2021-2022年高三第二次月考(数学文)
三明一中2022-2023学年上学期月考二高三数学科试卷含答案

三明一中2022-2023学年上学期月考二高三数学科试卷(考试时间:120分钟,满分150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.非选择题用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,仅有一项是符合题目要求的.)1.已知集合{}{}22,3,4,230A B x x x ==∈+-<N ,则A B 中元素的个数是A.2B.3C.4D.52.复平面内表示复数622iz i+=-,则z =A. B. C.4 D.3.若非零实数,a b 满足a b >,则A.22ac bc> B.2b a a b+> C.e1a b-> D.ln ln a b>4.函数()cos f x x x =的图像大致是A .B .C .D .5.如图,在矩形ABCD 中,2AD =,点M ,N 在线段AB 上,且1AM MN NB ===,则MD 与NC所成角的余弦值为A .13B .45C .23D .356.足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动.已知某“鞠”的表面上有四个点,,,P A B C ,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为A.256π B.9π C.92π D.98π7.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =A.361B.374C.385D.3958.在ABC 中,角A、B 、C 所对的边分别为a 、b 、c ,若sin c A =,b a λ=,则实数λ的最大值是A.B.32+C.D.2二、多选题(本题共4小题,每小题5分,共20分。
2021-2022学年内蒙古赤峰二中高二下学期第二次月考数学(文)试题(解析版)

2021-2022学年内蒙古赤峰二中高二下学期第二次月考数学(文)试题一、单选题1.已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于A .15-B .25-C .45D .35【答案】C【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部.【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位),∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C.【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.2.命题“0R x ∃∈,使得2001>-x x ”的否定是( )A .0R x ∃∈,使得2001≤-x x B .0R x ∃∈,使得2001x x <-C .R x ∀∈,都有21≤-x xD .R x ∀∈,都有21x x >-【答案】C【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0R x ∃∈,使得2001>-x x ”的否定是“R x ∀∈,都有21≤-x x ” .故选:C3.抛物线24y x =的焦点坐标是( ) A .(0,1) B .(1,0) C .(0,2) D .(0,116) 【答案】D【分析】将抛物线化成标准方程形式再计算即得结果.【详解】抛物线24y x =的标准方程为214x y =,故124p =,即18p =,故焦点坐标是0,2p ⎛⎫ ⎪⎝⎭,即10,16⎛⎫⎪⎝⎭.故选:D.【点睛】本题考查了抛物线的标准方程及焦点坐标,属于基础题.4.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…(),n n x y ,则下列说法不正确的是( )A .若变量y 和x 之间的相关系数为0.9462r =-,则变量y 和x 之间具有较强的线性相关关系B .残差平方和越小的模型,拟合的效果越好C .用决定系数2R 来刻画回归效果,2R 越小说明拟合效果越好D .在残差图中,残差点分布水平带状区域的宽度越窄,则回归方程的预报精确度越高 【答案】C【分析】变量y 和x 之间的相关系数为r 越大,则变量y 和x 之间具有较强的线性相关关系可判断A ;残差平方和越小的模型,拟合的效果越好可判断B ;用决定系数2R 来刻画回归效果,2R 越大说明拟合效果越好可判断 C ;在残差图中,残差点分布水平带状区域的宽度越窄,则回归方程的预报精确度越高可判断D.【详解】变量y 和x 之间的相关系数为r 越大,则变量y 和x 之间具有较强的线性相关关系,故A 正确;残差平方和越小的模型,拟合的效果越好,故B 正确;用决定系数2R 来刻画回归效果,2R 越大说明拟合效果越好,故C 错误;在残差图中,残差点分布水平带状区域的宽度越窄,则回归方程的预报精确度越高,故D 正确. 故选:C.5.在一次高三模拟考试后,数学老师为了调查数学成绩与学习数学兴趣之间的关系,将某班同学的数学成绩绘制成如图所示的等高堆积条形图(1x 表示对数学感兴趣,2x 表示对数学不感兴趣,1y 表示数学成绩不好,2y 表示数学成绩好),则( )A .数学成绩与学习数学兴趣关系较强B .数学成绩与学习数学兴趣关系较弱C .数学成绩与学习数学兴趣无关系D .数学成绩与学习数学兴趣关系难以判断 【答案】A【分析】由等高堆积条形图分析可知在1x 中2y 的比重明显大于2x 中2y 的比重,即可得出答案.【详解】从题中等高堆积条形图可以看出,在1x 中2y 的比重明显大于2x 中2y 的比重, 所以数学成绩与学习数学兴趣关系较强. 故选:A .6.若函数321()(2)13f x x x a x =---+有极值点,则实数a 的取值范围为( )A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞【答案】A【分析】函数有极值点,说明导数有两个零点,先求导,再由0∆>求解即可 【详解】由3221()(2)1'()2(2)3f x x x a x f x x x a =---+⇒=---,因为函数有极值点,所以导数有两个实数根,对应的0∆>一定成立,即()4420a ∆=+->,解得()1,a ∈+∞故选:A【点睛】本题考查函数存在极值点的条件,属于基础题7.设复数z 满足|z ﹣i |+|z +i |=4,z 在复平面内对应的点为(x ,y ),则( )A .22143x y -=B .22143x y +=C .22143y x -=D .22143y x +=【答案】D【分析】利用复数模的几何意义以及椭圆的定义即可求解.【详解】设z x yi =+,则()1z i x y i -=+-,所以z i -=同理可得z i +=即|z ﹣i |+|z +i |4, 即(),x y 到两点()()0,1,0,1-的距离之和为4,所以z 在复平面内对应的点(x ,y )的轨迹为22143y x +=故选:D【点睛】本题考查了复数模的几何意义以及椭圆的定义,需熟记椭圆的定义,属于基础题.8.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .【答案】A【解析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项.【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.9.已知双曲线C 的中心在坐标原点,其中一个焦点为()2,0F -,过F 的直线l 与双曲线C 交于A 、B 两点,且AB 的中点为()3,1N --,则C 的离心率为( )AB CD 【答案】B【分析】利用点差法即可.【详解】由F 、N 两点的坐标得直线l 的斜率1k =. ∵双曲线一个焦点为(-2,0),∴c =2.设双曲线C 的方程为()222210,0x y a b a b-=>>,则224a b +=.设()11,A x y ,()22,B x y ,则126x x +=-,122y y +=-,12121y y x x -=-. 由2211221x y a b -=,2222221x y a b -=得()()()()12121212220x x x x y y y y a b +-+--=, 即22620a b-+=,∴223a b ,易得23a =,21b =,24c =,∴双曲线C 的离心率c e a ==. 故选:B .10.某班举行了一次有意思的智力竞猜游戏,首先老师将三只冬奥会吉祥物冰墩墩进行了1、2、3三个数字的编号,然后将它们随机均分给甲、乙、丙三名同学,每人将得到的冰墩墩编号告知老师,老师根据三人抽取的号码情况给出了三种说法:①甲抽取的是1号冰墩墩;②乙抽取的不是2号冰墩墩:③丙抽取的不是1号冰墩墩.若三种说法中只有一个说法正确,则抽取2号冰墩墩的是( ) A .甲 B .乙C .丙D .无法判定【答案】A【分析】利用假设法进行推理,得到正确答案. 【详解】假设①正确,则③正确,故不合题意;假设②正确,若乙抽取到是1号冰墩墩,则③正确,符合题意;若乙抽取到的是3号冰墩墩,由于甲不能抽取1号冰墩墩,所以甲只能抽到2号冰墩墩,而丙抽取到1号冰墩墩,满足题意,假设③正确,若丙抽到的是2号冰墩墩,则甲抽到的是3号冰墩墩,乙抽取到1号冰墩墩,则②正确,不合题意;若丙抽到的是3号冰墩墩,则甲抽到的是2号冰墩墩,乙抽到的是1号冰墩墩,则②正确,不合题意.综上:甲抽到的是2号冰墩墩. 故选:A11.已知ABC 的三个顶点都在抛物线26x y =上,且F 为抛物线的焦点,若1()3AF AB AC =+,则||||||++=AF BF CF ( )A .12B .10C .9D .6【答案】C【分析】设A ,B ,C 的纵坐标分别是123,,y y y ,由1()3AF AB AC =+,得三点纵坐标之和,再结合抛物线的定义即可求出||||||AF BF CF ++的值.