深水基础施工

合集下载

桥梁深水基础施工方案

桥梁深水基础施工方案

问题与改进建议
01
环境保护不足
在施工过程中,存在对周围环境 产生一定的影响,需要加强环保 措施。
02
安全管理待加强
03
施工监测需完善
部分施工环节存在一定的安全隐 患,需要加强安全管理制度和培 训。
对施工过程中的监测工作有待加 强,以确保及时发现和解决潜在 问题。
项目未来发展前景
01
技术创新推动
02
安全设施设置
在施工现场设置安全设施,如安全网、安全护栏、警示标识等,确保施工安全。
安全检查与监督
定期进行安全检查和监督,及时发现和处理安全隐患,确保施工过程的安全。
06
环境保护与生态修复
水体污染控制
施工废水处理
施工废水应进行集中处理, 去除悬浮物、油和其他有害 物质,避免对水体产生污染

污水排放控制
人力资源提出较高要求。
02
工程水文地质勘察
水文情况分析
河流流量
分析施工区域的水流速度、流量及其变化规律,以判断对施工的 影响。
水位及水位变化
了解施工区域的水位高度和水位变化情况,以确定是否需要采取 防洪措施。
洪水期与枯水期
分析施工区域的洪水期和枯水期,以便合理安排施工时间。
地质勘察
地形地貌
01
基础结构施工
1 2
围堰施工
根据工程需要,选择合适的围堰类型和材料,进 行围堰施工。
沉箱施工
根据桥梁结构和工程环境,进行沉箱设计和施工 。
3
灌注桩施工
采用旋挖钻、冲击钻等施工方法,进行灌注桩施 工。
锚定系统施工
锚定桩施工
根据桥梁结构和工程环境,进行锚定桩设计和 施工。
锚定梁施工

桥梁深水基础施工技术(一)2024

桥梁深水基础施工技术(一)2024

桥梁深水基础施工技术(一)引言:桥梁深水基础施工技术是桥梁设计与施工中一项关键的技术,尤其在深水区域的桥梁建设中扮演着重要角色。

本文将详细介绍桥梁深水基础施工技术的相关内容,重点讨论施工过程的安全性、施工方法、材料选择等方面的要点。

正文:一、施工过程的安全性1. 桥梁深水基础施工前的场地勘察工作2. 施工前的安全预案制定与施工区域的隔离3. 安全设备与个人防护的配备4. 深水基础施工中的水下作业安全管理5. 施工现场的安全监控体系建设二、施工方法的选择1. 常用的深水基础施工方法2. 施工方法的选取原则及其适用范围3. 不同深水基础施工方法的优缺点对比4. 施工方法的调整与改良5. 施工过程中的质量控制与检测三、材料选择与使用1. 深水基础施工中常用的材料类型2. 材料选择时的考虑因素与技术要求3. 材料的品质保证体系构建4. 材料的储存与保养要点5. 材料的运输与施工现场的配送管理四、现场施工管理与协调1. 深水基础施工的人力资源管理2. 施工过程中的施工周期控制3. 各个施工单元的协调与配合4. 施工中的技术难题解决5. 施工现场的环境保护措施与管理五、桥梁深水基础施工的经验总结1. 深水基础施工中常见问题与解决方案总结2. 桥梁深水基础施工的经验教训与启示3. 深水基础施工技术的发展趋势与展望4. 推广与应用桥梁深水基础施工技术的思考5. 结语总结:本文针对桥梁深水基础施工技术进行了详细的阐述,重点关注了施工过程中的安全性、施工方法、材料选择等方面的要点。

