DIJKSTRA算法详细讲解
gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解1最短路径算法在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:(1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。
(2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。
在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
(3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。
(4)全局最短路径问题:求图中所有的最短路径。
用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。
最常用的路径算法有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。
本文主要研究Dijkstra算法的单源算法。
2Dijkstra算法2.1 Dijkstra算法Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
2.2 Dijkstra算法思想Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
Dijkstra算法原理详细讲解

Dijkstra算法原理详细讲解
Dijkstra算法是图论中的一种贪心算法,用于求解最短路径问题。
该算法的贪心策略是:每次选择当前距离起点最近的节点作为中间节点,并更新起点到其它节点的距离。
通过不断选择距离起点最近的节点,并逐步更新起点到各个节点的距离,最终得到起点到终点的最短路径。
Dijkstra算法的具体实现包括以下几个步骤:
1. 初始化:将起点到各个节点的距离记为无穷大或者一个较大的值,将起点到自己的距离记为0。
2. 选择当前距离起点最近的节点作为中间节点。
这个过程可以通过维护一个距离起点最近的节点集合来实现,初始时集合中只包含起点。
3. 更新起点到与中间节点相邻的节点的距离,即对于每个与中间节点相邻的节点,如果从起点到中间节点的距离加上中间节点到该节点的距离小于起点到该节点的距离,则更新起点到该节点的距离为从起点到中间节点的距离加上中间节点到该节点的距离。
4. 重复步骤2和步骤3,直到起点到终点的距离不再更新。
5. 最终得到起点到终点的最短路径。
Dijkstra算法的时间复杂度为O(N^2),其中N为节点的数目。
如果使用优先队列来维护距离起点最近的节点集合,则算法的时间复杂度可以降为O(NlogN),但是实际应用中优先队列的实现可能较为复杂。
Dijkstra算法可以用于有向图和无向图,但是不能处理带有负权边的图。
如果图中存在负权边,则可以使用Bellman-Ford算法来求解最短路径。
dijkstra算法

Dijkstra算法(Dijkstra算法)由荷兰计算机科学家Dikstra于1959年提出,因此也称为Dikstra算法。
从一个顶点到其余顶点的最短路径算法解决了权利图中的最短路径问题。
Dijestela算法的主要特征是从起点开始,采用贪婪算法的策略。
每次,它都会遍历最接近且未访问过的顶点的相邻节点,直到起点为止。
Dijkstra的算法通常以两种方式表示,一种使用永久和临时标签,另一种使用OPEN和CLOSE表,两者都使用永久和临时标签。
请注意,该算法不需要图形中的负边缘权重。
1.首先,引入一个辅助数组(向量)D,其中每个元素D代表当前找到的Dijkstra运行动画过程Dijkstra运行动画过程从起点(即源点)到其他每个顶点的长度。
例如,D = 2表示从起点到顶点3的路径的相对最小长度为2。
这里的重点是相对的,这意味着D在算法执行期间近似于最终结果,但不一定相等执行期间的长度。
2. D的初始状态为:如果存在一个从to的弧(即,存在一个从to的连接边),则D是弧上的权重(即,从to的边的权重);否则,将D设置为无穷大。
显然,长度为D = Min {D | ∈V}是从起点到顶点的最短路径,即()。
3.那么,下一个最短的长度是?即找到与从源点到下一顶点的最短路径长度相对应的顶点,并且该最短路径长度仅次于从源点到顶点的最短路径长度。
假设子短路径的终点是,则可以想象路径是()或()。
它的长度是从PI到PI的弧上的权重,或者是D加上从PI到PI的弧上的权重。
4.通常,假定S是从源点获得的最短路径长度的一组顶点,则可以证明下一条最短路径(令其终点为)是arc()或仅从源点穿过中间的S顶点,最后到达顶点。
因此,具有较短长度的下一个最短路径长度必须为D = Min {D | ∈v-s},其中D是arc()上的权重,或者D(∈S)和arc(,)上的权重之和。
该算法描述如下:1)让圆弧代表圆弧上的重量。
如果弧不存在,则将弧设置为无穷大(在这种情况下为MAXCOST)。
djistra原理