【详解】由26x y =,得3p =.设A ,B ,C 的纵坐标分别是123,,y y y ,由1()3AF AB AC =+,有1213131()23y y y y y -=-+-,即12392y y y ++=. 由抛物线的定义可得:1233||||||392pAF BF CF y y y p ++=+++==. 故选:C12.定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则( ) A .2(e)(2)4ef f > B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f -> 【答案】D【分析】构造函数()()2g x x f x =,利用导数判断出函数()g x 的单调性即可比较.【详解】令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xf x x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误; ()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确. 故选:D. 二、填空题13.函数()ln f x x x =-的单调递增区间为_______. 【答案】【详解】函数有意义,则:0x > ,且:()1'1f x x=- ,由()'0f x > 结合函数的定义域可得函数的单调递增区间为()0,1,故答案为()0,1.14.若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________. 【答案】(3,)-+∞【分析】写出0:[1,1]p x ⌝∃∈-,3002x a x <-为真命题,参变分离后求解函数最小值,求出实数a 的取值范围.【详解】由题得0:[1,1]p x ⌝∃∈-,3002x a x <-为真命题,所以当0[1,1]x ∈-时,3002a x x >+有解,令3()2,[1,1]f x x x x =+∈-,2()320f x x '=+>, 所以()f x 在区间[1,1]-上单调递增, 所以min ()(1)3f x f =-=-,所以只需3a >-,即实数a 的取值范围是(3,)-+∞. 故答案为:(3,)-+∞15.已知1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左、右焦点,点P 在椭圆上,且在第一象限,过2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O 为坐标原点,若||3OA b =,则该椭圆的离心率为______.6【分析】延长2F A ,交1PF 于点Q ,根据P A 是12F PF ∠的外角平分线,得到2||=AQ AF ,2||PQ PF =,再利用椭圆的定义求解.【详解】解:如图所示:延长2F A ,交1PF 于点Q , ∵P A 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||23QF OA b ==. 又1112||2QF PF PQ PF PF a =+=+=, 223a b ∴=,222233()a b a c ∴==-,∴离心率为6c a =616.已知()ln e a f x x x x =-+,321()23g x x x =-+,若1(0,1]x ∀∈,2[1,1]x ∀∈-,都有()()12f x g x ≥,则a 的取值范围为____________.【答案】2,e ⎛⎤-∞- ⎥⎝⎦【分析】利用导数求出()g x 在区间[1,1]-上的最大值,即可得到()ln e 2af x x x x=-+≥在(0,1]恒成立,参变分离可得2ln e 2a x x x x ≤+-在(0,1]恒成立,令2()ln e 2(01)h x x x x x x =+-<,利用导数说明函数的单调性,即可求出函数的最小值,从而得解;【详解】解:因为321()23g x x x =-+,[1,1]x ∈-,所以()(2)g x x x '=-,10x ∴-<<时,()0g x '>,01x <<时,()0g x '<,即()g x 在()1,0-上单调递增,在()0,1上单调递减,所以()()max 02g x g ==,()ln e 2af x x x x∴=-+≥在(0,1]恒成立,即2ln e 2a x x x x ≤+-在(0,1]恒成立, 令2()ln e 2(01)h x x x x x x =+-<,()ln 2e 1h x x x '=+-, 令()()ln 2e 1m x h x x x '==+-,则1()2e 0m x x'=+>恒成立,()h x '∴在(]0,1单调递增,又0x →时,()h x '→-∞, ()12e 10h '=->,故存在(]00,1x ∈,使得00x x <<,()0h x '<,01x x <<,()0h x '>, 即000()ln 2e 10h x x x '=+-=,解得01ex =,211112()e 2e e e e e minh x h ⎛⎫⎛⎫∴==-+⋅-⨯=- ⎪ ⎪⎝⎭⎝⎭,2e a ∴≤-,即2,e a ⎛⎤∈-∞- ⎥⎝⎦;故答案为:2,e ⎛⎤-∞- ⎥⎝⎦.三、解答题17.已知方程()221R 4x y m m m+=∈-表示双曲线.(1)求实数m 的取值集合A ;(2)设不等式()22210x a x a a -+++<的解集为B ,若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.【答案】(1){0A m m =<或}4m > (2)(][),14,-∞-⋃+∞【分析】(1)由方程表示双曲线可得()40m m -<,解不等式可求得集合A ;(2)解一元二次不等式可得集合B ,由充分不必要条件定义可知B A ≠⊂,由此可得不等关系,可求得a 的范围.【详解】(1)方程()221R 4x y m m m+=∈-表示双曲线,()40m m ∴-<,解得:0m <或4m >,{0A m m ∴=<或}4m >.(2)由()22210x a x a a -+++<得:1a x a <<+,即{}1B x a x a =<<+;x B ∈是x A ∈的充分不必要条件,B A ,10a ∴+≤或4a ≥, 即1a ≤-或4a ≥,∴实数a 的取值范围为(][),14,-∞-⋃+∞.18.为研制新冠肺炎的疫苗,某生物制品研究所将所研制的某型号疫苗用在小白鼠身上进行科研和临床试验,得到如下统计数据:现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为23.求: (1)求p ,q ,x ,y ;(2)能否有99%的把握认为注射此疫苗有效? 附:下面的临界值表仅供参考.)20k0.10 2.706参考公式:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 【答案】(1)80,20,120,80p q x y ====; (2)有99%的把握认为注射此疫苗有效【分析】(1)由取到“感染病毒”的小白鼠的概率为23计算出80p =,再依次计算,,q x y 即可;(2)写出列联表,直接计算2K ,和6.635比较即可判断. 【详解】(1)由2403p p =+,解得80p =,所以20,120,80q x y ===; (2)由(1)得列联表如下:则()222004020608033.333 6.63510010012080K ⨯⨯-⨯=≈>⨯⨯⨯,故有99%的把握认为注射此疫苗有效. 19.根据党中央规划的“精准发力,着力提高脱贫攻坚成效”的精准扶贫、精准脱贫路径,某农业机械上市公司为强化现代农业的基础支撑,不断投入资金对产品进行研发,从而提升农机装备的应用水平.通过对该公司近几年的年报公布的研发费用x (亿元)与产品的直接收益y (亿元)的数据进行统计,得到如下表:根据数据,可建立y 关于x 的两个回归模型:模型①: 4.110.9y x =+;模型②:14.4y =.(1)根据表格中的数据,分别求出模型①,②的相关指数2R 的大小(保留三位有效数字); (2)根据(1)选择拟合精度更高、更可靠的模型,若2022年该公司计划投入研发费用17亿元,预测可为该公司带来多少直接收益.附:相关指数()()22121ni ii n iy y R y y =-=--∑∑ 4.1≈.【答案】(1)210.955R ≈,220.989R ≈(2)72.93亿元【分析】(1)先计算y ,再求()21ni i y y =-∑,然后由公式直接计算可得;(2)比较相关系数,选择拟合精度更高、更可靠的模型计算可得. 【详解】(1)因为15222740485460387y ++++++==所以()22222222123161121016221750ni i y y =-=++++++=∑则模型①的相关指数()()22112179.13110.9551750niii nii y y R y y ==-=-=-≈-∑∑ 模型②的相关指数()()22122118.86110.9891750ni ii n ii y y R y y ==-=-=-≈-∑∑ (2)由(1)知,2212R R <所以模型②的拟合精度更高、更可靠,由回归方程21.314.4y x =-可得,当17x =时,21.31714.472.93y =-=所以若2022年该公司计划投入研发费用17亿元,大约可为该公司带来72.93亿元直接收益.20.已知函数()2x e x f x a =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在只有一个零点,求a 的值.