)C.5.6÷(1+30%)3.一个等腰三角形的两个内角的度数比是2∶1,这个三角形不可能是()。

A.锐角三角形B.直角三角形C.钝角三角形D.无法确定4.如果a的310等于b的14(a、b都不等于0),那么比较a和b的大小,结果是()。

A.a>b B.b>a C.a=b D.无法确定5.观察由小正方体组成的立体图形,从左面看到的是,从右面看到的一定是().A.B.C.D.6.下列关于“统计与概率”的知识,说法错误的是()。

A.要描述小陈从一年级到六年级的平均体重变化情况,用折线统计图比较合适B.45,73,47,45,68,这五个数的平均数是68C.扇形统计图可以清楚地表示出各部分与总数之间的关系D.掷一枚硬币,连续8次都正面朝上,第9次掷出后,可能是反面朝上7.把一个圆柱体的侧面展开,得到一个正方形,这个圆柱的底面半径是5厘米,高是()厘米。

A.5 B.10 C.15.7 D.31.48.春节期间,一家三口旅游,甲旅行社优惠条件是:父母全票,孩子半票,乙旅行社优惠条件是:三人都按80%收费。

两旅行社原来标价都相同,花钱少的是()。

A.甲社B.乙社C.不好确定9.一个底面是正方形的长方体,把它的侧面展开后,正好是一个边长为12分米的正方形,原来这个长方体的体积()立方分米。

A.144 B.108 C.27 D.54二、填空题10.9.08公顷=(______)平方米 2小时45分=(______)时11.24∶()()6530===()%=()(填小数)。

七年级上册南阳市第一中学数学期末试卷综合测试卷(word含答案)

七年级上册南阳市第一中学数学期末试卷综合测试卷(word含答案)