通过对深水基础施工的安全管理、施工方法的选取、材料的选择与使用、施工现场的管理与协调等方面的探讨与总结,希望能为桥梁深水基础施工技术的提升与推广提供参考。

深水基础施工的技术挑战与解决方案

深水基础施工的技术挑战与解决方案

深水基础施工的技术挑战与解决方案在现代桥梁、码头等工程建设中,深水基础施工是一个至关重要的环节。

由于施工环境的复杂性和不确定性,深水基础施工面临着诸多技术挑战。

然而,随着工程技术的不断进步,一系列创新的解决方案也应运而生。

深水基础施工所面临的首要技术挑战便是水压问题。

随着水深的增加,水压会急剧上升,这对基础结构的承载能力和防水性能提出了极高的要求。

巨大的水压可能导致基础结构变形、开裂,甚至破坏,从而影响整个工程的稳定性和安全性。

其次,复杂的地质条件也是一大难题。

在深水区域,地质情况往往难以准确探测和预测,可能存在软土、岩石、流沙等多种复杂的地质层。

这不仅增加了基础施工的难度,还可能导致施工过程中的意外情况,如塌方、钻孔偏斜等。

水流和波浪的影响同样不可忽视。

湍急的水流和强大的波浪会对施工设备和结构产生巨大的冲击力,影响施工的精度和进度。

此外,水流还可能带来泥沙淤积,干扰施工操作。

在深水基础施工中,水下作业的难度极大。

由于光线不足、通讯不畅等因素,水下施工的操作精度和效率都受到很大限制,而且施工人员的安全也面临威胁。

针对上述技术挑战,工程技术人员经过不断探索和实践,提出了一系列有效的解决方案。

在应对水压问题上,采用高强度、高性能的材料是关键。

例如,使用新型的混凝土配方,提高混凝土的抗压强度和抗渗性能,以增强基础结构的承载能力和防水效果。

同时,优化基础结构的设计,采用合理的形状和尺寸,减小水压对结构的不利影响。

为了应对复杂的地质条件,先进的地质探测技术必不可少。

通过使用高精度的地质雷达、声波探测仪等设备,尽可能准确地了解地质情况,为施工方案的制定提供可靠依据。

在施工过程中,根据实际地质情况灵活调整施工方法,如采用合适的钻孔工艺、地基处理技术等。

针对水流和波浪的影响,采取有效的防护措施至关重要。

例如,设置防波堤、导流装置等,减小水流和波浪对施工区域的冲击。

此外,合理安排施工时间,选择水流和波浪相对较小的时段进行关键作业,也能降低其对施工的不利影响。

深水基础施工技术

深水基础施工技术

深水基础施工技术深水基础施工技术一、引言深水基础施工技术是用于在深水环境下建设稳定结构的一种工程技术。

随着海洋工程的发展和对深海资源的开发利用不断增加,深水基础施工技术的重要性也日益凸显。

本文将详细介绍深水基础施工技术的各个方面。

二、水下地质调查在进行深水基础施工之前,需要进行水下地质调查,以了解施工区域的地质特征和潜在的风险。

水下地质调查内容包括海底地貌、海底底质、水文条件等方面的调查。

1. 海底地貌调查:通过测绘方法获取海底地貌的高程图和分布图,确定施工区域的地貌特征,以便后续的基础设计和构造选择。

2. 海底底质调查:使用水下取样设备获取海底底质样品,并进行实验室分析,确定各个层次的土壤特性,包括密度、含水率、剪切强度等参数,为后续基础设计提供参考。

3. 水文条件调查:通过水文测量仪器获取水深、水流速度、水质等信息,评估对施工的影响,针对性地制定相应的施工方案,确保施工安全性。

三、深水基础类型深水基础施工技术主要包括以下几类基础类型:1. 钢筒沉井基础:通过在海底打桩并灌注混凝土,形成一个稳定的钢筒基础,适用于深水区域的建筑物和设施。

2. 浮式基础:通过在水下安装浮筒,并通过浮力和重力使其稳定在海底,适用于浮动设备的固定。

3. 锚固基础:通过使用锚链、锚桩或吊锚器等固定装置将建筑物或设施固定在海底,适用于需要抵抗水流和风浪力的环境。

4. 桩基础:通过在海底打桩并灌注混凝土或使用钢管桩来支撑建筑物或设施,适用于需要更大承载力的深水区域。