djistra原理Dijkstra算法原理详解Dijkstra算法算是图论中较为基础的算法之一,并且在实际应用中也具有非常广泛的应用。
本文将详细介绍Dijkstra算法的原理。
1. 算法思想Dijkstra算法是从起点开始,逐步扩大已知最短路径的范围,直到扩大到终点为止的过程,即通过已知的最短路径,不断更新和扩大节点的可达范围,找到终点的最短路径。
该算法的具体实现思路如下:1. 初始化时,除起点外,所有节点的最短路径标记为无穷大,起点的最短路径标记为0;2. 选择一个当前最近的(即未确定最短路径的节点中到起点距离最短的节点)节点;3. 根据该节点的邻接节点更新邻接节点的最短路径;4. 标记该节点为已处理,重复执行步骤2-3,直到终点成为已处理节点;5. 所有节点的最短路径就是确定的。
2. 算法优点Dijkstra算法是一种非常通用的最短路径算法,主要应用在路由算法和地图制作等领域。
其优点如下:1. 适用于有权图和无权图;2. 可以处理负权无环图(DAG);3. 在边的权重不为负数的情况下,能够保证正确性。
3. 算法缺点Dijkstra算法也存在着一些缺点,需要注意:1. 对于边的权重为负数的有向图,该算法可能会出现错误的解;2. 对于大规模的无权图,算法的时间复杂度较高;3. 不支持有负权有环图。
4. 算法应用Dijkstra算法主要应用在以下领域:1. 路由算法;2. 地图制作;3. 人工智能游戏中的寻路算法;4. 矩阵中的最短路径搜索等。
总之,Dijkstra算法在路由算法和地图制作等领域中有非常广泛的应用。
通过对该算法的深入学习,可以有效地提升算法解决问题的能力。
简述dijkstra算法原理

简述dijkstra算法原理Dijkstra算法是一种用于寻找最短路径的算法,通常用于网络规划和搜索引擎等领域。
该算法的基本思想是将节点的度数图转换为度数图的优化,以最小化图中所有节点之间的最短距离。
Dijkstra算法的基本流程如下:1. 初始化:将起点到起点的最短距离设置为0,其他节点的度数设置为0。
2. 遍历:从起点开始,依次将相邻的未服务的节点加入集合中。
每个节点都将其度数加1,并将其连接到已服务集合中最小的节点。
3. 计算:计算每个节点到所有其他节点的最短距离。
4. 更新:更新集合中所有节点的度数和连接它们的最短距离。
5. 重复步骤2到步骤4,直到集合为空。
Dijkstra算法的时间复杂度为O(ElogE),其中E是节点数。
该算法的优点是简单易懂,并且可以处理大规模数据集。
除了基本的Dijkstra算法外,还有许多变种,如Dijkstra算法的优化版本,用于处理有向图中的最短路径,以及基于贪心算法的优化版本。
这些变种可以用于不同的应用场景,并提供更高的效率和更好的性能。
拓展:Dijkstra算法的应用非常广泛,包括搜索引擎、路由协议、网络规划、路径查找和图论等领域。
例如,在搜索引擎中,Dijkstra算法可以用于查找最短路径,以确定搜索查询的正确路径。
在路由协议中,Dijkstra算法可以用于确定到达目的地的最佳路径。
在网络规划中,Dijkstra算法可以用于建立网络拓扑结构,以最小化图中所有节点之间的通信距离。
除了计算最短路径外,Dijkstra算法还可以用于其他任务,如找到最短路径中的最大公约数、最小生成树等。
Dijkstra算法的优化版本可以用于处理有向图中的最短路径,并提供更高的效率和更好的性能。
此外,Dijkstra算法的变种可以用于不同的应用场景,以满足不同的需求。
dijkstra算法步骤例题表格

