生物文献stem cell

合集下载

关于抗衰老研究进展的英文原文文献

关于抗衰老研究进展的英文原文文献

Aging by Telomere Loss Can Be ReversedBruno Bernardes de Jesus 1and Maria A.Blasco 1,*1Telomeresand Telomerase Group,Molecular Oncology Program,Spanish National Cancer Centre (CNIO),Melchor Ferna´ndez Almagro 3,Madrid E-28029,Spain*Correspondence:mblasco@cnio.es DOI 10.1016/j.stem.2010.12.013Recently in Nature ,Jaskelioff et al.(2010)demonstrated that multiple aging phenotypes in a mouse model of accelerated telomere loss can be reversed within 4weeks of reactivating telomerase.This raises the major question of whether physiological aging,likely caused by a combination of molecular defects,may also be reversible.Accumulation of short/damaged telo-meres with increasing age is considered one of the main sources of aging-associ-ated DNA damage responsible for the loss of regenerative potential in tissues and during systemic organismal aging (Harley et al.,1990;Flores et al.,2005).Mounting evidence suggests that telome-rase is a longevity gene that functions by counteracting telomere attrition.Thus,telomerase-deficient mice age prema-turely,and telomerase overexpression results in extended longevity in mice (Tomas-Loba et al.,2008).Moreover,human mutations in telomerase compo-nents produce premature adult stem cell dysfunction and decreased longevity (Mitchell et al.,1999).Previous work had shown that restora-tion of telomerase activity in mouse zygotes with critically short telomeres,owing to a deficiency in the telomerase RNA component (Terc),rescues critically short telomeres and chromosomal instability in the resulting mice (Samper et al.,2001).Restoration of telomerase activity in zygotes also pre-vented the wide range of degenerative pathologies that would otherwise appear in telomerase-deficient mice with critically short telomeres,including bone marrow apla-sia,intestinal atrophy,male germ line depletion,and adult stem cell dysfunction (Samper et al.,2001;Siegl-Cachedenier et al.,2007),and resulted in a normal organismal life-span (Siegl-Cachedenier et al.,2007).Together,all the above find-ings indicate that aging provoked by crit-ical telomere shortening can be prevented or delayed by telomerase reactivation.From these grounds,reversion of aging caused by telomere loss was the next frontier.A recent study in Nature takes an important step forward from these previous findings by using a new mouse model for telomerase deficiency,de-signed to permit telomerase reactivation in adult mice after telomere-induced aging phenotypes have been established (Jas-kelioff et al.,2010).Specifically,DePinho and colleagues generated a knockin allele encoding a 4-OH tamoxifen (4-OHT)-inducible mouse telomerase (TERT-ER)under the control of the TERT endogenous promoter.In the absence of tamoxifen,these mice exhibit premature appearance of aging pathologies and reduction in survival (Figure 1).These mice phenocopy previously described Terc -deficient mice,which highlights that elongation of short telomeres by telomerase is the main mechanism by which telomerase protects from aging pathologies.Importantly,4weeks of tamoxifen treatment to induce TERT re-expression in adult TERT-ER mice with clear signs of premature aging was sufficient to extend their telomeres and rescue telomeric DNA damage signaling and associated check-point responses.Dramatically,tamox-ifen-induced TERT re-expression also led to resumption of proliferation in quies-cent cultured cells and eliminated the degenerative phenotypes across multiple organs,including testis,spleen,and intes-tines (Figure 1).Reactivation of telome-rase also ameliorated the decreased survival of TERT-ER mice.These findings represent an important advance in the aging field,as they show that aging induced by telomere loss can be reversed in a broad range of tissues and cell types,including neuronal function.Looking to the future,the next key question is to whatextent natural,physiological aging is caused by the pres-ence of critically short telo-meres and,consequently,to what extent telomere restora-tion will be able to reverse physiological aging.In this re-gard,other recent findings support the idea that telomere shortening does impactnatural mouse aging.On onehand,despite the long-standing belief that mouseaging was not linked to telo-mere shortening giventhat Figure 1.Antiaging Effects of Telomerase Schematic showing the major findings of Jaskelioff et al.