四、深水基础施工工艺深水基础施工的工艺主要包括基础设计、基础制造、基础安装和基础监测等。

1. 基础设计:根据水下地质调查的结果和工程要求,进行深水基础的设计,包括结构设计、材料选择和施工工艺等方面。

2. 基础制造:根据基础设计图纸和施工方案,进行基础的制造,包括钢筒制造、混凝土浇筑、桩基施工等工艺。

3. 基础安装:将制造好的基础组件运输到施工现场,并进行安装,包括吊装、沉井、水下焊接等工艺。

深水基础施工技术

深水基础施工技术

❖ 三、桥梁深水基础施工的关键技术
❖ 随着我国大型桥梁建设的跨径增长,深水基础的施工技术已成为大型桥 梁建设的关键技术。深水基础施工包括桩基础和承台的施工,分析深水 基础的施工,其关键技术包括水上施工运输方式、水上施工平台的结构 形式、水上钻孔桩的施工、围堰的施工以及封底及承台大体积混凝土的 施工等方面。
深水基础施工技术
铁道建筑研究设计院
❖ 一、前言 ❖ 二、国内深水桥梁发展概况 ❖ 三、桥梁深水基础施工的关键技术 ❖ (一)水上施工运输方式 ❖ 1、施工栈桥运输方式 ❖ 2、船运方式 ❖ 3、综合运输方式 ❖ 4、水上施工运输方式总结 ❖ (二)钻孔平台 ❖ 1、固定工作平台 ❖ 2、浮动工作平台 ❖ 3、钻孔平台总结 ❖ (三)钻孔桩施工 ❖ 1、钻机选型 ❖ 2、护筒 ❖ 3、泥浆的配制 ❖ 4、成孔工艺 ❖ 5、灌注工艺
❖ 2、船运方式
❖ 在深水基础施工中,船运方案主要采用大型水上设备,如浮吊、混凝土 拌和船、运输船、方驳等,使水上施工更加机动灵活,此方式需要的水 上设备昂贵,需要一套技术完整和设备齐全的专业化施工队伍。
❖ 3、综合运输方式
❖ 深水基础工程中,在通常情况下,不仅有深水区基础还有浅水区基础, 在施工中,单独采用一种水上施工运输方式难以满足施工要求。一般情 况下,在浅水区采用施工栈桥运输方式,在深水区采用船运方案,采用 两种运输方式的相互配合是深水基础桥梁建设的最佳方案。但要根据设 备的配备情况酌情处理。
钻孔平台。 ❖ 在受潮水及台风影响的深水基础施工中,河床的覆盖层较厚的情况下,
在水中墩、台位置处,用锤击或振动法沉入若干根露出水面的木桩、钢 筋混凝土桩或型钢、钢管桩等作为支架桩。将各桩连接起来,并在桩顶 设置纵、横梁,铺上木板或薄钢板,在水面上造成一个工作平台。工作 平台的高度应高出施工最高水位50cm以上。工作平台的平面尺寸根据 桥墩的桩孔数量和排列进行规划按施工需要确定。支架桩的入土深度应 根据土层的支承能力和对钻孔操作时的稳定要求决定,一般不小于3m。 ❖ 按组成平台的构造可分为型钢平台、桁架平台和型钢与桁架组合平台。 常用的桁架有万能杆件、贝雷梁或六四式军用梁,根据钻机设备大小和 已有设备情况选用。桁架与型钢组合形式以桁架做纵梁,型钢做横梁, 应用较广。 ❖ 按流水方向、钻机布置可分为:横置形式,其钻机布置方向与水流方向 垂直;直置形式,其钻机布置方向与水流方向平行。钻机直置形式防船 碰撞的能力和平台稳定性较好,一般采用平台上钻机直置形式为宜。 ❖ 钢管桩直径一般为60~120cm,常用6~10mm厚的钢板卷制,管的最 大长度可达30m,钢管桩一般打入河床深度8~15m。如承载力不够, 一般用增加根数来满足。(钢管桩支架工作平台结构图示见附图二) ❖ 工艺流程: ❖ 测量定位→插打支架桩→安装支架桩的联接系→安装钢护筒导向架→安 装支架上钻机工作平台→插打钢护筒→安装钻机及配套设施→钻孔。

深水基础施工技术(二)

深水基础施工技术(二)

深水基础施工技术(二)引言概述:深水基础施工技术在工程建设中起着至关重要的作用。

在前一篇文章中,我们已经介绍了深水基础施工技术的一些基本概念和方法。

而在本文中,我们将进一步深入探讨深水基础施工技术的相关内容,包括施工前的调查与设计、施工中的工艺技术、监测与控制、施工中的安全问题以及材料的选择与使用等五个方面。