【答案】(1)见解析;(2)24e a =【详解】分析:(1)先构造函数()()211xg x x e -=+-,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究()f x 零点,等价研究()21x h x ax e -=-的零点,先求()h x 导数:()()'2x h x ax x e -=-,这里产生两个讨论点,一个是a 与零,一个是x 与2,当0a ≤时,()0h x >,()h x 没有零点;当0a >时,()h x 先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a 的值.详解:(1)当1a =时,()1f x ≥等价于()2110x x e -+-≤.设函数()()211x g x x e -=+-,则()()()22'211x xg x x x e x e --=--+=--.当1x ≠时,()'0g x <,所以()g x 在()0,∞+单调递减. 而()00g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数()21xh x ax e -=-.()f x 在()0,∞+只有一个零点当且仅当()h x 在()0,∞+只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,()()'2xh x ax x e -=-.当()0,2x ∈时,()'0h x <;当()2,x ∈+∞时,()'0h x >. 所以()h x 在()0,2单调递减,在()2,+∞单调递增. 故()2421ah e =-是()h x 在[)0,+∞的最小值. ①若()20h >,即24e a <,()h x 在()0,∞+没有零点;②若()20h =,即24e a =,()h x 在()0,∞+只有一个零点;③若()20h <,即24e a >,由于()01h =,所以()h x 在()0,2有一个零点,由(1)知,当0x >时,2x e x >,所以()()()333244216161614111102a a a a a h a e a a e =-=->-=->. 故()h x 在()2,4a 有一个零点,因此()h x 在()0,∞+有两个零点.综上,()f x 在()0,∞+只有一个零点时,24e a =.点睛:利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.21.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上. 【答案】(1)22143x y +=;(2)证明见解析.【解析】(1)用离心率公式和b 列方程求得a ,即可得椭圆方程;(2)方法一:设直线:4MN x ty =+,()11,M x y ,()22,N x y 联立椭圆方程,由韦达定理得12,y y 关系,由直线AM 和BN 方程联立求解交点坐标,并化简得1x =,即可证明问题;方法二:设()11,M x y ,()22,N x y ,()33,Q x y ,123,,x x x 两两不等,因为P ,M ,N 三点共线,由斜率相等得到方程,同理A ,M ,Q 三点共线与B ,N ,Q 三点共线也得到两方程,再结合三条方程求解31x =,即可证明问题.【详解】解:(1)因为椭圆的离心率12,12c a ∴=,2a c ∴=,又2b =b ∴=因为222233b a c c =-==,所以1c =,2a =, 所以椭圆C 的方程为22143x y +=. (2)解法一:设直线:4MN x ty =+,()11,M x y ,()22,N x y ,224143x ty x y =+⎧⎪⎨+=⎪⎩,可得()223424360t y ty +++=, 所以12212224343634t y y t y y t -⎧+=⎪⎪+⎨⎪=⎪+⎩.直线AM 的方程:()1122y y x x =++① 直线BN 的方程:()2222y y x x =--② 由对称性可知:点Q 在垂直于x 轴的直线上, 联立①②可得1221212623ty y y y x y y ++=-.因为121223y y t y y +=-, 所以()122112212121362262133y y y y ty y y y x y y y y -+++++===--所以点Q 在直线1x =上.解法二:设()11,M x y ,()22,N x y ,()33,Q x y ,123,,x x x 两两不等, 因为P ,M ,N 三点共线,所以()()()()22122212122222121212313144444444x x y y y y x x x x x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⇒=⇒=------, 整理得:()12122580x x x x -++=.又A ,M ,Q 三点共线,有:313122y y x x =++① 又B ,N ,Q 三点共线,有323222y y x x =--②将①与②两式相除得: ()()()()2222121332231231222222222y x y x x x x y x x y x ++⎛⎫++=⇒= ⎪----⎝⎭ ()()()()()()222121221212312224223124x x x x x x x x ⎛⎫-+ ⎪++⎝⎭==--⎛⎫-- ⎪⎝⎭即()()()()()()2211212331212122224222224x x x x x x x x x x x x x x +++++⎛⎫+== ⎪----++⎝⎭, 将()12122580x x x x -++=即()12125402x x x x =+-= 代入得:233292x x ⎛⎫+= ⎪-⎝⎭解得34x =(舍去)或31x =,(因为直线BQ 与椭圆相交故34x ≠) 所以Q 在定直线1x =上. 【点晴】求解直线与圆锥曲线定点定值问题:关键在于运用设而不求思想、联立方程和韦达定理,构造坐标点方程从而解决相关问题.22.在直角坐标系xOy 中,曲线1C 的参数方程为()22221141t x t t y t ⎧-⎪=⎪+⎨⎪=⎪+⎩(t 为参数).在以平面直角坐标系的原点为极点、x 轴的正半轴为极轴,且与平面直角坐标系xOy 取相同单位长度的极坐标系中,曲线2Csin 04πθ⎛⎫+= ⎪⎝⎭.(1)求曲线1C 的普通方程以及曲线2C 的平面直角坐标方程;(2)若曲线1C 上恰好存在三个不同的点到曲线2C 的距离相等,请在极角范围是[)0,2π的条件下写出这三个点的极坐标.【答案】(1)()2242x y x +=≠-;0x y +=;(2)42,A π⎛⎫ ⎪⎝⎭,32,4b π⎛⎫ ⎪⎝⎭,72,4C π⎛⎫ ⎪⎝⎭.【解析】(1)观察参数方程的形式,消参后得到普通方程,曲线2C 的极坐标方程展开后,利用cos x ρθ=,sin y ρθ=,代入后求直角坐标方程;(2)由圆的半径可知,若圆上有3个点到直线的距离相等,圆心到直线的距离12d r =,再利用数形结合得到三点,并表示三点的极坐标.【详解】(1)由为()22221141t x t ty t ⎧-⎪=⎪+⎨⎪=⎪+⎩(t 为参数),得()222222221164411t t x y t t ⎛⎫-+=+= ⎪+⎝⎭+ 故曲线1C 的普通方程为()2242x y x +=≠-又由2sin 204πρθ⎛⎫+-= ⎪⎝⎭得()cos sin 20ρθθ+-=,即为20x y +-=.(2)∵圆心O 到曲线2:20C x y +-=的距离22211211d r ===+, ∴直线220x y +-=与圆的切点A 以及直线0x y +=与圆的两个交点B ,C 即为所求.OA BC ⊥,则1OA k =,直线OA l 的倾斜角为4π,即A 点的极角为4π, B ∴点的极角为2344πππ+=,C 点的极角为7244πππ-=, ∴三个点的极坐标为42,A π⎛⎫ ⎪⎝⎭,32,4B π⎛⎫ ⎪⎝⎭,72,4C π⎛⎫⎪⎝⎭【点睛】关键点点睛:本题第二问的关键是由数形结合可知圆心到直线的距离12d r =,再根据数形结合确定三点,结合斜率求得三点的极角.23.已知函数()|1|2|2|(R)f x x x x =-+-∈,记()f x 的最小值为m . (1)求m ;(2)若2a b m +=,求22a b +的最小值. 【答案】(1)1;(2)15. 【分析】(1)将()f x 写成分段函数的形式,求出分段函数的最小值,即可得到结果; (2)由(1)可知21a b +=,再利柯西不等式求出最小值.【详解】(1)53,1,()1223,12,35,2,x x f x x x x x x x -≤⎧⎪=-+-=-<<⎨⎪-≥⎩当1x ≤时,()2f x ≥; 当12x <<时,1()2f x <<; 当2x ≥时,()1f x ≥; 综上,min ()1f x =,故1m =. (2)21a b +=,22222)(12)(2)1(b b a a ∴++≥+=,即2215a b +≥当且仅当2112a b a b +=⎧⎪⎨=⎪⎩时,即12,55a b ==时等号成立,22a b ∴+的最小值为15.。
云南省名校2023届高三上学期第二次月考数学试题

