光电探测原理实验
光电探测技术实验报告

光电探测技术实验报告班级:08050341X学号:28*****实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。
按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并作出V/I曲线。
注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。
光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。
实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。
实验数据及结果:1.暗电流L暗=V暗/R L=3.678V/0.47M=7.82*10-6亮电流L亮=V亮/R L=2.212V/22.68k=9.75*10-5 2.偏压4V偏压6V偏压8V偏压10V偏压12V光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验二光敏管的应用-----光控电路实验目的:了解光敏管在控制电路中的具体应用。
光电探测实验报告

实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下, 电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成为了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构 ,用遮光罩将光敏电阻彻底掩盖,用万用表测得的电阻值为暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V 间选用,分别在暗光和正常环境光照下测出输出电压V 暗和 V 亮则暗电流 L 暗=V 暗/R L,亮电流 L 亮=V 亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。
按照图(3)分别测得偏压为 2V、4V、6V、8V、10V、12V 时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并作出 V/I 曲线。
偏压 2V 4V 6V 8V 10V 12V光电阻 I光电阻 II注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。
光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。
实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。
光电探测综合实验报告

一、实验目的1. 理解光电探测的基本原理和实验方法。
2. 掌握光电探测器的使用和调试技巧。
3. 学习光电探测实验的测量和分析方法。
4. 通过实验,加深对光电探测技术在实际应用中的理解和应用。
二、实验原理光电探测是利用光电效应将光信号转换为电信号的过程。
光电探测器是光电探测系统的核心部件,它将光信号转换为电信号,然后通过放大、滤波等电路处理后,输出可供进一步处理和利用的电信号。
本实验主要涉及以下光电探测器:光电二极管、光电三极管、光电耦合器等。
光电二极管是一种半导体器件,具有光电转换效率高、响应速度快、体积小等优点。
光电三极管是一种具有放大作用的光电探测器,它可以将微弱的光信号放大成较大的电信号。
光电耦合器是一种将输入信号的光电转换和输出信号的传输分开的器件,具有良好的隔离性能。
三、实验仪器与设备1. 光源:LED灯、激光笔等。
2. 光电探测器:光电二极管、光电三极管、光电耦合器等。
3. 放大器:运算放大器、低噪声放大器等。
4. 测量仪器:示波器、万用表等。
5. 连接线、测试板等。
四、实验内容及步骤1. 光电二极管特性测试(1)测试前准备:将光电二极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电二极管正向偏置,调整偏置电压,观察并记录光电二极管的伏安特性曲线。
② 将光电二极管反向偏置,调整偏置电压,观察并记录光电二极管的反向饱和电流。
③ 测量光电二极管的暗电流和亮电流。
2. 光电三极管特性测试(1)测试前准备:将光电三极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电三极管集电极、基极和发射极分别连接到电路中,调整基极偏置电压,观察并记录光电三极管的伏安特性曲线。
② 测量光电三极管的集电极电流、基极电流和发射极电流。
③ 测试光电三极管的电流放大倍数。
3. 光电耦合器特性测试(1)测试前准备:将光电耦合器、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电耦合器的输入端和输出端分别连接到电路中,调整输入端电压,观察并记录光电耦合器的传输特性曲线。
光电探测器特性测量实验报告

光电探测器特性测量实验报告实验目的:1.了解光电探测器的基本原理和工作方式;2.掌握光电探测器的特性测量方法;3.分析光电探测器的特性曲线。
实验仪器:1.光电探测器:用于将光信号转换为电信号,并测量光电流的大小。
2.光源:用于提供光信号,可以调节光强度。
3.测量设备:包括电流表、电压表和电阻箱,用于测量和调节光电流、光电压和负载电阻。
实验原理:光电探测器是一种能够将光信号转换为电信号的器件,其基本原理是利用光电效应。
当光照射到光电探测器的光敏面时,光子的能量会使光敏物质中的电子获得足够的能量而逸出,形成电子空穴对。
通过施加电场,将电子和空穴分离,形成电流,即光电流。
光电探测器的输出信号主要有光电流和光电压两种形式。
实验步骤:1.将光电探测器连接到电流表,将电阻箱调节到最大电阻,打开光源,并调节光强度到合适的数值。
2.记录电流表的读数,即为光电流的大小。
3.将光电探测器连接到电压表和负载电阻,调节电阻箱的电阻,使光电压维持一定的数值。
4.记录电压表和电流表的读数,并计算光电阻和负载电阻之间的电流。
5.将光电压和光电流绘制成特性曲线。
实验结果:根据记录的数据,得到了光电流和光电压的大小,并绘制了光电流-光电压特性曲线。
实验讨论:通过特性曲线的分析,可以看出光电探测器的工作特性。
在一定范围内,光电流随光电压的增加而增加,并呈线性关系。
当光电压达到一定值时,光电流趋于饱和,不再随光电压的增加而增加。
这是因为在较低的光电压下,光电子所带的能量与光电子轰击表面所需的能量相差较大,导致轰击效率较低。
而当光电压增加到一定值时,光电子所带的能量与光电子轰击表面所需的能量相差较小,导致轰击效率接近极限,几乎所有的光电子都能够轰击表面,所以光电流趋于饱和。
实验结论:本实验中,我们通过测量光电流和光电压的大小,得到了光电探测器的特性曲线,并根据曲线分析得出了光电探测器的工作特性。
实验结果与理论相符合,证明了光电探测器的基本原理和工作方式。
光电探测器实验报告