七年级上册南阳市第一中学数学期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.2.已知:,OB、OC、OM、ON是内的射线.(1)如图1,若OM平分,ON平分当OB绕点O在内旋转时,则的大小为________;(2)如图2,若,OM平分,ON平分当绕点O在内旋转时,求的大小;(3)在的条件下,若,当在内绕着点O以秒的速度逆时针旋转t秒时,和中的一个角的度数恰好是另一个角的度数的两倍,求t的值【答案】(1)78°(2)解:∵OM平分∠AOC,ON平分∠BOD,∴∠COM ∠AOC,∠BON∠BOD,∴∠MON=∠BON+∠COM﹣∠BOC ∠AOC ∠BOD﹣24°(∠AOC+∠BOD)﹣24°,∴∠MON (∠AOD+∠BOC)﹣24° 180°﹣24°=66°.(3)解:∵∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒,OM平分∠AOC,ON平分∠BOD,∴∠AOC=54°+2t,∠AOM=27+t,∠BOD=126﹣2t,∠DON=63﹣t.若∠AOM=2∠DON时,即27+t=2(63﹣t),∴t=33;若2∠AOM=∠DON,即2(27+t)=63﹣t,∴t=3.综上所述:当t=3或t=33时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍.【解析】【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM ∠AOB,∠BON ∠BON.∵∠MON=∠BOM+∠BON ∠AOD,∴∠MON=78°.故答案为:78°.【分析】(1)由角平分线的定义可得∠BOM=∠AOB,∠BON=∠BOD,然后根据∠MON=∠BOM+∠BON=∠AOD即可求解;(2)由角平分线的定义可得∠COM=∠AOC,∠BON=∠BOD,∠MON=∠BON+∠COM-∠BOC=∠AOC+∠BOD﹣24°=(∠AOC+∠BOD)﹣24°=(∠AOD+∠BOC)﹣24°可求解;(3)由题意可得∠AOC=54°+2t,∠AOM=27+t,∠BOD=126−2t,∠DON=63−t,分∠AOM=2∠DON,∠DON=2∠AOM两种情况讨论,列方程即可求解.3.如图①,已知线段AB=12cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰好是AB的中点,则DE=________cm;若AC=4cm,则DE=________cm;(2)随着C点位置的改变,DE的长是否会改变?如果改变,请说明原因;如果不变,请求出DE的长;(3)知识迁移:如图②,已知∠AOB=120°,过角的内部任意一点C画射线OC,若O D、OE分别平分∠AOC和∠BOC,试说明∠DOE的度数与射线OC的位置无关.【答案】(1)6;6(2)解:DE的长不会改变,理由如下:∵点D是线段AC的中点∴∵点E是线段BC的中点∴∴ DE = DC+CE∴DE的长不会改变(3)解:∵ OD平分∠AOC, OE平分∠BOC∴ ,∴∴∠DOE的度数与射线OC的位置无关【解析】【解答】解:(1)若点C恰好是AB的中点,则DE=6cm;若AC=4cm,则DE=6cm;【分析】(1)由AB=12cm,点D、E分别是AC和BC的中点,即可推出DE= (AC+BC)= AB;由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D、E分别是AC和BC的中点,即可推出AD=DC,BE=EC,由此即可得到D E的长度;(2)由(1)知,C点位置的改变后,仍有DE=CD+CE= (AC+BC)=AB,所以DE的长度不会改变;(3)由若OD、OE分别平分∠AOC和∠BOC,即可推出∠DOE=∠DOC+∠COE= (∠AOC+∠COB)=∠AOB,继而可得到答案.4.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、 MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.【答案】(1)∵BC=15,点C对应的数是10,∴c-b=15,∴b=-5,∵c-b=b-a=15,∴a=-20;(2)①∵OQ=10+t,OP=20+2t,∴PQ=(10+t)+( 20+2t)=30+3t;∵OB=5, OQ=10+t,∴BQ=15+t,∵M为BQ的中点,∴BM=7.5+0.5t,∴OM=7.5+0.5t-5=2.5+0.5t.∵OP=20+2t, N为OP的中点,∴ON=10+t,∴MN=OM+ON=12.5+1.5t;②PQ-2MN=5.∵PQ=30+3t,MN= 12.5+1.5t,∴PQ-2MN=(30+3t)-2(12.5+1.5t)=5.【解析】【分析】(1)利用数轴上所表示的数,右边的总比左边的大及数轴上任意两点间的距离等于这两点所表示数的差的绝对值,由BC=15,点C对应的数是10,即可算出点B 所表示的数,即b的值,进而根据 c-b=b-a 即可算出点A所表示的数a的值;(2)① 根据路程等于速度乘以时间,得出PA=2t,CQ=t,所以OQ=OC+CQ=10+t,OP==OA+PA=20+2t, 进而根据PQ=OQ+OP,根据整式加减法法则算出PQ的长;根据BQ=OB+OQ得出 BQ=15+t, genuine线段中点的定义得出 BM=7.5+0.5t, ON=10+t, 根据MN=OM+ON ,由整式加减法法则即可算出答案;②PQ-2MN=5,理由如下:由PQ=30+3t,MN= 12.5+1.5t,故利用整式家家爱你法法则即可算出PQ-2MN=5。