数学(二)试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1+3i1+i 在复平面内对应的点的坐标为()A.()2,4 B.()4,2 C.()1,2 D.()2,12.设集合{}=Z 2U x x ∈≤,{}1,0,1A =-,{}0,1B =,则()U A B = ð()A.{}2,1,0,1,2-- B.{}1,0,1- C.{}1- D.{}1,0-3.某游泳馆统计了10天内某小区居民每日到该游泳馆锻炼的人数,整理数据,得到如下所示的折线图.则根据此折线图,下面结论正确的是()A.这10天内,每日游泳人数的极差大于106B.这10天内,每日游泳人数的平均值大于135C.这10天内,每日游泳人数的中位数大于145D.前5天每日游泳人数的方差小于后5天每日游泳人数的方差4.一个礼堂的座位分左、中、右三组,左、右两组从第一排到最后一排每排依次增加1个座位,中间一组从第一排到最后一排每排依次增加2个座位,各组座位具有相同的排数,第一排共有16个座位,最后一排共有52个座位,则该礼堂的座位总数共有()A.442个B.408个C.340个D.306个5.已知1sin 23β=,()()2sin sin 3αβαβ++-=,则sin α=()A.37B.38 C.37- D.38-6.已知0.11.1a-=,ln 3b =,c =,则()A.a b c<< B.a c b<< C.c a b<< D.c b a<<7.已知双线()222210,0:6x y C a ba =>>=的左、右焦点分别为1F ,2F ,O 为坐标原点,点M 在C 的右支上运动,12MF F 的内心为I ,若2IO IF =,则C 的离心率为()A.2B.C.3D.8.已知1x ,2x 是方程e ln a x x =的根,且12x x <,则下列结论正确的是()A.(],1a ∈-∞- B.()10,1x ∈ C.21,e ex ⎛⎫ ⎪⎝⎭∈ D.122x x +>二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分9.在正三棱柱111ABC A B C -中,1AA AB =,则下列结论正确的是()A.1BC 与11A B 的夹角为45°B.1BC 与平面ABC 所成角为45°C.1BC 与1AA 的夹角为45°D.1BC 与平面11ABB A 所成角为45°10.已知椭圆22:195x y E +=的左焦点为F ,过F 的直线l 与E 交于A ,B 两点,则下列说法正确的是()A.若直线l 垂直于x 轴,则103AB =B.10,63AB ⎡⎤∈⎢⎥⎣⎦C.若5AB =,则直线l 的斜率为33D.若2AF BF =,则154AB =11.一个不透明的纸箱中放有大小、形状均相同的10个小球,其中白球6个、红球4个,现无放回分两次从纸箱中取球,第一次先从箱中随机取出1球,第二次再从箱中随机取出2球,分别用1A ,2A 表示事件“第一次取出白球,”“第一次取出红球”;分别用B ,C 表示事件“第二次取出的都为红球”,“第二次取出两球为一个红球一个白球”.则下列结论正确的是()A.()11=6P B A B.()21=2P C A C.()13P B =D.()115P A C =12.某制造企业一种原材料的年需求量为16000千克(该原材料的需求是均匀的,且不存在季节性因素),每千克该原材料标准价为200元.该原材料的供应商规定:每批购买量不足1000千克的,按照标准价格计算;每批购买量1000千克及以上,2000千克以下的,价格优惠5%;每批购买量2000千克及以上的,价格优惠10%.已知该企业每次订货成本为600元,每千克该原材料年平均库存成本为采购单价的15%.该企业资金充足,该原材料不允许缺货,则下列结论正确的是()(采购总成本=采购价格成本Ap +订货成本AB Q +库存成本2CQ ,A 为原料年需求量,B 为平均每次订货成本,C 为单位原料年库存成本,Q 为订货批量即每批购买量,p 为采购单价)A.该原材料最低采购单价为180元/千克 B.该原材料最佳订货批量为800千克C.该原材料最佳订货批量为2000千克D.该企业采购总成本最低为2911800元三、填空题:本题共4小题,每小题5分,共20分.13.设向量a 的模为2,向量,22b ⎛⎫=- ⎪ ⎪⎝⎭,且2a b -= ,则a 与b的夹角等于______.14.已知函数()()0bf x ax ab x=+≠,使()f x 在(0)+∞,上为增函数的a 与b 组成的有序实数对为(),a b ,则(),a b 可以是______.(写出一对符合题意的即可)15.已知两个平行平面间的距离为2,这两个平面截球O 所得两个截面圆的半径分别为1O 的表面积等于______.16.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,若π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,()f x 在区间5π7π,1818⎛⎫⎪⎝⎭上有最大值点无最小值点,且5π7π1818f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,记满足条件的ω的取值集合为M ,则=M ______.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,sin b C =,1cos c B =.(1)求B ;(2)若b =,求ABC 的面积.18.某市从2017年到2021年新能源汽车保有量y (单位:千辆)与年份的散点图如下:记年份代码为()1,2,3,4,5x x =,2t x =,对数据处理后得:y521ii x=∑521ii t=∑51iii x y=∑51iii t y=∑35559797153115(1)根据散点图判断,模型①y a bx =+与模型②2y c dx =+哪一个更适宜作为y 关于x 的回归模型?(给出结论即可,不必说明理由)(2)根据(1)的判断结果,建立y 关于x 的回归方程,并预测2022年该市新能源汽车保有量(计算结果都精确到1).参考公式:回归方程 y abx =+ 中斜率和截距的最小二乘估计公式分别为:()()()1122211n niii i i i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑ , ay bx =- .19.设数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足111b a =,且131n n n b b b +=+.(1)证明:数列{}n a 是等比数列,数列1n b ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a ,{}n b 的通项公式;(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .20.如图,在四面体ABCD 中,ABD △是边长为2的等边三角形,=AB AC ,BC CD ⊥.(1)证明:平面ABD ⊥平面BCD ;(2)若二面角A BC D --的余弦值为55,求四面体ABCD 的体积.21.已知抛物线()2:20E x py p =>的焦点为F ,斜率为()0k k ≠的直线l 与E 相切于点A .(1)当=2k ,=5AF 时,求E 的方程;(2)若直线l '与l 平行,l '与E 交于B ,C 两点,且2BAC π∠=,设点F 到l '的距离为1d ,到l 的距离为2d ,试问:12d d 是否为定值?若是,求出定值;若不是,说明理由.22.已知函数()()32,,,R,0f x ax bx cx d a b c d a =+++∈≠是奇函数,曲线()=y f x 在点()()2,2f 处的切线方程为93160x y +-=.(1)求()f x 的零点;(2)若()f x 在区间()2,10m m-内有最大值,求m 的取值范围.数学(二)试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分【9题答案】【答案】BC【10题答案】【答案】ABD 【11题答案】【答案】AB 【12题答案】【答案】ACD三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】23π##120 【14题答案】【答案】()1,1-(答案不唯一)【15题答案】【答案】13π【16题答案】【答案】{}1,7,13四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)60B =︒(2)2【18题答案】【答案】(1)模型②2y c dx =+更适宜作为y 关于x 的回归方程(2) 223y x =+,预计2022年该市新能源汽车保有量约为110千辆【19题答案】【答案】(1)证明见解析,2nn a =,131n b n =-(2)()18342n n T n +=+-⋅【20题答案】【答案】(1)证明见解析(2)12【21题答案】【答案】(1)24x y=(2)12d d 是定值,定值为3【22题答案】【答案】(1)()f x 的零点有3个,分别是0(2)[)2,1-第9页/共9页。
专题03 复数-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版)

专题03 复数1.已知2(1)32i z i -=+,则z = A .312i --B .312i -+C .32i -+D .32i --【试题来源】2021年全国高考甲卷(文) 【答案】B【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解. 【解析】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选B .1.【2020年高考全国Ⅰ卷文数】若312i i z =++,则||=zA .0B .1C .2D .2【答案】C【解析】因为31+21+21z i i i i i =+=-=+,所以22112z =+=.故选C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题. 2.【2020年高考全国Ⅱ卷文数】(1–i )4= A .–4 B .4C .–4iD .4i【答案】A【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-. 故选A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.【2020年高考全国Ⅲ卷文数】若)(1i 1i z +=-,则z = A .1–iB .1+iC .–iD .i【答案】D【解析】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题. 4.