光电探测器特性测量实验摘 要:本实验中探测并绘制了光电二极管的光谱响应曲线。
分别运用脉冲法,幅频特性法和截止频率法对二极管和光敏电阻的响应时间进行了测量,并分析比较了这三种方法的利弊。
最后自己设计连接电路测量光敏电阻的响应时间,更深入地理解了响应时间及测量原理。
一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
通常,光电探测器的光电转换特性用响应度表示。
响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。
主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。
本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。
二、 实验原理1. 光电探测器光谱响应度的测量光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,即()()()λλλP V Rv =;同理,电流光谱响应度()()()λλλP I R i =式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。
实验中用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。
若用f R 表示热释电探测器的响应度,则()()ff f K R V P λλ=(f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。
在本实验中,K f =100×300,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,f R =900V/W )。
然后在相同的光功率()λP 下,用硅光电二极管测量相应的单色光,得到输出电压()λb V ,从而得到光电二极管的光谱响应度()()()()()ff f b bK R V K V P V R //λλλλλ==式中K b 为硅光电二极管测量时总的放大倍数,这里K b =150×300。
光电探测器实验报告

光电探测器实验报告光电探测器实验报告引言:光电探测器是一种能够将光信号转换为电信号的装置,广泛应用于光学通信、光电测量等领域。
本实验旨在通过实际操作,了解光电探测器的工作原理、特性以及应用。
一、实验目的本实验的目的是通过搭建实验电路,测量光电探测器的电流-电压特性曲线,了解其灵敏度、响应速度等参数,并探究不同波长光对光电探测器的影响。
二、实验装置与方法本实验所用的主要装置有光电探测器、光源、电流电压源、示波器等。
首先,将光电探测器与电流电压源相连接,然后将示波器与光电探测器并联,最后将光源对准光电探测器。
在实验过程中,我们将改变电流电压源的输出电压,记录光电探测器的输出电流,并观察示波器上的波形。
三、实验结果与分析通过实验测量,我们得到了光电探测器的电流-电压特性曲线,如图1所示。
从图中可以看出,当电压较小时,光电探测器的输出电流较小,随着电压的增加,输出电流逐渐增大。
当电压达到一定值后,输出电流基本保持稳定。
这是因为在低电压下,光电探测器的内部电场较弱,电子-空穴对的产生较少,因此输出电流较小。
随着电压的增加,内部电场增强,电子-空穴对的产生增多,导致输出电流增大。
当电压达到一定值后,内部电场已经达到饱和,此时输出电流基本保持稳定。
图1 光电探测器的电流-电压特性曲线另外,我们还对不同波长光对光电探测器的影响进行了实验。
通过改变光源的波长,我们测量了不同波长下光电探测器的输出电流。
实验结果显示,当光源的波长与光电探测器的工作波长匹配时,输出电流最大。
这是因为光电探测器对特定波长的光敏感度最高,其他波长的光则会引起较小的输出电流。
这一特性使得光电探测器在光学通信等领域中具有重要的应用价值。
四、实验总结通过本次实验,我们深入了解了光电探测器的工作原理和特性。
光电探测器的电流-电压特性曲线反映了其灵敏度、响应速度等重要参数。
同时,不同波长光对光电探测器的影响也得到了验证。
这些实验结果有助于我们更好地理解光电探测器的应用和优化设计。
物理实验技术中如何进行光电探测实验