(2010).Telomerasereactivation in late generation telomerase-deficient mice (G4TERT-ER )couldrevert some of the aging phenotypes observed,demonstrating the regenera-tive potential capacity of different tissues.Cell Stem Cell 8,January 7,2011ª2011Elsevier Inc.3Cell Stem CellPreviewsmice are born with very long telomeres—much longer than human telomeres—mouse telomeres do suffer extensive shortening associated with aging(Flores et al.,2008).In particular,while mouse cells maintain relatively long telomeres during theirfirst year of life,there is a dramatic loss of telomeric sequences at2years of age,even in various stem cell populations, and this change is concomitant with the loss of regenerative capacity associated with mouse aging.In addition,telome-rase-deficient mice from thefirst genera-tion(G1TercÀ/À)exhibit a significant decrease in median and maximum longevity and a higher incidence of age-related pathologies and stem cell dysfunc-tion compared with wild-type mice(Flores et al.,2005;Garcia-Cao et al.,2006),indi-cating that,as in humans,telomerase activity is rate limiting for natural mouse longevity and aging.These results suggest that strategies aimed to increase telome-rase activity may delay natural mouse aging.Further supporting this notion,it was recently shown that overexpression of TERT in the context of mice engineered to be cancer resistant owe to increase expression of tumor suppressor genes(Sp53/Sp16/SARF/TgTERT mice)wassufficient to decrease telomere damagewith age,delay aging,and increase medianlongevity by40%(Tomas-Loba et al.,2008).However,it remains to be seenwhether telomerase reactivation late in lifewould be sufficient to delay natural mouseaging and extend mouse longevity withoutincreasing cancer incidence.In summary,these proof-of-principlestudies using genetically modified miceare likely to encourage the developmentof targeted therapeutic strategies basedon reactivation of telomerase function.Indeed,small molecule telomerase acti-vators have been reported recently andhave demonstrated some preliminaryhealth-span beneficial effects in humans(Harley et al.,2010).Identifying drugabletargets and candidate activators clearlyopens a new window for the treatment ofage-associated degenerative diseases.REFERENCESFlores,I.,Cayuela,M.L.,and Blasco,M.A.(2005).Science309,1253–1256.Flores,I.,Canela,A.,Vera,E.,Tejera,A.,Cotsare-lis,G.,and Blasco,M.A.(2008).Genes Dev.22,654–667.Garcia-Cao,I.,Garcia-Cao,M.,Tomas-Loba,A.,Martin-Caballero,J.,Flores,J.M.,Klatt,P.,Blasco,M.A.,and Serrano,M.(2006).EMBO Rep.7,546–552.Harley, C.B.,Futcher, A.B.,and Greider, C.W.(1990).Nature345,458–460.Harley, C.B.,Liu,W.,Blasco,M.,Vera, E.,Andrews,W.H.,Briggs,L.A.,and Raffaele,J.M.(2010).Rejuvenation Res.14,in press.Publishedonline September7,2010.10.1089/rej.2010.1085.Jaskelioff,M.,Muller,F.L.,Paik,J.H.,Thomas,E.,Jiang,S.,Adams,A.C.,Sahin,E.,Kost-Alimova,M.,Protopopov,A.,Cadinanos,J.,et al.(2010).Nature.10.1038/nature09603.Mitchell,J.R.,Wood,E.,and Collins,K.(1999).Nature402,551–555.Samper,E.,Flores,J.M.,and Blasco,M.A.(2001).EMBO Rep.2,800–807.Siegl-Cachedenier,I.,Flores,I.,Klatt,P.,andBlasco,M.A.(2007).J.Cell Biol.179,277–290.Tomas-Loba, A.,Flores,I.,Fernandez-Marcos,P.J.,Cayuela,M.L.,Maraver,A.,Tejera,A.,Borras,C.,Matheu,A.,Klatt,P.,Flores,J.M.,et al.(2008).Cell135,609–622.HGPS-Derived iPSCs For The AgesTom Misteli1,*1National Cancer Institute,NIH,Bethesda,MD20892,USA*Correspondence:mistelit@DOI10.1016/j.stem.2010.12.014In this issue of Cell Stem Cell,Zhang et al.(2011)generate patient-derived iPSCs for one of the major prema-ture aging diseases,Hutchinson-Gilford Progeria Syndrome(HGPS).These cells are a much-needed new tool to study HGPS,and their use may lead to novel insights into mechanisms of aging.Some problems in biology are more difficult to study than others.Human aging is certainly one of them.Most conclusions regarding molecular mecha-nism of human aging rely on mere correla-tion,and direct experimental testing is generally not feasible.One approach to dissect the molecular basis of human aging is to study naturally occurring premature aging disorders.One of the most dramatic and prominent of such diseases is Hutchinson-Gilford ProgeriaSyndrome(HGPS).Zhang et al.(2011)now report the generation of inducedpluripotent stem cells(iPSCs)fromHGPS cells,providing a powerful newtool to unravel the molecular and physio-logical mechanisms of premature andnormal aging.HGPS is a truly remarkable disease inmany ways.To start with,it affects anunusually wide spectrum of tissues andleads to the development of highly diversesymptoms ranging from depletion ofsubcutaneous fat to loss of hair andtendon contractures.The diversity ofaffected tissues pointed early on to stemcell defects as a likely disease mecha-nism.Most relevant in patients arevascular defects and recurring strokes,which invariably are fatal in patients intheir mid-to late teens(Hennekam,2006).The disease is exceedingly rare4Cell Stem Cell8,January7,2011ª2011Elsevier Inc.Cell Stem Cell Previews。