【2020年新高考全国Ⅰ卷】2i12i-=+ A .1 B .−1 C .iD .−i【答案】D【解析】2(2)(12)512(12)(i i i ii i 12)i i 5----===-++- 故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 5.【2019年高考全国Ⅰ卷文数】设3i12iz -=+,则||z = A .2B .3C .2D .1【答案】C【分析】先由复数的除法运算(分母实数化)求得z ,再求||z 即可. 【解析】方法1:由题可得(3i)(12i)17i (12i)(12i)55z --==-+-,所以2217()()||255z =+-=,故选C .方法2:由题可得2222|3i |10||2|12i 3(1|5)12z +-+-====+,故选C .【名师点睛】本题主要考查复数的乘法、除法运算、复数模的计算,是基础题.本题也可以运用复数模的运算性质直接求解.6.【2019年高考全国Ⅱ卷文数】设)i i (2z =+,则z =A .12i +B .12i -+C .12i -D .12i --【答案】 D【分析】根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念写出z 即可. 【解析】由题可得2i(2i)2i i 12i z =+=+=-+,所以12i z =--,故选D .【名师点睛】本题主要考查复数的乘法运算及共轭复数,是容易题,注重对基础知识、基本计算能力的考查.其中,正确理解概念、准确计算是解答此类问题的关键,部分考生易出现理解性错误. 7.【2019年高考全国Ⅲ卷文数】若(1i)2i z +=,则z = A .1i -- B .1i -+ C .1i-D .1i +【答案】D【解析】由题可得()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D . 【名师点睛】本题考查复数的除法的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.复数问题每年必考,多以选择题的形式出现,而且是必拿分题,高考试题对该部分内容考查的主要角度有两种:①考查单纯的复数运算求解题;②考查复数的几何意义以及有关概念.熟练掌握复数的加、减、乘、除运算法则是关键:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:12i (i)(i)i (i)(i)z a b a b c d z c d c d c d ++-==++-22()i ac bd bc ad c d ++-+=2222i(i 0)ac bd bc adc d c d c d+-=++≠++. 注意:复数除法与作根式除法时的处理类似.在作根式除法时,分子、分母都乘以分母的“有理化因式”,从而使分母“有理化”;复数的除法是分子、分母都乘以分母的“实数化因式”(共轭复数),从而使分母“实数化”.虚数单位i 具有周期性,且最小正周期为4,有如下性质: (1)41424344ii,i 1,i i,i 1()n n n n n ++++==-=-=∈N ;(2)41424344ii i )i 0(n n n n n +++++++=∈N .1.已知复数1i z a =-,22+i z =(i 为虚数单位),若12z z 是纯虚数.则实数a = A .12-B .12 C .2-D .3【试题来源】湖南省长沙市第一中学2021-2022学年高三上学期月考(一) 【答案】A【分析】结合复数的乘法运算求出12z z ,进而结合纯虚数的概念即可求出结果.【解析】由已()()()()12i 2i 212i z z a a a =-+=++-是纯虚数,所以210a +=且20a -≠,可得12a =-,故选A .2.已知i 是虚数单位,若复数z 满足()()21i 1i z -=+,则z = A .1 B .2 C .2D .3【试题来源】湖北省黄石市有色一中2021届高三下学期5月模拟考试 【答案】B【分析】根据复数的乘除法运算求出复数z ,然后根据复数的模的公式即可得出答案. 【解析】因为()()21i 1i z -=+,所以()()()()21i 1i 1i 1ii 2i 1i 1z ++===-+--+,所以112z =+=.故选B .3.设i 为虚数单位,若复数()()i 2i x +-的实部与虚部相等,则实数x 的值为 A .3 B .13C .12D .1【试题来源】湖南省永州市第四中学2021届高三下学期高考冲刺(二) 【答案】B【分析】由复数乘法运算展开()()i 2i x +-,再由实部、虚部相等列方程求x 的值.【解析】由()()()i 2i 212i x x x +-=++-的实部与虚部相等, 所以212x x +=-,解得13x =.故选B4.若复数z 满足()1i 22i z -=-,则z = A .13 B .13 C .5D .5【试题来源】江苏省南京市第二十九中学2021-2022学年高三上学期8月第二次学情调研 【答案】D【分析】根据条件求出复数z ,进而可求得z . 【解析】由(1)i 22i z -=-得i i 22i z -=-,则2i12i iz -==--,所以()()22125z =-+-=.故选D .5.i 是虚数单位,复数z 满足:1i iz=-,则z =A .1i -B .1i +C .1i -+D .1i --【试题来源】河南省洛阳市孟津县第一高级中学2021届高三下学期4月(文)调研试题 【答案】A【分析】先求z ,再求z . 【解析】1i,1i izz =-∴=+,1z i ∴=-.故选A . 6.设复数z 满足()12i 5z +=,则z = A .5 B .5 C .3D .1【试题来源】云南省曲靖市2021届高三二模(文) 【答案】B【分析】由()12i 5z +=用复数的除法求出z ,再求z . 【解析】由()12i 5z +=,得()()()()512i 512i 12i 12i 12i 5z --===-+-,所以12z i =+,5z B .7.25i3i+-的虚部为 A .110B .1310C .1710D .1310-【试题来源】河北省唐山市第十一中学2021届高三下学期3月调研 【答案】C【分析】利用复数的除法化简25i3i+-,即可知虚部. 【解析】25i (25i)(3i)117i 3i (3i)(3i)10++++==--+,故虚部为1710.故选C 8.已知i 是虚数单位,若复数z 满足2i 1iz=+,则z =. A .2 B .2 C .22D .4【试题来源】广东省江门市蓬江区培英高中2021届高三5月份数学冲刺试题 【答案】C【分析】先求出z ,然后根据复数的模求解即可 【解析】2i 1iz=+, ()2i 1i 22i z =+=-+,则4422z =+=,故选C 9.若复数1i z =-,则2|2|z z -= A .0 B .2 C .4D .6【试题来源】山东省菏泽市2021届高三二模 【答案】B【分析】根据复数的乘方运算以及减法运算求出22z z -,然后利用模长公式即可求出结果. 【解析】由题意可得()221i 2i z =-=-,则()()2221i 21i 2i 22i 2z z -=---=--+=-,所以2222z z -=-=.故选B .10.设z C ∈,则“0z z +=”是“z 是纯虛数”的A .充分但非必覂条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件【试题来源】重庆市巴蜀中学2022届高三上学期适应性月考(一) 【答案】B【分析】先证明“0z z +="是“z 是纯虛数”的非充分条件;再证明“0z z +="是“z 是纯虛数”的必要条件.即得解.【解析】设()i ,z a b a b =+∈R ,则i z a b =-, 若0z z +=,则0,a z =不一定是纯虛数, 所以“0z z +="是“z 是纯虛数”的非充分条件;若z 是纯虛数,则()i 0,i z b b z b =≠=-,一定有0z z +=成立. 所以“0z z +="是“z 是纯虛数”的必要条件;所以“0z z +="是“z 是纯虛数”的必要非充分条件.故选B11.已知i 是虛数单位,z 为复数,2+1i=z (3+i),则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】重庆市巴蜀中学2022届高三上学期适应性月考(一) 【答案】D【分析】先求出复数,即得解. 【解析】2i 11i 3i 22z -==-+,复平面内z 对应的点为11,22⎛⎫- ⎪⎝⎭,故选D . 12.若复数i1iz -=+,则z = A .14B .12 C .22D .2【试题来源】重庆市第八中学2021届高三下学期高考适应性考试(一) 【答案】C【分析】利用复数的除法运算求出i 12z --=,结合复数的几何意义求出复数的模即可. 【解析】因为i(1i)i 1(1i)(1i)2z ----==+-,所以2||z =C13.若()1i 2i z +=,则z = A .1i - B .1i -- C .1i +D .1i -+【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(六)(文) 【答案】A【分析】先求出1i z =+,再由共轭复数的概念即可求解 【解析】()()()2i 1i 2i1i 1i 1i 1i z -===+++-, 所以1i z =-,故选A . 14.若复数z 满足1i31iz z -+=+,则||z = A .116B .18C .14D .12【试题来源】重庆市第一中学2021届高三下学期第二次月考 【答案】D【分析】令i z x y =+(,)x y R ∈,由题设易得42i i x y -=-求x 、y ,进而可求||z . 【解析】若i z x y =+(,)x y R ∈,则1i342i i 1iz z x y -+=-==-+, 所以0x =,12y =,即i 2z =, 所以1||2z =.