正文:1. 施工前的调查与设计1.1 通过岩土勘探获得深水地基的地质、地貌和水文信息1.2 基于地质信息进行深水基础的设计及计算1.3 进行深水基础施工前的模型试验与仿真分析1.4 针对特殊情况制定应急方案1.5 完善施工方案和施工图纸2. 施工中的工艺技术2.1 利用水下机械设备进行基础的沉降、浇筑与固结2.2 建立合理的施工工序与作业流程2.3 采用现代化监控与测量技术进行施工过程中的实时监测与数据获取2.4 进行船舶与浮动平台的沉降控制与调整2.5 采取有效的施工质量控制措施,确保施工质量3. 监测与控制3.1 在施工过程中对基础的沉降、倾倒、变形等进行监测3.2 采用水下无人机等新兴技术进行基础施工的实时监控3.3 制定合理的安全监测方案,及时发现并解决安全隐患3.4 建立完善的施工管理与控制体系3.5 结合人工智能技术进行施工过程的数据分析与预测4. 施工中的安全问题4.1 加强施工过程中的安全教育与培训4.2 配备必要的个人防护装备4.3 建立健全的施工安全管理制度4.4 加强施工现场的动态管理与安全监督4.5 强化应急预案及危险源管理5. 材料的选择与使用5.1 根据地质条件和施工需求选择合适的材料5.2 确保所选材料的质量和可靠性5.3 采购符合规范要求的材料5.4 制定材料使用方案,确保施工过程中的材料使用符合设计要求5.5 进行材料的试验与检测,确保施工安全和质量总结:深水基础施工技术作为工程建设中的重要内容,必须在施工前的调查与设计、施工中的工艺技术、监测与控制、施工中的安全问题以及材料的选择与使用等五个方面进行全面考虑与实施。

深水基础施工

深水基础施工

水中基础施工工艺水中基础有三种常用的施工方法,即:筑岛围堰、钢板桩围堰以及双壁钢围堰。

下面逐一介绍:一、筑岛围堰一般来说,水深不大于2米,流速小于0.3m/s 处的水中基础,适用土石筑岛围堰;水深不大于3米,流速小于1.5m/s 处的水中基础,适用草袋筑岛围堰。

①土体围堰:水深较浅、流速比较缓慢,围堰底为不透水土层可用土堆筑成梯形截面的土堤,其迎水面的边坡不宜陡于1:2(竖横比,下同),基坑侧边坡不宜陡于1:1.5。

为防止迎水面边坡受冲刷,常用片石、草皮或草袋填土围护。

②草袋围堰:围堰堰体采用草袋、麻袋或编织袋装以松散的粘质土,装土量为袋容量的1/2-2/3,袋口用麻袋线或细铁丝缝合,堆码土袋时,上下左右互相错缝,并尽可能堆码整齐。

若水流较大时可采用有粘土心墙的围堰,流速较大时,外圈土袋可装小卵石或粗砂,以防被水冲走,必要时抛片石防护,或者外圈改用竹篓或荆条筐内装砂石。

在内外圈土袋堆码至一定高度或出水面后,即可填筑粘土心墙,粘土心墙的填筑采取顺坡填筑,不得直接倾倒在水中。

为防止渗水,围堰底部采用砼封底。

如下图:编织袋粘土芯墙围堰横断图 二、钢板桩围堰水深4m 以上、流速较大且地质情况较好(如砂层、碎石土、风化岩、熟性土等地层)的水中基础适用钢板桩围堰。

钢板桩可以打入土中或连到物件上,组成承载及防水结构。

钢板桩是带有锁口的一种型钢,其截面有直板形、U 形、槽形及Z 形等,有各种大小尺寸及联锁形式。

其优点为:强度高,容易打入坚硬土层;围堰钻孔桩H 1:0.5水位 1.5m 0.8m 1:0.51:0.5编织袋围堰封底砼(50cm厚)粘土芯墙1:0.50.8m 0.8m 0.8m 0.8m 0.8m1.5m 承台内有纵横向支撑,必要时加斜支撑成为一个围笼。