河南南阳市第一中学校三角函数与解三角形多选题试题含答案

河南南阳市第一中学校三角函数与解三角形多选题试题含答案

河南南阳市第一中学校三角函数与解三角形多选题试题含答案一、三角函数与解三角形多选题1.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( )A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 44c c BAD c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos BAD ∠≥BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.2.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.3.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】 根据3()8f x f π⎛⎫≤⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案. 【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确;故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.4.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,由于(0)0f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确;2sin 22sin 2sin 222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.5.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.6.设函数()()sin f x A x =+ωϕ,x ∈R (其中0A >,0>ω,2πϕ<),在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值,且()026f f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则下列结论错误的是( )A .若()()()12f x f x f x ≤≤对任意x ∈R ,则21min x x π-=B .()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭中心对称 C .函数()f x 的单调减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是2π【答案】ABD 【分析】根据条件先求函数的解析式,对于A:判断出()1f x 为最小值,()2f x 为最大值,即可; 对于B:根据函数的对称性进行判断;对于C:求出角的范围,结合三角函数的单调性进行判断; 对于D:根据函数的对称性即对称轴之间的关系进行判断. 【详解】因为函数()f x 在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值, 所以,62ππ⎛⎫⎪⎝⎭是函数的一个单调区间,区间长度为263πππ-=,即函数的周期2233T ππ≥⨯=,即223ππω≥,则03ω<≤因为()06f f π⎛⎫= ⎪⎝⎭,所以06212ππ+=为函数的一条对称轴;则1223πππωϕωϕπ+=+=①② 由①②解得:=2=3πωϕ,,即()sin 23f x A x π⎛⎫=+⎪⎝⎭,函数的周期=T π. 对于A: 若()()()12f x f x f x ≤≤对任意x ∈R 恒成立,则()1f x 为最小值,()2f x 为最大值,所以12||22T k x x k π-==,则21x x -必为2π的整数倍,故A 错误,可选A; 对于B:3x π=-时,()sin 03f x A π⎛⎫=-≠ ⎪⎝⎭,故,03π⎛-⎫⎪⎝⎭不是()y f x =的对称中心,B 错误,可选B; 对于C:当7,1212x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,322,2322x k k πππππ⎡⎤+∈++⎢⎥⎣⎦,此时()y f x =单调递减,C 正确,不选C;对于D: 函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是44T π=,故D 错误,可选D 故选:ABD 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②(2)求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.7.如图,已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||2πϕ≤)的图象与x 轴交于点,A B ,与y 轴交于点C ,2BC BD =,,||23OCB OA π∠==,||3AD =.则下列说法正确的有( )A .()f x 的最小正周期为12B .6πϕ=-C .()f x 的最大值为163D .()f x 在区间(14,17)上单调递增【答案】ACD 【分析】由题意可得:3|sin |2A πϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据221||AD =,可得方程22228(1)243A sin πϕω-+=,进而解出ω,ϕ,A .判断出结论. 