故选D 15.i 是虚数单位,复数z 满足i 13i z ⋅=+,则||z = A .10 B .10 C .8D .22【试题来源】福建省莆田市2021届高三高中毕业班3月第二次教学质量检测 【答案】B【分析】根据复数的除法运算求出复数z ,然后利用复数模的公式求||z . 【解析】因为i 13i z ⋅=+,所以()13i i13i 3i i i iz ++===-⋅, 所以()22||3110z =+-=.故选B .16.在复平面内,平行四边形ABCD 的三个顶点,A ,B ,C 对应的复数分别为12i -+,3i -,12i +(i 为虚数单位),则点D 对应的复数为 A .35i -+ B .1i - C .13i +D .3i -+【试题来源】江西省景德镇一中2022届高三7月月考(理) 【答案】A【分析】先利用复数的几何意义写出各点的坐标,再利用平行四边形构造相等向量列方程组求解. 【解析】由题知,()1,2A -,()3,1B -,()1,2C ,设(),D x y . 则()4,3AB =-,()1,2DC x y =--. 因为ABCD 为平行四边形,所以AB DC =.由14,23x y -=⎧⎨-=-⎩,解得3,5x y =-⎧⎨=⎩, 所以点()3,5D -对应的复数为35i -+.故选A . 17.复数2i2i-+的共轭复数是 A .34i 55-- B .34i 55-+ C .34i 55-D .34i 55+【试题来源】四川省绵阳中学2022届高三上学期第一次质量检测 【答案】D【分析】利用复数的除法化简复数2i2i-+,结合共轭复数的定义可得出结果. 【解析】因为()()()22i 2i 34i 2i 2i 2i 55--==-+-+,因此,复数2i2i -+的共轭复数是34i 55+.故选D .18.已知复数i1iz =+,则它的共轭复数z = A .1i2+ B .1i2- C .1i +D .1i -【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(五)(文) 【答案】B【分析】利用复数的除法运算化简复数z ,再由共轭复数的定义即可求解.【解析】因为i i(1i)1i =1i (1i)(1i)2z -+==++-,所以1i 2z -=,故选B . 19.已知i 为虚数单位,复数1z 、2z 满足122z z ==,1248i2iz z +-=-,则12z z = A .4- B .4i - C .4iD .4【试题来源】重庆市第八中学2021届高三下学期高考适应性考试(二) 【答案】D【分析】设12i,i z a b z c d =+=+,根据题设有22224,0,4a b c d a c b d +=+=-=-=,进而求12z z 即可. 【解析】()()()()1248i 2i 20i 4i2i 2i 5z z ++-===-+,设12i,i z a b z c d =+=+,则有22224,0,4a b c d a c b d +=+=-=-=,解得2,2,0b d a c ==-==, 所以122i,2i z z ==-,则124z z =,故选D .20.已知方程210(,)ax bx a b ++=∈R 在复数范围内有一根为1i +,则复数z a bi =+在复平面上对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】重庆市南开中学2021届高三下学期第七次质量检测 【答案】D【分析】把1i +代入已知方程,结合复数的运算及复数相等条件求得a ,b ,再由复数的几何意义可得选项. 【解析】因为方程210(,)ax bx a b ++=∈R 在复数范围内有一根为1i +,所以()()21110i a b i ++++=, 整理得()2+10a b i b ++=,所以112a b ==-,,所以12z a bi i =+=-,所以复数z a bi =+在复平面上对应的点在第四象限,故选D . 21.已知复数1121i,1z z z =-⋅=,则复数2z 的虚部为 A .12 B .12-C .1D .1-【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(五)(理) 【答案】B【分析】根据条件可知211z z =,化简复数后求2z 的虚部.【解析】因为1121i,1z z z =+⋅=,所以211i 1i 1i (1i)(1i)2z --===++-,所以其虚部为12-.故选B . 22.已知复数()()2i 2i z m =+-为纯虚数,则m =A .1-B .1C .4-D .4【试题来源】重庆市第八中学2021届高三下学期适应性月考卷(七)【答案】C【分析】根据导数的乘法运算化简复数z ,再根据纯虚数的定义即可求解.【解析】()422i z m m =++-为纯虚数,则4m =-.故选C .23.若复数z 满足i i z z ⋅=-,则|i |z -=A .22B .2C .1D .22 【试题来源】湖南省新高考2021届高三下学期考前押题《最后一卷》【答案】A【分析】先根据复数的除法运算化简复数z ,再由模长公式计算即可求解.【解析】因为i i z z ⋅=-,所以()()()i 1i i 1i 1i 1i 1i 2z +-+===--+, 所以1i 11i i 222z ---==--, 故22112|i |222z ⎛⎫⎛⎫-=-+-= ⎪ ⎪⎝⎭⎝⎭,故选A . 24.设若1z 、2z 、3z 为复数,则下列命题中正确的是A .若23z z =,则23z z =±B .若1213z z z z =,则23z z =C .若23z z =,则1213z z z z =D .若2121z z z =,则21z z = 【试题来源】预测05 算法、复数、推理与证明-【临门一脚】2021年高考数学(理)三轮冲刺过关【答案】C【分析】取特殊值法可判断AD 错误,根据复数的运算及复数模的性质可判断BC .【解析】由复数模的概念可知,23z z =不能得到23z z =±,例如23,11i i z z =+=-,A 错误;由1213z z z z =可得123()0z z z -=,若10z =,则230z z -=不一定成立,即23z z =不一定成立,B 错误; 因为2121||||z z z z =,1313||||z z z z =,而23z z =,所以232||||||z z z ==,所以1213z z z z =,C 正确;取121,1z i z i =+=-,显然满足2121z z z =,但12z z ≠,D 错误.故选C25.已知复数z 的共轭复数是z ,若312i z z -=+,则z =A .22B .12C .52D .52 【试题来源】重庆市巴蜀中学2021届高三适应性(九)【答案】A【分析】设i,,z a b a b R =+∈,则i z a b =-,代入原式,利用复数相等求出,a b ,进而可得答案.【解析】设i,,z a b a b R =+∈,则i z a b =-,由312i z z -=+可得24i 12i a b -+=+,则12a =-,12b =, 所以2222z a b =+=,故选A . 26.复数()2i i +的虚部是A .2iB .i -C .2D .1-【试题来源】广东省七校联合体2021届高三下学期第三次联考(5月)【答案】C【分析】利用复数的乘法运算化简复数()2i i +,再根据复数虚部的定义求解即可.【解析】因为()2+i i 12i =-+,所以虚部为2.故选C .27.已知复数1z i =+,设复数22z w z =,则w 的虚部是 A .1- B .1C .iD .i -【试题来源】陕西省2021届高三下学期教学质量检测测评(六)(理)【答案】A【分析】根据复数的运算法则,求得1w i =--,结合复数的基本概念,即可求解.【解析】由题意,复数1z i =+, 根据复数的运算法则,可得2222(1)2(1)(1)1(1)2z i i i i w i z i i i i----=====--+-⋅, 所以复数w 的虚部是1-.故选A . 28.复数45i z =-(其中i 为虚数单位),则2i z +=A .7B .5C .7D .25【试题来源】内蒙古赤峰二中2021届高三三模(理)【答案】B【分析】由复数加法求得2i z +,然后由复数模的运算求解.【解析】因为45i z =-,所以i 23i 4z +=-,所以()222435i z +=+-=,故选B .29.已知i 为虚数单位,复数21i +的共轭复数为z ,则z 的虚部为 A .1-B .1C .i -D .i【试题来源】(理)-学科网2021年高三5月大联考考后强化卷(新课标Ⅰ卷)【答案】B【分析】先对21i+化简,求出复数z ,从而可求出其共轭复数z ,进而可求出z 的虚部 【解析】由题可得22(1i)1i 1i (1i)(1i)-==-++-,所以1i z =+,其虚部为1,故选B .30.设复数z 满足()1i i z m -=+()m R ∈,若z 为纯虚数,则实数m =A .1B .-1C .2D .-2【试题来源】江苏省跨地区职业学校单招2020届高三下学期一轮联考【答案】A【分析】将i 1i m z +=-利用复数的除法运算化简,再令实部等于0,虚部不等于0即可求解 【解析】由()1i i z m -=+可得()()()()()i 1i 11i i 11i 1i 1i 1i 222m m m m m m z ++-+++-+====+--+, 所以1010m m -=⎧⎨+≠⎩,可得1m =,故选A . 31.已知i 为虚数单位,若复数2i i ia z =-+ (a R ∈)为实数,则a = A .2-B .1-C .1D .2【试题来源】广东省揭阳市2021届高考数学模拟考精选题试题(一)【答案】D【分析】先对2i i ia z =-+化简,然后由虚部为零可求出a 的值 【解析】因为()222i i i 12i i 12i iz a a a -=+=--+=-+-为实数, 所以2a =;故选D32.