能按需要组成各种外形的围堰,防水性能好,并可多次重复使用。

如下图:直线型钢板桩其高度底,接近于直线,所以对于开挖一些沟渠,特别是在两个建筑物中间空间不大,而又必须开挖的时候,比较适用,第一,他可以形成一道稳固的钢板桩墙,从而保证向下顺利开挖,而不受两侧踏方,地下水的影响,另外,还有助于稳定地基,从而保障的两侧建筑物的稳定U型钢板桩又叫拉尔森式钢板桩,规格型号丰富,可根据工程实际情况,选取最经济、合理的截面,实现工程设计上的最优化,比同性能热轧钢板桩节省材料10-15%,极大的降低了施工成本,比较常用。

深水基础施工技术

深水基础施工技术

深水基础施工技术随着经济的发展和科技的进步,水深海洋工程的建设逐渐向深海领域发展。

海洋深处,水流湍急,海底地形不规则,地质条件复杂,海洋环境的恶劣和船舶的限制,都给海洋工程的建设带来了极大的困难。

深水基础施工技术是现代海洋工程建设的重要组成部分。

在深水海洋工程建设中,要保证基础的牢固、安全和稳定,深水基础施工技术是非常关键的,本文将从以下几个方面对深水基础施工技术进行介绍。

一、深水基础施工技术的概述深水基础施工技术是解决深水海洋工程基础技术问题的一种综合技术。

深水基础施工技术针对深水海洋工程建设过程中海水深度超过40米的基础问题,采用特殊的传统技术和新材料技术。

深水基础施工技术的施工过程主要包括试验研究、设计方案、构件制作、堆载试验和安装。

二、深水基础施工技术常用的技术和方法1. 螺旋钻孔法螺旋钻孔法也称为桩孔重注法,是目前广泛使用的一种深水基础处理方法,其优点是施工简单、速度较快、施工土方较少和孔侧土体受到的干扰较小。

螺旋钻孔法的技术原理是把钢管螺旋推进到海底,通过旋转作用挖掘土壤,并把混凝土灌注到桩孔内,最后在桩孔顶部钻一个孔,用混凝土注入孔内固化成混凝土桩。

2. 胶结桩胶结桩是一种靠地壳胶结材料施工成的桩。

在深海矿山工程、大型海上工程的基础施工中,胶结桩已广泛采用。

胶结桩的施工过程如下:首先需要将基础部分挖掉,然后涂上堆距,再将天然高砂堆滚压整平,相邻的高砂堆之间间隔不少于0.8m,再采取腻子喷涂和成菜腻散、成硬的麻石高力绝缘防护材料,最后在上面涂上0.1m厚的水泥浆,并施工成为圆形的胶结桩。

3. 钻桩法钻桩法是一种通过回转钻孔机和钻孔桶将土样挖掘或钻成钻孔,并经过重新加固加密成桩而形成的一种深度基础施工技术。

其特点是施工技术稳定,对深水堆载和地基标高识别能力较高,施工速度较快。

但其缺点是施工设备较为复杂,成本较高。

三、未来深水基础施工技术的发展趋势当前,不断推进的深水走向和海底智能油田等能源领域的发展,为深水基础施工技术的发展提供了多方面的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深水基础施工
深水基础采用双壁钢套箱围堰。

施工程序为:拼组定位船、导向船、拼装船→拼钢围堰、定位船就位→围堰浮运就位→灌水下沉→安装钢护筒→灌注封底砼→搭设钻机平台→钻孔灌桩→抽水、施工系梁→墩身。

处于浅水区的墩台采用筑岛法施工。

⑴定位船
采用400t深舱铁驳船改制而成。

在船头设置转向卸扣和滑车组,在船的后舱用角钢做骨架,设工作面,其上布置传力杆和4台5t卷扬机。

在船尾设转向卸扣和滑轮,8根主锚钢束通过船头转向卸扣,滑车组依次排列进入传力架,与定位船相连,并由定位船上卷扬机收揽。

使各锚共同受力,两只导向船上各一组钢绳,通过定位船船尾转向卸扣及滑车与传力杆相连,以控制导向船移动就位。

⑵导向船
采用两只100t深舱驳船,在船底用工字钢加固,以加强刚度。

船宽6m,高3m,长24m,两只导向船间距8m。

导向船头部设双轮滑车,用直径30mm钢绳穿二线与定位船尾部传力架相连,船尾设转向卸扣,尾锚滑车,船体两侧设边锚滑车,分别与各锚相连。

导向船上设2t卷扬机6台,做定位收锚之用。

船上加固设施完成后,即在两只导向船之间安装横系梁,横系梁由万能杆件组装,梁高2m,宽2m,长18m,采用人工平衡法拼装,待横梁连接完成后,拆除两端单横梁,在横系梁上用型钢设置纵梁,其端部设主吊点。