人类胚胎干细胞和诱导多能干细胞的研究

人类胚胎干细胞和诱导多能干细胞的研究

人类胚胎干细胞和诱导多能干细胞的研究人类胚胎干细胞(human embryonic stem cells,hESCs)和诱导多能干细胞(induced pluripotent stem cells, iPSCs)是当今生物医学研究的重要热点之一。

这两种干细胞都具有自我更新和分化为多种不同类型细胞的能力,因此在组织再生、疾病治疗、药物筛选等领域有着广泛的应用前景。

本文将综述人类胚胎干细胞和诱导多能干细胞的研究现状和前景。

一、人类胚胎干细胞1. 发现和特点人类胚胎干细胞是在1998年,由美国犹他大学埃文斯实验室发现的。

它们是从人类胚胎的内细胞团(inner cell mass,ICM)中分离出来的非常原始的细胞,具有自我更新和无限增殖的能力,并可以分化为身体的所有不同类型的细胞,包括神经元、心肌细胞、肝细胞等。

这些特点使得人类胚胎干细胞成为组织工程和再生医学领域的重要研究材料,有着广泛的用途。

2. 研究进展和问题尽管人类胚胎干细胞潜力巨大,但是在研究和应用过程中依旧受到很多限制和问题。

首先,人类胚胎干细胞的获取受到伦理和法律的限制。

在许多国家和地区,胚胎干细胞研究和应用仍然是禁止或受严格限制的。

即使是在开放的国家,也需遵循伦理标准和规定的程序,获得胚胎干细胞。

其次,人类胚胎干细胞的使用也存在一些问题。

首先,人类胚胎干细胞具有致癌性和免疫排异等风险,不当的使用会导致一些不良后果。

其次,人类胚胎干细胞分化过程中的影响因素、机制以及调控方法还不完全清楚,因此在分化过程中的控制更为困难。

此外,用于分化人类胚胎干细胞的培养基和因子组合等方法,也在不断的优化和改进中。

二、诱导多能干细胞1. 发现和特点在人类胚胎干细胞受到法律和伦理限制的背景下,2006年,日本的山中伸弥等一众科学家发现了诱导多能干细胞(induced pluripotent stem cells,iPSCs),这是人类成体细胞被诱导再生为早期胚胎干细胞状态的一种细胞,可以用于组织工程、疾病治疗、药物筛选等领域。

scientistsusestemcellsfrom课文

scientistsusestemcellsfrom课文

scientistsusestemcellsfrom课文(原创版)目录1.科学家在课文中使用干细胞2.干细胞的来源和特点3.干细胞在科学研究中的应用4.干细胞疗法的现状和前景正文在现代科学研究中,干细胞技术一直备受关注。