【详解】由题意可得:||3||OB OC =,3sin 2A πϕω∴=+,sin(2)0ωϕ+=, (2,0)A ,(2B πω+,0),(0,sin )C A ϕ,sin 1,22A D πϕω⎛⎫∴+ ⎪⎝⎭, 2213AD =,222sin 281243A πϕω⎛⎫∴-+= ⎪⎝⎭,把|sin |(2)3A πϕω=+代入上式可得:2()2240ππωω-⨯-=,0>ω.解得6πω=,6πω∴=,可得周期212T ωπ==,sin()03πϕ∴+=,||2πϕ≤,解得3πϕ=-.可知:B 不对,3sin 263A π⎛⎫∴-=+ ⎪⎝⎭,0A >,解得163A =,函数16()sin()363f x x ππ=-,可知C 正确. ()14,17x ∈ 时,52,632x ππππ⎛⎫⎛⎫-∈⎪ ⎪⎝⎭⎝⎭,可得:函数()f x 在()14,17x ∈单调递增. 综上可得:ACD 正确.故选:ACD 【点睛】关键点点睛:本题的关键是表示点,,B C D 的坐标,并利用两点间距离表示等量关系后,求解各点的坐标,问题迎刃而解.8.函数()sin()f x x ωϕ=+的部分图像如图中实线所示,图中的M 、N 是圆C 与()f x 图像的两个交点,其中M 在y 轴上,C 是()f x 图像与x 轴的交点,则下列说法中正确的是( )A .函数()y f x =的一个周期为56B .函数()f x 的图像关于点4,03成中心对称C .函数()f x 在11,26⎛⎫-- ⎪⎝⎭上单调递增 D .圆C 的面积为3136π【答案】BD 【分析】根据图象,结合三角函数的对称性、周期性、值域以及圆的中心对称性,可得,,C M N 的坐标,进而可得()f x 的最小正周期、对称中心、单调减区间,及圆的半径,故可判断选项的正误. 【详解】由图知:1(,0)3C ,3)M ,23(,)32N , ∴()f x 中111()2362T =--=,即1T =;对称中心为1,0,23k k Z ⎛⎫+∈ ⎪⎝⎭;单调减区间为17,,1212k k k Z ⎡⎤++∈⎢⎥⎣⎦;圆的半径221331()()32r =+=,则圆的面积为3136π; 综上,知:AC 错误,而BD 正确. 故选:BD. 【点睛】本题考查了三角函数的性质,结合了圆的中心对称性质判断三角函数的周期、对称中心、单调区间及求圆的面积,属于难题.二、数列多选题9.(多选题)数列{}n a 满足()2*1n n n a a a n N+=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的为( ) A .10n n a a +<<B .22221231n a a a a a +++⋅⋅⋅+<C .对任意正数b ,都存在正整数m 使得12311111111mb a a a a +++⋅⋅⋅+>----成立 D .11n a n <+ 【答案】ABCD 【分析】对于A ,结合二次函数的特点可确定正误;对于B ,将原式化简为111n a a a +-<,由10n a +>得到结果; 对于C ,结合1a 范围和A 中结论可确定12111111nn a a a ++⋅⋅⋅+>---,由此判断得到结果;对于D ,利用数学归纳法可证得结论. 【详解】对于A ,2211124n nn n a a a a +⎛⎫=-+=--+ ⎪⎝⎭,若10,2n a ⎛⎫∈ ⎪⎝⎭,则110,4n a +⎛⎫∈ ⎪⎝⎭,又110,2a ⎛⎫∈ ⎪⎝⎭,可知0n a >,10n a +>,又210n n n a a a +-=-<,10n n a a +∴<<,A 正确; 对于B ,由已知得:21n n n a a a +=-,()()()2221212231111n n n n a a a a a a a a a a a a ++∴++⋅⋅⋅+=-+-+⋅⋅⋅+-=-<,B 正确;对于C ,由110,2a ⎛⎫∈ ⎪⎝⎭及A 中结论得:1112n a <-<,1121n a <<-,12111111nn a a a ∴++⋅⋅⋅+>---,显然对任意的正数b ,在在正整数m ,使得m b >,此时12311111111mb a a a a +++⋅⋅⋅+>----成立,C 正确; 对于D ,(i )当1n =时,由已知知:112a <成立, (ii )假设当()n k k N*=∈时,11nan <+成立, 则222111112411n nn n a a a a n n +⎛⎫⎛⎫=-+=--+<-+ ⎪ ⎪++⎝⎭⎝⎭, 又()()()221111012121n n n n n -+-=-<+++++,即()2111121n n n -+<+++,112n a n +∴<+, 综上所述:当n *∈N 时,112n a n +<+,D 正确. 故选:ABCD.【点睛】关键点点睛:本题考查数列与不等式的综合应用问题,关键在于能够熟练应用不等式的性质与函数的性质进行化简辨析,同时对于数列中的不等式证明问题,可采用数学归纳法进行证明.10.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( )A .数列{}n a 是等差数列B .2n n a =C .数列{}2n a 的前n 项和为21223n +- D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证.【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-,两式相减得:12n n a a -=,又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列,所以2n n a =,24n n a =,数列{}2n a的前n 项和为()141444143n n n S +--'==-, 则22log log 2n n n b a n ===, 所以()1111111n n b b n n n n +==-⋅⋅++, 所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。