其布置图见下页。

⑶钢围堰拼装船
钢围堰拼装船采用两只100t驳船,两船间距4m,两船头尾间分别用25#工字钢组成一框架系梁将船体连成整体。

船上按1m间距布置20#工字钢横梁,横梁上铺5cm木板构成工作平台,以便钢围堰放样。

如果两只拼装船吃水深度不一,
需用片石压重调平后进行施工。

⑷锚碇
①锚碇布置
根据以往施工经历结合本桥的具体情况,定位船主锚采用4个30t钢筋砼锚碇,边锚采用2个15t钢筋砼锚碇,尾锚采用2个15t钢筋砼锚碇。

施工时根据河床地质情况及流速,再进行详细计算确定。

围堰定位锚采用2个20t钢筋砼锚碇,锚链采用φ32,长度30m,锚绳采用φ30钢丝绳。

锚碇布置详见下页图。

②抛锚
锚碇采用自制吊架抛设。

③定位
当所有钢筋砼锚抛锚完成后,逐个收主锚,尾锚与定位船上传力架相连,用定位船上卷扬机收揽,使每个锚受力均匀,同时将导向船就位。

⑸钢围堰制作及安装
①制作
泃河大桥4#、5#、6#、7#墩采用双壁钢套箱围堰,围堰平面尺寸为27×5m,内孔净孔尺寸为25×3m,中间设横向连接,壁厚1.0m,下部1.5m高刃脚,面板采用8mm钢板、加劲肋及内外壁连接采用∠75×75×6角钢,钢围堰块与块之间设隔舱。

结构图见下页。

根据泃河大桥具体情况,钢围堰制造按分块考虑,其中4#、5#、6#墩10m,7#墩8m,围堰在工厂内预制,通过汽车运至工地在工地组装。

②拼装
围堰拼装在拼装船上进行,用设于拼装船上的提升扒杆,提吊块件,逐块拼装组焊,先用螺栓连接,合拢后再全面施焊。

⑹钢围堰浮运就位
钢围堰组拼完后,经检验合格后,切割钢围堰块间连接螺栓及临时焊架,作油浸试验,然后利用定位船上2根φ20钢丝绳与导向船连接,用卷扬机调整各缆,使钢围堰就位。

⑺钢围堰就位落床
钢围堰就位后,用导向船上的主、副吊点将钢围堰起吊,退出拼装船,将钢围堰入水,并在长刃角灌水,使钢围堰保持平衡,然后定位落床。

⑻钢围堰吸泥下沉
吸泥采用φ250空气吸泥机2套,配备20m3/min空压机3台。

吸泥在堰内对称进行,为加快速度可在吸泥筒和围堰壁上增设高压射水嘴,利用高压射水将河床表层冲松,直至围堰下沉至预定标高。

⑼护筒埋设
围堰下沉至预定标高后进行全面测量检查,然后安放固定架,再进行钢护筒安放并固定,钢护筒进入河床,然后回填一定厚度砼将其封死。

⑽钻孔桩施工
根据泃河大桥地质情况,水中墩桩基施工选用MT150型套管钻机。

①水中钻孔施工平台
水中钻孔施工利用型钢在钢围堰顶上搭设而成。

②钻孔
钻孔采用抓斗钻孔法。

钻孔时先将套管插进套管作业装置摆动夹环里,用夹环夹住套管,将套管加入土体中,在套管的维护下进行能抓土作业,随抓土作业,逐节下套管,直至设计桩底标高。

③灌注水下砼
钻孔完成后,先进行清孔和检孔,检查合格后,下钢筋笼并灌注砼,随着灌注砼量的增加,逐节拔出套管,直到砼灌注完毕。

套管全部拔出后形成砼灌注基
础。

相关文档
最新文档