近期,科学家们在课文中使用了干细胞,为我们揭示了这一领域的最新进展。

那么,究竟什么是干细胞?它们在科学研究中有哪些应用?干细胞疗法的现状和前景又是如何呢?首先,让我们来了解一下干细胞的来源和特点。

干细胞是一种具有自我更新和分化潜能的细胞,可以分化成多种不同类型的细胞。

在人体内,干细胞主要存在于胚胎、脐带血和成人组织中。

科学家们通过对干细胞的研究,发现它们具有很多独特的生物学特性,如自我更新能力、多向分化潜能和良好的生物相容性。

正是这些特性使得干细胞在医学领域具有广泛的应用前景。

接下来,我们来探讨一下干细胞在科学研究中的应用。

干细胞可以用于研究生物学基本过程,如细胞分化、细胞凋亡等。

此外,干细胞还可以用于疾病模型研究,帮助科学家们深入了解疾病的发生机制,为药物研发提供有力支持。

在课文中,科学家们利用干细胞研究了心血管疾病、神经系统疾病等多种疾病的发生机制,为相关领域的研究提供了新的思路和方法。

最后,我们来关注一下干细胞疗法的现状和前景。

干细胞疗法是指将干细胞用于治疗疾病的方法。

目前,干细胞疗法已经在一些国家和地区获得了批准,用于治疗血液病、神经系统疾病等疾病。

然而,干细胞疗法仍面临很多挑战,如细胞来源、安全性和疗效等。

科学家们正在努力克服这些挑战,以期将干细胞疗法应用于更多疾病领域。

总之,干细胞技术在科学研究和医学领域具有广泛的应用前景。

科学家们在课文中使用干细胞,为我们展示了这一领域的最新进展。

多能干细胞(pluripotentstemcell)-XJTLUILEAD

多能干细胞(pluripotentstemcell)-XJTLUILEAD

⑶按来源
1. 据所处的发育阶段不同
• 胚胎干细胞(embryonic stem cell, ES)、
• 成体/组织干细胞(tissue-specific stem cell, TSC or adult stem cell): e.g. 成体干细胞中的牙髓干细胞是其它来源干细
胞活性的三倍以上。儿童乳牙中含有的牙髓干细胞活性最强,
medicine and biology mainly concerning about cell-bio. • At the same time, a general introduction of the latest Nobel Prize in Physiology or Medicine met our curiosity. • In the end, thanks for professor’s giving the special seminar. And I clearly saw what I need to improve. I believe that time will tell me who I am, where I will go and what I have achieved with the effort. ------ Wu Cheng-Hao (吴成豪), 1453193
• Cell / stem cell / Totipotent stem cell/ Pluripotent stem cell/ Multipotent stem cell/ Unipotent stem cell • Embryonic stem cell/ Adult stem cell/Tissue-specific stem cell/ Germline stem cell

精原干细胞研究进展

精原干细胞研究进展

精原干细胞研究进展宋瑞高;姚晓磊;石磊【摘要】Spermatogonial stem cells are oocytes of male mamals germ cells which not only can maintain the number of themselves but also can differentiate to spermatocyte. Spermatogonial stem cells are also closely related to the genetic background of the next male generation individuals. Therefore, the study of spermatogonial stem cells in the field of cell biology,medicine and transgene has broad application prospects. In this review,biological characteristics,isolation,purification,cultivation and transplantation of spermatogonial stem cells were discussed.%精原干细胞(spermatogonial stem cells,SSCs)是各种雄性动物生殖细胞的母细胞,是一群具有自我更新和分化潜能的细胞,并且在雄性个体中精原干细胞与下一代的遗传背景密切相关。