南阳市第一中学八年级数学上册第十二章《全等三角形》经典练习题(专题培优)

南阳市第一中学八年级数学上册第十二章《全等三角形》经典练习题(专题培优)

一、选择题1.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 2.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .33.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 4.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对5.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 6.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c 7.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS8.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒9.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20° 10.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A .4:3B .16:9C .3:4D .9:16 11.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 12.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 13.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .314.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD 15.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ACE △和CDE △面积相;③//BF CE ;④BDF CDE ≌.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题16.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.17.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.18.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.19.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .20.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.21.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______22.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.23.如图,在Rt ABC 中,90C ∠=︒,AD AC =,DE AB ⊥,交BC 于点E .若26B ∠=︒,则AEC ∠=______︒.24.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.25.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.26.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.三、解答题27.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =.求证:(1)CBA FED ∠=∠;(2)AM DM =.28.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.29.已知:如图,120AOB ∠=︒,过点O 作射线OP ,若OM 平分AOP ∠,ON 平分BOP ∠,AOP α∠=(1)如图1,补全图形,直接写出MON ∠=____________︒(2)如图2,若4BOM BON ∠=∠,求α的值.30.如图,在ACD △与BCE 中,AC BC =,CD CE =,ECD ACB ∠=∠.(1)求证:AD BE =;(2)若105ACD ∠=︒,32D ∠=︒,求B 的度数.。