物理实验技术中如何进行光电探测实验光电探测实验是物理实验中常见的一个实验项目,通过光电效应原理来研究光与物质的相互作用。
在这个实验中,我们可以通过测量光电管中产生的电流来研究光的性质和光与物质之间的相互作用规律。
本文将介绍光电探测实验的基本原理、实验器材和实验步骤。
在进行光电探测实验之前,首先需要准备实验器材。
光电探测实验最基本的器材就是光电管,它是一种能够将光能转化为电能的装置。
在实验中,我们通常使用单色光或者白光照射在光电管表面,通过调节光强或光频来研究光电效应的规律。
此外,为了准确测量光电管中产生的电流,还需要设备如电流表和电压表等实验仪器。
在实验中,首先需要确定实验的目的和研究的问题。
例如,我们可以研究光电管中的最大光电流随入射光频率的变化规律,或者研究光电管中的光电流随光强的变化规律等。
明确研究问题之后,即可开始进行实验。
实验的第一步是测量光电管的特性曲线,即光电流随入射光强的变化关系。
这一步骤可以帮助我们了解光电管的工作特性,也是进行后续实验的基础。
为了测量光电管的特性曲线,我们需要将光电管连接到电路中,然后通过改变光强来测量光电流的变化。
实验中可以用可变电阻、滤波片或者光强调节器等来改变光强,从而得到一系列不同光强下的光电流值。
测量完光电管的特性曲线之后,我们可以开始研究光电管中的最大光电流随入射光频率的变化规律。
实验中,我们可以用单色光源来照射光电管,并通过改变光源的频率来测量光电流的变化。
测量光电流时,需要保持光强不变,只改变光频率。
根据测量结果,我们可以得到光电管中的最大光电流随光频率的变化关系。
通过对光电流和光频率的关系的研究,可以得到光电效应的基本规律。
除了研究光电流随光频率的变化规律外,我们还可以研究光电管中的光电流随入射光强的变化规律。
为了实现这一点,我们可以使用可变光强源来照射光电管,并通过改变光强来测量光电流的变化。
实验中,我们需要保持光频率不变,只改变光强。
通过测量光电流和光强的关系,可以得到光电流随入射光强的变化规律。
光电探测实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,了解光电探测的基本原理和实验方法,掌握光电探测器的性能测试技术,并分析光电探测在现实应用中的重要性。
实验过程中,我们对光电探测器的响应特性、灵敏度、探测范围等关键参数进行了测试和分析。
二、实验原理光电探测器是一种将光信号转换为电信号的装置,广泛应用于光电通信、光电成像、环境监测等领域。
实验中,我们主要研究了光电二极管(Photodiode)的工作原理和特性。
光电二极管是一种半导体器件,当光照射到其PN结上时,会产生光生电子-空穴对,从而产生电流。
三、实验仪器与材料1. 光电二极管2. 光源(激光笔、LED灯等)3. 光电探测器测试仪4. 示波器5. 数字多用表6. 光纤连接器7. 光学平台8. 环境温度计四、实验步骤1. 光电二极管性能测试(1)将光电二极管与光源、测试仪连接,确保连接牢固。
(2)调整光源强度,观察光电探测器输出电流的变化,记录不同光照强度下的电流值。
(3)测试光电二极管在不同波长下的光谱响应特性,记录不同波长下的电流值。
2. 光电探测器灵敏度测试(1)调整环境温度,观察光电探测器输出电流的变化,记录不同温度下的电流值。
(2)改变光源距离,观察光电探测器输出电流的变化,记录不同距离下的电流值。
3. 光电探测器探测范围测试(1)在固定光源强度下,调整探测器与光源的距离,观察输出电流的变化,记录探测范围。
(2)在固定探测器与光源的距离下,调整光源强度,观察输出电流的变化,记录探测范围。
五、实验结果与分析1. 光电二极管性能测试实验结果表明,随着光照强度的增加,光电二极管输出电流逐渐增大。
在相同光照强度下,不同波长的光对光电二极管输出的电流影响不同,表明光电二极管具有光谱选择性。
2. 光电探测器灵敏度测试实验结果显示,随着环境温度的升高,光电二极管输出电流逐渐增大,表明光电探测器对温度具有一定的敏感性。
同时,在光源距离变化时,光电探测器输出电流也相应变化,说明光电探测器的探测范围与光源距离有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作步骤
1.光电二极管反向伏安特性的测量
(1)负载RL选择RL1=2.4K。 (2)电流表档位调节至20μA档,顺时针调节照 度调节旋钮,使照度值为50Lx,记录此时 电流表读数。 (3) 调节“幅度调节”旋钮电压表显示为2.00V, 记下光电二极管所加反向偏压为2V时电流 表的读数。 (4)重复步骤3,分别记下反向偏压为4V.6V.8V 和10V时的电流表读数。 (5)重Байду номын сангаас上述步骤。分别测量光电二极管在 100Lx.200Lx和300Lx照度下,不同偏压下的 光生电流值,并分别作出伏安特性曲线。 比较四条伏安特性特性曲线有什么不同。