因此,精原干细胞在细胞生物学、医学、转基因等领域的研究有着广阔的应用前景。

文章根据国内外相关研究进展,对精原干细胞的生物学特性、分离纯化与培养、移植等作一概述。

【期刊名称】《中国草食动物科学》【年(卷),期】2014(000)005【总页数】4页(P54-56,57)【关键词】精原干细胞;生物学特性;分离纯化;移植【作者】宋瑞高;姚晓磊;石磊【作者单位】山西农业大学动物科技学院,太谷 030801;山西农业大学动物科技学院,太谷 030801;山西农业大学动物科技学院,太谷 030801【正文语种】中文【中图分类】Q2哺乳动物雄性成体中的精子发生系统在雄性配子的产生和进化过程中起着基因传递的作用,这一系统的基础就是精原干细胞(spermatogonial stemcells,SSCs)。

scientistsusestemcellsfrom课文

scientistsusestemcellsfrom课文

scientistsusestemcellsfrom课文随着科学技术的不断发展,干细胞研究已成为近年来生物医学领域最受关注的热点之一。

干细胞具有自我更新和分化为多种细胞类型的能力,这使得它们在医学研究和治疗中具有巨大的潜力。

科学家们利用干细胞治疗疾病、修复损伤以及再生组织,为许多疾病患者带来了希望。

干细胞分为胚胎干细胞(ESC)和成体干细胞(ASC)两大类。

胚胎干细胞来源于早期胚胎,具有发育的全能性,可分化为任何类型的细胞。

而成体干细胞则存在于成年人体内,具有特定分化潜能,如造血干细胞、神经干细胞等。

这两类干细胞在生物医学领域有着广泛的应用前景。

然而,干细胞研究的发展并非一帆风顺。

干细胞疗法的安全性和伦理问题引发了社会的广泛关注。

如何确保干细胞来源的合法性、避免胚胎干细胞研究引发的道德伦理问题以及确保干细胞疗法的安全性和有效性,都是干细胞研究面临的重要挑战。

在国际上,各国对于干细胞研究的政策和法规各不相同,我国对干细胞研究采取了严格的监管措施,以确保干细胞研究的安全和可持续发展。

在我国,干细胞研究取得了一系列重要成果。

科学家们在干细胞制备、移植和治疗等方面取得了突破性进展,为许多患者带来了实实在在的好处。

此外,我国政府对干细胞研究给予了高度重视,制定了一系列政策支持干细胞研究的发展。

例如,国家重点研发计划、国家科技计划等项目的资助,为干细胞研究提供了充足的资金支持。

展望未来,干细胞研究将对医学领域产生深远影响。

随着技术的不断进步,干细胞疗法有望成为治疗许多疾病的新型手段。

此外,干细胞研究还将带动生物制品、药物研发等相关产业的发展。

然而,干细胞研究仍面临许多未知领域和挑战,如干细胞的分化调控、移植免疫反应等。

这需要广大科研工作者继续努力,不断探索,为人类的健康事业作出更大的贡献。

总之,干细胞研究作为一种具有广泛应用前景的生物技术,在医学领域具有巨大的潜力。

我国在干细胞研究方面取得了世界领先的成果,但仍需不断努力,攻克技术难题,推动干细胞研究的发展。

造血干细胞的研究进展(综述)

造血干细胞的研究进展(综述)

有关造血干细胞(Hemopoietic Stem cell)的研究进展(文献综述)XXX 2011级临床XXX 学号XXXXX联系电话:xxxxxxxxx【摘要】造血干细胞(Hemopoietic Stem cell ,HSC)是指骨髓中的干细胞,是指尚未发育成熟的细胞,是有造血细胞和免疫细胞的起源。