河南省南阳市一中八年级数学上册第十一章【三角形】习题(答案解析)

河南省南阳市一中八年级数学上册第十一章【三角形】习题(答案解析)

一、选择题1.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边 的度数是()上,则1A.10°B.15°C.20°D.25°2.如图,ABC中,BC边上的高是()A.AE B.AD C.CD D.CF3.下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2 B.3 C.4 D.54.下列长度的线段能组成三角形的是()A.2,3,5 B.4,6,11 C.5,8,10 D.4,8,45.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,66.三角形的两条边长为3和7,那么第三边长可能是()A.1B.4C.7D.10∠的7.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则BDC 度数是()A .65︒B .75︒C .85︒D .105︒ 8.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .79.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF10.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°11.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒二、填空题12.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.13.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.18.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.19.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.20.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.21.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)三、解答题22.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D . (1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由;(2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F .①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.23.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)24.如图,在ABC中,AD是高,AE、BF是角平分线,它们相交于点O,60∠=︒,BAC∠=︒.求EAD70C∠和∠BOE的度数.25.如图,是A、B、C三个村庄的平面图,已知B村在A村的南偏西65°方向,C村在A∠村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村观测A、B两村的视角ACB 的度数.一、选择题1.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .112.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .43.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .64.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒5.如图,1∠等于( )A .40B .50C .60D .706.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5 7.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°8.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90°9.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒10.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+ C .180b a =+︒ D .360b a =+︒ 11.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5二、填空题12.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.13.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.14.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 15.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 16.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条. 17.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 18.如图,在△ABC 中,∠A=64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n-1BC 与∠A n-1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.19.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)20.把一副直角三角板按如图所示的方式摆放在一起,其中90C =∠,90F ∠=,30D ∠=,45A ∠=,则12∠+∠等于___________度.21.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.三、解答题22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在图中能使S △ABC =S △PBC 的格点P 的个数有 个(点P 异于点A ).23.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.24.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.25.如图,AD、AE分别是ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β),请用含α,β的代数式表示∠DAE,并证明.一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 2.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .43.下列长度的三条线段能构成三角形的是( )A .1,2,3B .5,12,13C .4,5,10D .3,3,64.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF5.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE ∠的度数是( )A .50°B .25°C .30°D .35°6.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( )A .8B .9C .10D .117.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 8.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .129.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .010.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .811.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm二、填空题12.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.13.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.14.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.15.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______. 16.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.17.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.18.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD 的面积是_________________19.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.20.如图,P 为正五边形ABCDE 的边AE 上一点,过点P 作PQ //BC ,交DE 于点Q ,则∠EPQ 的度数为_____.21.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.三、解答题22.如图,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1.(1)∵BA 1、CA 1是∠ABC 与∠ACD 的平分线,∴∠A 1BD =12∠ABD ,∠A 1CD =12∠ACD , ∴∠A 1CD ﹣∠A 1BD =12(∠ACD ﹣∠ABD ), ∵∠A 1CD ﹣∠A 1BD = ,∠ACD ﹣∠ABD =∠ ,∴∠A 1= .(2)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230°,求∠F 的度数.(3)如图3,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1,若E 为BA 延长线上一动点,连接EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论: ①∠Q +∠A 1的值为定值;②∠Q ﹣∠A 1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.23.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).24.已知一个多边形的内角和比它的外角和的3倍还多180度. (1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.25.在ABC 中,,20A B C A B ∠+∠=∠∠-∠=︒, (1)求A ∠,B ,C ∠的度数;(2)ABC 按角分类,属于什么三角形ABC 按边分类,属于什么三角形?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南阳市第一中学数学全等三角形综合测试卷(word含答案)一、八年级数学轴对称三角形填空题(难)∥,1.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.∥,若ABC的周长为12cm,则PD PE PFPF AC【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.2.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.3.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B ,∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.4.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=433,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,3S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN =223314231442--5353.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.5.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.7.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB 至F ,使BF =CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN =MF ,△AMN 的周长等于AB +AC 的长.【详解】延长AB 至F ,使BF =CN ,连接DF .∵BD =CD ,且∠BDC =140°,∴∠BCD =∠DBC =20°.∵∠A =40°,AB =AC =2,∴∠ABC =∠ACB =70°,∴∠DBA =∠DCA =90°.在Rt △BDF 和Rt △CND 中,∵BF =CN ,∠DBA =∠DCA ,DB =DC ,∴△BDF ≌△CDN ,∴∠BDF =∠CDN ,DF =DN .∵∠MDN =70°,∴∠BDM +∠CDN =70°,∴∠BDM +∠BDF =70°,∴∠FDM =70°=∠MDN .∵DF =DN ,∠FDM =∠MDN ,DM =DM ,∴△DMN ≌△DMF ,∴MN =MF ,∴△AMN 的周长是:AM +AN +MN =AM +MB +BF +AN =AB +AC =4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.8.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD交AC边于点E,根据BD⊥CD,CD平分∠ACB,得到三角形全等,由此求出AE 的∠=∠,求出BE 的长即可求得BD.长,再根据A ABD【详解】延长BD交AC于点E,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC-CE=8-5=3,∠=∠,∵A ABD∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD构建全等三角形是证明此题的关键.9.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm .【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.在Rt ABC ∆中,90ACB ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?( )A .9个B .7个C .6个D .5个【答案】B【解析】【分析】先以Rt ABC ∆三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B 为圆心,BC 长为半径画弧,交AB 于点D ,则∆BCD 就是等腰三角形;②如图2,以A 为圆心,AC 长为半径画弧,交AB 于点E ,则∆ACE 就是等腰三角形; ③如图3,以C 为圆心,BC 长为半径画弧,交AB 于M ,交AC 于点F ,则∆BCM 、∆BCF 是等腰三角形;④如图4,作AC 的垂直平分线交AB 于点H ,则∆ACH 就是等腰三角形;⑤如图5,作AB 的垂直平分线交AC 于点G ,则∆AGB 就是等腰三角形;⑥如图6,作BC 的垂直平分线交AB 于I ,则∆BCI 就是等腰三角形.故选:B .【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.12.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠= ∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.13.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .3【答案】D 【解析】 分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,OP=OD=OC=3,∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可.详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,OP=OD=OC=3,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,∵∠OCH=30°,∴OH=12OC=3, CH=3OH=32, ∴CD=2CH=3.故选D .点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.14.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A.4个B.3个C.2个D.1个【答案】A【解析】【分析】①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=12∠ABC,然后利用三角形的内角和定理整理即可得解;②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;④求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后根据2PA即可得到2DG PA GH=+.【详解】解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=12∠ABC,∠CAP=12(90°+∠ABC)=45°+12∠ABC,在△ABP中,∠APB=180°−∠BAP−∠ABP,=180°−(45°+12∠ABC+90°−∠ABC)−12∠ABC,=180°−45°−12∠ABC−90°+∠ABC−12∠ABC,=45°,故本小题正确;②∵PF⊥AD,∠APB=45°(已证),∴∠APB=∠FPB=45°,∵∵PB为∠ABC的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中,APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴故DG GH =+.综上所述①②③④正确.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.15.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A.2 B.3 C.4 D.5【答案】B【解析】由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.16.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握17.如图,已知,点A (0,0)、B (43,0)、C (0,4),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第2017个等边三角形的边长等于( )A .201532 B .201632 C .2017327 D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=43,OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=23,B 1A 2=1232⨯,以此类推,可知第2017个等边三角形的边长为:201713()432⨯=. 故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.18.如图,在△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,则△BCD 的周长为( )A .13B .15C .18D .21【答案】A【解析】 根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,得到AD=BD ,进而得出△BCD 的周长为:CD+BD+BC=AC+BC=8+5=13.故选A .点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.19.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+3×32=6+93,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.20.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.3C.3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得3∴MA+MD+ME的最小值为4+33.故选B.【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.。

相关文档
最新文档