Dijkstra算法是一种用于计算图中从一个顶点到其他所有顶点的最短路径的算法。
它由荷兰计算机科学家艾兹赫尔·戴克斯特拉于1956年提出。
Dijkstra算法的基本思想是通过不断更新起始顶点到其他顶点的最短路径长度,逐步找到最短路径。
以下将详细介绍Dijkstra算法的步骤,并给出一个例题和表格供读者参考。
一、算法步骤1. 初始化- 设置起始顶点的最短路径为0,其余顶点的最短路径为无穷大。
- 将起始顶点加入已访问的顶点集合。
2. 更新- 从未访问的顶点中选择离起始顶点最近的顶点,将其加入已访问的顶点集合。
- 更新起始顶点到其他顶点的最短路径长度,如果经过新加入的顶点到其他顶点的路径长度小于当前已知的最短路径长度,则更新最短路径长度。
3. 重复更新直到所有顶点都被访问过。
二、算法实例为了更好地理解Dijkstra算法的具体应用步骤,我们通过一个实际的例题来演示算法的执行过程。
假设有以下带权重的图,起始顶点为A:顶点 A B C D EA 0 3 4 ∞ ∞B ∞ 0 ∞ 1 7C ∞ 4 0 2 ∞D ∞ ∞ ∞ 0 5E ∞ ∞ ∞ ∞ 0表中每个元素表示从对应顶点到其它顶点的边的权重,"∞"表示没有直接相连的边。
我们按照Dijkstra算法的步骤来计算从顶点A到其他顶点的最短路径长度。
1. 初始化起始顶点为A,初始化A到各顶点的最短路径长度为0,其余顶点的最短路径长度为∞。
将A加入已访问的顶点集合。
2. 更新选择A到B的路径长度最短,将B加入已访问的顶点集合。
更新A到C和A到D的最短路径长度。
3. 重复更新依次选择离起始顶点最近的顶点,并更新最短路径长度,直到所有顶点被访问。
通过不断的更新,最终得到从顶点A到其他顶点的最短路径长度表格如下:顶点 A B C D E最短路径长度 0 3 4 5 9三、总结通过以上Dijkstra算法的步骤和实例计算,我们可以清晰地了解该算法的执行过程和原理。
单源最短路径dijkstra算法c语言

单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
Dijkstra算法描述

Dijkstra算法描述目录一、算法概述1二、算法原理及计算12.1算法原理12.2计算过程22.3改良的算法〔Dijkstra-like〕分析5三、源码分析6四、接口调用7一、算法概述Dijkstra〔迪杰斯特拉〕算法是典型的单源最短路径计算算法,用于解决源点到所有结点最短路径计算的问题,它采用了分治和贪心〔动态规划的特殊形式〕的思想搜索全局最优解。
本系统采用了主流、开源的JAVA图论库——Jgrapht来解决源点到终点间所有可能路径输出的问题,它的核心计算引擎采用了一种Dijkstra-like算法,由经典的Dijkstra〔迪杰斯特拉〕算法演化和改良而来。
二、算法原理及计算2.1算法原理Dijkstra算法思想为:设(,)= 是带权有向图,V代表图中顶点集合,E代G V E表图中含权重的边集合。
将全部顶点集合V分成两组,第一组为已求出最短路径的顶点集合,用S表示〔初始时S中只有一个源点,以后每求得一条最短路径,就将该路径的终点参加到集合S中〕;第二组为其余待确定最短路径的顶点集合,用U表示。
按最短路径长度的递增次序依次把U集合的顶点逐个参加到S集合中,约束条件是保持从源点v到S中各顶点的最短路径长度不大于从源点v到U 中任何顶点的最短路径长度。
算法的终止条件是集合U为空集,即集合U的顶点全部参加到集合S中。
2.2计算过程以图1为例讨论Dijkstra算法的计算过程,即计算某源点到网络上其余各结点的最短路径,设源点为①,逐步搜索,每次找出一个结点到源点①的最短路径,直至完成所有结点的计算。
图1 带权有向图记()D v为源点①到某终点v的距离,是源点①到终点v某条路径的所有链路长度之和。
记(,)l w v 是源点w到终点v的距离。
Dijkstra算法归纳如下:S=,U是其余未确〔1〕初始化,令S是已求出最短路径的顶点集合,{}U=,可写出:定最短路径的顶点集合,{}(1,)()l v D v ⎧=⎨∞⎩(1-1) 公式1-1中,(1,)l v 是源点①与终点v 的直连路径长度,而∞代表源点①与终点v 不相连,初始化结果如表1所示;〔2〕遍历集合U 中的所有结点v 并计算[]min (),()(,)D v D w l w v + 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短路径之Dijkstra算法详细讲解
1最短路径算法
在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:
(1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。
(2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。
在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
(3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。
(4)全局最短路径问题:求图中所有的最短路径。
用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。
最常用的路径算法有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。
本文主要研究Dijkstra算法的单源算法。
2Dijkstra算法
2.1Dijkstra算法
Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
2.2Dijkstra算法思想
Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径,就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。
此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。
2.3Dijkstra算法具体步骤
(1)初始时,S只包含源点,即S=,v的距离为0。
U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。
(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k的距离加上边上的权。
(4)重复步骤(2)和(3)直到所有顶点都包含在S中。
2.4Dijkstra算法举例说明
如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。
线上所标注为相邻线段之间的距离,即权值。
(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)
无向图
图一:Dijkstra
算法执行步骤如下表:【注:图片要是看不到请到“相册--日志相册”中,名为“Dijkstra算法过程”的图就是了】。