因此是多功能干细胞,医学上称其为“万用细胞”,也是人体的始祖细胞。

【关键词】造血干细胞(Hemopoietic Stem cell)骨髓(造血)干细胞胚胎造血干细胞诱导人胚胎造血缺陷胶质瘤细胞血管系统【前言】近年来,随着环境的改变,各种血液相关疾病(如白血病、血液肿瘤、造血干细胞病等)呈增长趋势,同时随着医疗卫生水平的提高,造血干细胞研究技术越来越受到重视,造血干细胞移植技术也由此应运而生,因为造血干细胞移植技术,世界各地成千上万患有以上疾病的患者,重新燃起了生命的希望。

造血干细胞特征为:一,高度的自我更新或自我复制能力;二,可分化成所有类型的血细胞它们具有良好的分化增殖能力。

造血干细胞可以救助很多患有血液病的人们,最常见的就是白血病。

捐献造血干细胞对捐献者的身体并无很大伤害。

本综述文献主要来源于近两年各大刊物所发表的针对于造血干细胞的研究进展。

【内容】1.造血干细胞的研究及进展1.1端粒酶活性和骨髓造血干细胞的再生障碍性贫血患儿及其相关的基因的表达:端粒酶RNA 的关系探讨组件(hTERC) 和端粒酶反向逆转录酶(hTERT)与骨髓造血干细胞与再生障碍性贫血(AA) 儿童的端粒酶活性。

经过研究(具体参考文献)得出:端粒酶活性的表达可能参与的病理生理学和AA,发展和hTERT 在端粒酶活性的表达中发挥了至关重要的作用。

(1)1.2中央和外周神经系统免疫后异基因造血干细胞移植治疗恶性血液疾病介导的脱髓鞘性疾病:此实验研究通过对1992年至2010年共计12年时间里的1484名移植的病人得出造血干细胞移植后发生的一些神经系统的相关疾病。

cell stem cell 杂志文章格式要求

cell stem cell 杂志文章格式要求

cell stem cell 杂志文章格式要求摘要:期刊论文格式要求及字体大小:一、标题(不超过20个字):三号黑体居中,可以分成1或2行;段后空一行二、作者姓名(两人以上,以逗号分隔):4号仿宋体居中,段后空0.5行三、作...期刊论文格式要求及字体大小一、标题(不超过20个字):三号黑体居中,可以分成1或2行;段后空一行二、作者姓名(两人以上,以逗号分隔):4号仿宋体居中,段后空0.5行三、作者单位、邮编:小4号宋体居中,段后空一行四、摘要、关键词:“摘要”二字(小四号黑体),摘要内容要小四号宋体,段后空一行;“关键词”三字(小四号黑体),摘要内容要小四号宋体,段后空一行,关键词数量为3~5个,每一关键词之间用分号分开,最后一个关键词后不打标点符号。

五、中图分类号、文献标志码、文章编号(小四号黑体)六、正文(小四号宋体。

行距20磅,字符间距为标准)1(顶格)一级标题,4号黑体,段前段后1行1.1(顶格)二级标题,5号黑体,段前段后0.5行1.1.1(顶格)三级标题,5号楷体,段前段后0.5行七、图(图题配英文翻译,距正文段后0.5行)(图题位于图下方;中文用6号宋体,加粗,英文用6号Times New Roman,加粗;英文采用段后0.5行)九、表(表题配英文翻译,距正文段前0.5行。