硅光电池原理图
4、光电池的特性参数
(1)光电池的光照特性 光电池的开路电压VOC和短开路电流ISC随入 射光照度变化的规律 。 VOC随入射光照度按 对数规律变化,ISC 与入射光照度成线性 关系 。
(2)光电池用作探测器时,通常是以电流源 形式使用,总要接负载电阻RL,这时电流 入射光强不在成线性关系, RL相对光电池 内阻Rd越大,线性范围越小
光电二极管在电路中一般是处于 反向工作状态,在没有光照射时,反 向电阻很大,反向电流很小(一般小 于0.1微安),这个反向电流称为暗电 流,当光照射在PN结上,形成光电流。 光的照度越大,光电流越大。如果在 外电路上接上负载,负载上就获得了 电信号。因此光电二极管在不受光照 射时处于截止状态,受光照射时处于 导通状态。
(3)入射光强-负载特性曲线 描述的是在相同照度下,输出电压、输 出电流、输出功率随负载变化的规律
当RL<<Rd时,可近似看做短路,输出电流为ISC, 与入射光强成正比,RL越小,线性度越好,线性 范围越大。 当RL为∞时,可近似看做开路,输出电压为VOC。 随着RL的变化,输出功率也变化,当 RL RM 时,输出功率最大,RM称最佳负载。
光电二极管
2、光电二极管的特性参数
(1)伏安特性 无光照时,p-n结上的电压V和通过它的电流的伏安关 系为 I I (eqV / KT 1)
D SO
有光照时,产生光生电流IS
P I S q h
则总电流I为
I I SO (eqV / KT 1) I S
光照P—N结的伏安特性
实验原理
1.光电二极管的结构
光电二极管的核心是一个PN结,但与普通 二极管不同的是管壳上有玻璃窗口能接收外 部的光照,光电二极管PN结势垒区很薄, 光生载流子的产生主要在PN结两边的扩散 区,在PN结内建电场作用下,光生载流子 在耗尽区两侧产生积累并扩散,产生光电流。 光电流主要来自扩散电流而不是漂移电流。
(4)暗电流
当没有光照射时,光电二极管的反向饱和电 流称为暗电流。
3、光电池的结构
光电池是一种直接将光能转换为电能的光电器件。 光电池在有光线作用时实质就是电源,电路中有 了这种器件就不需要外加电源。 它是一个大面积的PN结,当光照射到PN结的一 个面,例如P型面时,若光子能量大于半导体材料 的禁带宽度,那么P型区每吸收一个光子就产生一 对自由电子和空穴, 电子-空穴对从表面向内迅速 扩散, 在结电场的作用下,最后建立一个与光照 强度有关的电动势。
5.入射光强-负载特性测试
(1)按图连接线路,光照度取50Lx,将电压 表选择2V档,电流表选择200μA档。 (2)分别测出负载电阻R为下表所示值的电 流和电压。
负载(Ω)
电流(μA) 电压(mV)
0
2.4K(RL1)5.6K(RL2)10K(RL3) 51K(R1) 100K(R2)
(3)作出50Lx光照度下光电池的光生电流.光生电 压随负载变化的曲线。 (4)光照度取100Lx.200Lx.300Lx,重复上述步骤。 (5)作出100Lx.200Lx.300Lx 50Lx光照度下光生电流. 光生电压负载变化的曲线,比较四条曲线的不同, 并加以分析。
光电探测原理实验
实验目的
1.了解光电二极管和光电池的工作原理和 使用方法。 2.掌握光电二极管和光电池的光照特性及 其测试方法。 3.理解光电二极管和光电池的伏安特性并 掌握其测试方法。
实验仪器
光电探测原理实验箱
实验内容
1.光电二极管伏安特性的测量。 2.光电二极管光照特性测量。 3.光电池照度—电流特性测试。 4.光电池照度—电压特性测试 。 5.光电池入射光强-负载特性测试 。
3.光电池照度—电流特性测试
分别测出下表所示光照度和负载下的光生电流。作 出光照度—电流特性曲线,并对曲线进行分析。
光照度(Lx) R=0 R=2.4K 光生电流(μ A) 光生电流(μ A)
0 20 40 60 80 100 120 140 160
4.光电池照度—电压特性测试
分别测出下表所示光照度下的光生电压,作 出光照度—开路电压特性曲线。
2.光电二极管在-6V偏压下光照特性测量
(1)照上图连接线路,载RL选择RL1=2.4K, 电流表档位调节至20μA档。 (2)调节“幅度调节”旋钮,使电压表指示 为6伏。 (3) 将“光照度调节”旋钮逆时针调节至最 小值,测-6V偏压下的电流,即为暗电流值。 (4)分别测出光照度为25LX.50LX.100 LX.150 LX.200 LX.250LX.300 LX时的电流值。 (5)绘出光电二极管的光照特性曲线。
在PN结开路时,光伏探测器的输出电压称为开路 电压: IS kT VOC ln( 1) q IOS 若将PN短路(即V=0),可得短路电流为 :
I SC q IS P h
(2)光谱特性
(3)光照特性 光电二极管在一定负偏压下,当入射光的强 度发生变化时,通过光电二极管的电流随 之变化,在较小负载电阻下,光电流和照 度成线性关系