法国数学家棣莫弗(1667-1754)发现的公式()cos isin cos isin nx x nx nx +=+推动了复数领域的研究.根据该公式,可得4ππcos isin 88⎛⎫+= ⎪⎝⎭. A .1B .iC .1-D .i -【试题来源】福建省2021届高三高考考前适应性练习卷(二)【答案】B【分析】根据已知条件将4ππcos sin 8i 8⎛⎫+ ⎪⎝⎭化成i ππcos sin 22+,根据复数的运算即可. 【解析】根据公式得4i i i ππππcos sin cos sin 8822⎛⎫+=+= ⎪⎝⎭,故选B . 33.已知复数z 满足121z i i =+-(其中i 为虚数单位),则z = A .3B .22C .2D .10【试题来源】全国Ⅰ卷2021届高三高考数学(文)押题试题(二)【答案】D【分析】把已知等式变形,再由复数代数形式的乘法运算化简求得z ,然后利用复数模的公式计算.【解析】因为()()1i 12i 3i z =-+=+, 所以22||=3110z +=.故选D . 34.若复数z 满足()23i 1i z ⋅-=-,复数z 的虚部是A .5i 13 B .513 C .113D .1i 13 【试题来源】全国Ⅰ卷2021届高三高考数学(文)押题试题(一)【答案】C【分析】利用复数代数形式的乘除运算化简可得.【解析】由()23i 1i z ⋅-=-,得()()()()1i 23i 1i 5i 51i 23i 23i 23i 131313z -+-+====+--+ 所以复数z 的虚部是113故选C 35.若复数1=-i z i ,则|z |= A .2B .1C .2D .22【试题来源】四川绵阳南山中学2021届高三高考适应性考试(理)【答案】D【分析】首先化简复数z ,再求复数的模.【解析】()()()1111111222i i i i z i i i i +-+====-+--+, 所以22112222z ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.故选D 36.若复数1=-i z i ,则z = A .14 B 2C .12D .2 【试题来源】四川绵阳南山中学2021届高三高考考适应性考试(文) 【答案】B 【分析】化简122i z =-+,再求||z 得解. 【解析】由题得(1)111(1)(1)222i i i i i z i i i +-+====-+--+, 所以22112()()222z =-+=.故选B 37.已知复数z 满足()()1i 2i i z -=+,则z =A .1B .2C .52D .102【试题来源】湖南省长沙市雅礼中学2021-2022学年高三上学期入学考试【答案】D【分析】()2i i 1iz +=-,利用复数的运算求出复数z ,从而求出z . 【解析】()()()()()2i i 12i 1i 3i 1i 1i 1i 2z +-++-+===--+, 所以223110222z ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.故选D . 38.已知复数z 满足z (1﹣i )=2+i 2021,则zi 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】全国2021届高三高考数学(文)演练试卷(一)【答案】B【分析】利用复数的乘法、除法运算即可求解.【解析】由z (1﹣i )=2+i 2021,则()()()()2020212213131111222i i i i i i z i i i i i +++⋅++=====+---+, 3122zi i =-+,所以zi 在复平面内对应的点为31,22⎛⎫- ⎪⎝⎭,点位于第二象限.故选B 39.若复数z 满足23i 13z z -=,则z = A .23i -B .23i +C .32i -D .32i +【试题来源】全国100所普通高等学校招生全国统一考试2021届高三 数学(理)冲刺卷试题【答案】A【分析】由题意得1323iz =-,根据复数代数形式的除法运算和共轭复数的概念即可求出答案. 【解析】因为23i 13z z -=,所以()()()1323i 1323i 23i 23i z +==--+()1323i 23i 13+==+, 所以23i z =-,故选A .40.已知复数12i z =-,21i z b =+(其中i 是虚数单位,b ∈R ),若12z z ⋅为实数,则b = A .2-B .12 C .1 D .2 【试题来源】贵州省凯里市第一中学2021届高三三模《黄金三卷》(文)【答案】B【分析】利用复数代数形式的乘法运算法则化简12z z ⋅,再根据复数为实数的充要条件即可得出.【解析】因为12i z =-,21i z b =+()()()2122i 1i 22i i i 221i z z b b b b b ⋅=-⋅+=+--=++-,因为12z z ⋅为实数,210b ∴-=,解得12b =.故选B.。
高三第二次月考数学文试题

2014届毕业班第二次月考数学文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名,准考证号填写清楚,并帖好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
第Ⅰ卷一、选择题:本大题共12小题.每小题5分。
共60分。
在每小题绘出的四个选项中。
只有一项是符合题目要求的。
1.已知全集U =R ,集台M ={x |2x>1},集合N ={x |2log x >1},则下列结论中成立的是A .M ∩N =MB .M ∪N =NC .M ∩(C UN )=φD .(CU M )∩N =φ2.设z =1-i (i 是虚数单位),则2z+z 等于 A .2-2i B .2+2i C .3-i D .3+i3.已知P (x 0,y 0)是直线L :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0A .过点P 且与L 垂直的直线B .过点P 且与L 平行的直线C .不过点P 且与L 垂直的直线D .不过点P 且与L 平行的直线 4.已知f (x )=214x +sin (2π+x ),()f x '为f (x )的导函数,则()f x '的图像是5.已知一个几何体的三视图如右图所示,则该几何体的表面积为 A .10π+96 B .9π+96 C .8π+96 D .8π+80 6.已知等差数列{n a }的前n 项的和为n S ,若65a a =911, 则119S S 等于 A .1 B .-1 C .2 D .127.执行右边的程序框图,若t ∈[-1,2],则S ∈A .[-1,1)B .[0,2]C .[0,1)D .[-1,2] 8.已知命题p :x ∃∈(-∞,0),3x <4x;命题q :x ∀∈(0,+∞),x >sinx ,则下列命题中真命题是 A .p ∧q B .p ∨(q ⌝) C .p ∧(p ⌝) D .(p ⌝)∧q9.已知等比数列{n a }的公比为q ,则“0<q <1”是“{n a }为递减数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知函数f (x )=sin (2x +θ(2x +θ) (x ∈R )满足()2014f x -=()12014f x ,且f (x )在[0,4π]上是减函数,则θ的一个可 能值是 A .3π B .23π C .43π D .53π11.已知F 1,F 2分别是双曲线2221x a b2y -=(a >0,b >0)的左、右焦点,P 为双曲线上的一点,若∠F 1PF 2=90°,且△F 1PF 2的三边长成等差数列,则双曲线的离心率是 A .2 B .3 C .4 D .512.已知f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (2+x )=-f (x ),且当x ∈[0,1]时,f (x )=-2x +1,若a 2[()]f x -bf (x )+3=0在[-1,5]上有5个根 x i (i =1,2,…5), 则x 1+x 2+…+x 5的值为A .7B .8C .10D .12第Ⅱ卷 非选择题(共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答。
2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。
四川省乐山市沫若中学2021-2022学年高二下学期第二次月考数学(文)试题

113)
C.
P
=
4(1
-
1 3
+
1 5
-
1 7
+
L
-
1 15
)
D.
P
=
4(1
-
1 3
+
1 5
-
1 7
+
L
+
1 17
)
5.我国古代典籍《周易》用“卦”推测自然和社会的变化,如图是一个八卦图,包含 乾、坤、震、巽、坎、离、艮、兑八卦、分别象征着天、地、雷、风、水、火、山、 泽八种自然现象.每一卦由三个爻组成,其中“▃”表示一个阳爻,“▃▃”表示一个 阴爻).若从含有两个或两个以上阴爻的卦中任取两卦,这两卦中恰好含有两个阳爻的 概率是( )
(1)求 a,b 的值;
(2)当 x Î[-1,1] 时,求 f (x) 的最大值. 18.近几年,在缺“芯”困局之下,国产替代的呼声愈发高涨,在国家的政策扶持下, 国产芯片厂商呈爆发式增长.为估计某地芯片企业的营业收入,随机选取了 10 家芯片 企业,统计了每家企业的研发投入(单位:亿)和营业收入(单位:亿),得到如下 数据: 样本号 i 1 2 3 4 5 6 7 8 9 10 研发投入 2 2 4 6 8 10 14 16 18 20
xi
营业收入 14 16 30 38 50 60 70 90 102 130 yi
10
10
10
10
10
å å å å å 并计算得 xi = 100 , yi = 600 , xi2 = 1400 , yi2 = 49200 , xi yi = 8264 .