表中量与单位之间用“/”分隔)(三线表)(表题位于表上方;中文用6号宋体,加粗,英文用6号Times New Roman,加粗;中文采用段前0.5行)十、参考文献(配英文翻译)(标题:小5号黑体,内容:6号宋体)参考文献格式:专著:[序号]主要责任者.文献题名[M].出版地:出版者,出版年:起止页码.学位论文:[序号]主要责任者.文献题名[D].出版地:出版者,出版年:起止页码.研究报告:[序号]主要责任者.文献题名[R].出版地:出版者,出版年:起止页码.期刊文章:[序号]主要责任者.文献题名[J].刊名,年,卷(期):起止页码.论文集:[序号]主要责任者.论文集题名[C].出版地:出版者,出版年:起止页码.论文集中的析出文献:[序号]析出文献主要责任者.析出文献题名[C]//论文集主要责任者.论文集题名.出版地:出版者,出版年:析出文献起止页码报纸文章:[序号]主要责任者.文献题名[N].报纸名,出版日期(版次).国际、国家标准:[序号]标准编号标准名称[S].出版地:出版者,出版年.专利:[序号]专利申请者或所有者.专利题名:专利国别:专利号[P].公告日期或公开日期[引用日期].获取和访问路径.电子文献:[序号]主要责任者.电子文献题名[电子文献类型标志/电子文献载体标志].电子文献出版地:出版者,出版年(更新或修改日期)[引用日期].获取和访问路径.各种未定义类型的文献:[序号]主要责任者.文献题名[Z].出版地:出版者,出版年.期刊论文格式模版单击此处输入中文题名(不超过20个汉字)作者(单位名1,城市名1邮政编码1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cell Stem Cell
In This Issue
Sox Factors:Versatile Regulators of Stem
Cell Fate
SARKAR AND HOCHEDLINGER,PAGE15
This review covers the molecular and functional evidence linking Sox proteins
with stem cell biology,cellular reprogramming,and disease,with an emphasis
on Sox2.
Reprogramming Tumor-Specific T cells
VIZCARDO ET AL.,PAGE31
T cells specific for a tumor antigen made via iPSCs and reprogramming illustrate
a potential future approach to cancer immunotherapy.In Translation by Cromp-
ton et al.
Minimizing Radiotherapy-Induced Injury in
HSCs with TPO
DE LAVAL ET AL.,PAGE37
Administration of Thrombopoietin before radiotherapy minimizes hematopoietic
stem cell injury and mutagenesis in mice.In Translation by Goyama and Mulloy. Glycolytic Metabolism in the Hypoxic Niche Regulates HSC Quiescence TAKUBO ET AL.,PAGE49
A cell cycle checkpoint governed by pyruvate dehydrogenase kinase(Pdk)regulates HSC quiescence and function.Preview by Warr and Passegue´.(Top image.)
Mitochondrial Metabolism in HSC Differentiation
YU ET AL.,PAGE62
Knockout of the mitochondrial PTEN-like phosphatase PTPMT1reveals a role for mitochondrial metabolism in regulating HSC differ-entiation.Preview by Warr and Passegue´.
DYI:Satellite Cells Remodel Their Niche during Regeneration
BENTZINGER ET AL.,PAGE75
Satellite cells remodel their niche by upregulatingfibronectin,which stimulates Wnt7a to induce their symmetric expansion via an Fzd7/Sdc4coreceptor complex.
P21Inhibits Sox2for NSC Expansion
MARQUE´S-TORREJO´N ET AL.,PAGE88
Cyclin-dependent kinase inhibitor1A(p21)directly targets Sox2to regulate cell
cycle progression and drive adult neural stem cell expansion.(Bottom image.)
Calcium Imbalance in Familial
Hypertrophic Cardiomyopathy iPSC
models
LAN ET AL.,PAGE101
Modeling of familial hypertrophic cardiomyopathy using human iPSCs highlights
a role for Ca2+dysregulation in disease pathology.
Overcoming Exhaustion with iPSCs for
Antiviral T Cells
NISHIMURA ET AL.,PAGE114
Reprogramming of human antigen-specific T cells to iPSCs and then redifferentiation yields rejuvenated T cells that may be useful for adoptive immunotherapy.In Translation by Crompton et al.
Using Cardiomyocytes’Unique Metabolism for Purification
TOHYAMA ET AL.,PAGE127
A combination of glucose depletion and lactate supplementation can be used to purify ESC and iPSC-derived cardiomyocytes due to their inherent ability to metabolize lactate at levels that are toxic to undifferentiated cells.
Cell Stem Cell12,January3,2013ª2013Elsevier Inc.xi。

相关文档
最新文档