i =1
i =1
i =1
四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析

四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知命题“,有成立”,则为A. ,有成立B. ,有成立C. ,有成立D. ,有成立参考答案:C略2. 设△ABC的内角A,B,C所对的边分别为a,b,c,且C=,a+b=12,则△ABC面积的最大值为()A.8 B.9 C.16 D.21参考答案:B【考点】三角形中的几何计算.【分析】根据基本不等式求得ab的范围,进而利用三角形面积公式求得.【解答】解:∵ab≤()2=36,当且仅当a=b=6时,等号成立,∴S△ABC=absinC≤×36×=9,故选:B.3. 若函数y=log2(x2-2x-3)的定义域、值域分别是M、N,则()A.[-1, 3] B.(-1, 3) C.(0, 3] D.[3, +∞)参考答案:A略4. 下列函数中,在其定义域内既是偶函数又在上单调递增的函数是()A. B. C. D.参考答案:C5. 的值是A. B.C. D.参考答案:C6. 若复数z=2i+,其中i是虚数单位,则复数z的模为( )A.B.C.D.2参考答案:C【考点】复数求模.【专题】数系的扩充和复数.【分析】化简复数为a+bi的形式,然后求解复数的模.【解答】解:复数z=2i+=2i+=2i+1﹣i=1+i.|z|=.故选:C.【点评】本题考查复数的乘除运算,复数的模的求法,考查计算能力.7. 不等式的解集是()A. B.C.(1,2) D.参考答案:答案:B8. 已知函数有且仅有两个不同的零点,,则( ) A .当时,, B .当时,,C .当时,,D .当时,,参考答案:B略9. 刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也.”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的,如图是一个阳马的三视图,则其表面积为( )A .2B .2+C .3+D .3+参考答案:B【考点】由三视图求面积、体积.【分析】根据几何体的三视图知该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,结合图形求出它的表面积. 【解答】解:根据几何体的三视图知,该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,如图所示; 根据图中数据,计算其表面积为 S=S 正方形ABCD +S △PAB +S △PBC +S △PCD +S △PAD =12+×1×1+×1×+×1×+×1×1=2+.故选:B .10. 已知命题p :?x∈R,x 2﹣3x+2=0,则?p 为( ) A .?x ?R ,x 2﹣3x+2=0 B .?x∈R,x 2﹣3x+2≠0 C .?x∈R,x 2﹣3x+2=0 D .?x∈R,x 2﹣3x+2≠0参考答案:D【考点】四种命题;命题的否定.【分析】根据命题p :“?x∈R,x 2﹣3x+2=0”是特称命题,其否定为全称命题,将“存在”改为“任意的”,“=“改为“≠”即可得答案.【解答】解:∵命题p :“?x∈R,x 2﹣3x+2=0”是特称命题 ∴?p:?x∈R,x 2﹣3x+2≠0故选D .二、 填空题:本大题共7小题,每小题4分,共28分 11. 已知,且的夹角为锐角,则的取值范围是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高三第二次月考(数学文)2011年10月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题上.3.填空题的答案和解答题的解答过程直接写在答题卡Ⅱ上.4.考试结束,监考人将本试题和答题卡一并收回.第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合,则()A.{1} B.{0} C.{0,1} D.{– 1,0,1}2.,则()A.b > a > c B.a > b > c C.c > a > b D.b > c > a3.若曲线的一条切线l与直线垂直,则l的方程为()A.B.C.D.4.函数是()A.最小正周期是2的奇函数B.最小正周期是2的偶函数C.最小正周期是的奇函数D.最小正周期是的偶函数5.设等差数列{a n}的前n项和为S n,若,则S9等于()A.18 B.36 C.45 D.60实用文档6.已知向量1(11cos)(1cos)//2a b a bθθ=-=+,,,,且,则锐角等于()A.30°B.45°C.60°D.75°7.已知函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是()A.B.C.D.8.若,则()A.B.C.D.9.已知a > 0,b > 0,a、b的等差中项是,且,则x + y的最小值是()A.6 B.5 C.4 D.310.已知函数(b、c、d为常数),当时,只有一个实根,当时,有3个相异实根,现给出下列4个命题:①函数有2个极值点;②函数有3个极值点;③有一个相同的实根;④有一个相同的实根。
其中正确命题的个数是()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每题5分,共25分.各题答案必须填写在答题卡II上(只填结果,不要过程)11.______________.12.不等式的解集是________________.13.在等比数列{a n}中,,则______________.14.,则______________.15.函数是定义在R上的奇函数,且满足对一切都成立,又当时,,则下列四个命题:①函数是以4为周期的周期函数②当时,③函数的图象关于x = 1对称④函数的图象关于点(2,0)对称其中正确命题序号是_______________.三、解答题:本题共6小题,共75分.各题解答必须答在答题卡II上(必须写出必要的文字实用文档说明、演算步骤或推理过程).16.(本小题满分13分)求的值.17.(本小题满分13分)已知三点A(3,0),B(0,3),C,.(1)若,求角;(2)若,求的值.18.(本小题满分12分)设函数,已知是奇函数.(1)求b、c的值;(2)求的单调区间与极值.19.(本小题满分13分)已知,函数.(1)求函数的最小正周期;(2)求函数的单调减区间;(3)当时,求函数的值域.20.(本小题满分12分)设a > 1,函数.(1)求的反函数;(2)若在[0,1]上的最大值与最小值互为相反数,求a的值;(3)若的图象不经过第二象限,求a的取值范围.21.(本小题满分12分)实用文档已知函数,数列,满足条件:.(1)求证:数列为等比数列;(2)令,T n是数列的前n项和,求使成立的最小的n值.实用文档实用文档西南大学附属中学高xx 级第二次月考数学试题参考答案(文)一、选择题:本大题共10小题,每题5分,共50分.1.A 2.B 3.A 4.D 5.C 6.B 7.D 8.C 9.B 10.C二、填空题:本大题共5小题,每题5分,共25分.11. 12.– 13.240 14. 15.①②③④三、解答题:本题共6小题,共75分.16.解:原式 ································································································································· 6分 ································································································································· 9分 ······························································································································· 11分 ······························································································································· 13分17.解:(1) ∵ (cos 3sin )(cos sin 3)AC BC αααα=-=-,,, ················································· 2分由得 ··························································································································· 4分 整理得∴ ······························································································································ 6分 ∵ ∴ ············································································································ 7分(2) ∵∴ ······························································································································· 8分 即 ······························································································································· 9分 ∴∴ ··························································································································· 10分∴ 22sin sin 22sin (sin cos )52sin cos sin cos 1tan 9cos ααααααααααα++===-++ ························· 13分 18.解:(1) ∵ ································································································································1分∴ 32()()'()(3)(2)g x f x f x x b x c b x c =-=+-+-- ··············································3分 ∵ 是奇函数 ∴ 恒成立即 3232(3)(2)(3)(2)x b x c b x c x b x c b x c -+----=-----+∴ ∴ ··················································································································7分(2) ∵∴由由∴ 的递增区间为 ······································································································11分 的递减区间为·····························································································································13分19.解:22sin cos 2cos sin 4cos x x x x x x =+++ ·················································2分····································································································································5分 ····································································································································6分实用文档 ····································································································································7分(1) 的最小正周期 ··············································································································8分(2) 由得∴ 的单调减区间为 ································································································10分(3) ∵∴∴ ∴ 即的值域为 ·····················································12分20.解:(1) 由∴∴ ···························································································································· 4分(2) ∵ a > 1 ∴ 在[0,1]上递增∴ ,∴ 即∴ ···························································································································· 8分(3) 在y 轴上的截距为要使的图象不过第二象限,只需∴∴因此,a 的取值范围为 ·························································································· 12分21.解:(1) 证明:由题意得,∴ ·················································································································· 3分又 ∵∴ ·················································································································· 4分故数列{b n + 1}是以1为首项,2为公比的等比数列 ································· 5分(2) 由 (1) 可知,,∴ ·································································································· 7分故1112211(21)(21)2121n n n n n n n n n C a a +++===----- ············································ 9分 ∴ 11111111(1)()()1337212121n n n ++=-+-++-=---- ··························· 10分 由,得 ∴ 满足条件的n 的最小值为10 ········································································· 12分。