【推荐】七年级数学下册练习题及答案

合集下载

北师大版七年级数学下册专项练习题-幂的乘方及积的乘方(含答案)

北师大版七年级数学下册专项练习题-幂的乘方及积的乘方(含答案)
4.已知a=96,b=314,c=275,则a、b、c的大小关系是( )
A. a>b>cB. a>c>bC. c>b>aD. b>c>a
5.新冠肺炎疫情肆虐全球,截止2020年北京时间11月1日零时全球新冠肺炎确诊病例已超质过4600万例.将数4600万用科学记数法表示为()
A. B. C. D.
6.如果(an•bmb)3=a9b15,那么( )
则 ,
因此 ,



故答案为: .
三、解答题
19.计算:(-2xy2)6+(-3x2y4)3;
【答案】37x6y12;
【解析】
(-2xy2)6+(-3x2y4)3,
=64x6y12-27x6y12,
=37x6y12.
20.小明做了这样一道题,他的方法如下:

请你用他的方法解下面题目.
设 , ,求 的值.
故选:C.
6.如果(an•bmb)3=a9b15,那么( )
A. m=4,n=3B. m=4,n=4
C. m=3,n=4D. m=3,n=3
【答案】A
【解析】
解:∵(anbmb)3=a9b15,∴(an)3(bm)3b3=a3nb3m+3=a9b15,
∴3n=9,3m+3=15,
解得:m=4,n=3,
=22+33−22×32
=4+27−4×9
=−5.
22.已知am=2,an=4,求下列各式的值:(1)am+n;(2)a3m+2n
【答案】(1)23或8;(2)27或128.
【解析】
(1) =2×4=8;
(2) = =8×16=128.
23.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.

七年级下册数学必考题

七年级下册数学必考题

七年级下册数学必考题含答案一、选择题1.同位角识别题目:同位角是( )。

A. ∠1和∠2 B. ∠3和∠4 C. ∠2和∠4 D. ∠1和∠4答案:D解析:同位角是两条被第三条直线(截线)所截的直线中,位于截线同侧的两个内角。

2.无理数识别题目:在实数0, -1.414114111…中,无理数有( )。

A. 1个B. 2个C. 3个D. 4个答案:A(但注意原题选项未列出所有数,假设只有-1.414114111…是无理数)解析:无理数是不能表示为两个整数的比的数,且其小数部分是无限不循环的。

3.不等式表示题目:“x的3倍与y的和不小于2”用不等式可表示为( )。

A. 3x+y>2B. 3(x+y )>2C. 3x+y≥2D. 3(x+y)≥2答案:C解析:根据题意,直接翻译成不等式即可。

4.调查方式选择题目:下列问题,不适合用全面调查的是( )。

A. 了解一批灯管的使用寿命B. 学校招聘教师,对应聘人员的面试C. 旅客上飞机前的安检D. 了解全班学生的课外读书时间答案:A解析:全面调查适用于对象数量不多、易于调查的情况,而灯管使用寿命测试具有破坏性,适合抽样调查。

5.不等式性质题目:若x>y,则下列式子中错误的是( )。

A. x-3>y-3B. x/3>y/3C. x+3>y+3D. -3x>-3y答案:D解析:不等式两边同时乘以或除以一个负数,不等号方向会改变。

二、填空题1.角度计算题目:∠1=40°,如果CD∥BE,那么∠B的度数为____(假设∠B与∠1为同位角)。

答案:40°解析:由于CD∥BE,根据同位角性质,∠B=∠1=40°。

2.数的立方根与平方根题目:一个数的立方根是4,那么这个数的平方根是____。

答案:±2√2(或写作±2倍根号2)解析:立方根为4的数是64,64的平方根是±2√2。

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。

学号。

班级:一、选择题(共10小题,每小题3分,共30分)1.若m。

-1,则下列各式中错误的是()A。

6m。

-6B。

-5m < -5C。

m+1.0D。

1-m < 22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

3-27=-3D。

(-4)^2=163.已知a。

b。

0,那么下列不等式组中无解的是()A。

{x-a。

x>-b}B。

{x>a。

x<-a。

x<-b}C。

{x>a。

xb}D。

{x-a。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1}B。

{x-y=1.3x+y=5}C。

{x-y=3.3x+y=-5}D。

{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

5B。

6C。

7D。

89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题专项练习题1.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x 的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?3.例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=(2)在数轴上找一个整数点A,使点A到﹣1、﹣5的距离之和等于4,请直接写出所有点A对应的数.(3)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x+2|是否有最小值?如果有,写出最小值,并写出所有符合条件的整数x.如果没有,说明理由.4.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|5﹣(﹣2)|=7或2﹣(﹣5)=7.解决问题:如图,在单位长度为1的数轴上有A,B,C三个点,点A,C表示的有理数互为相反数(1)请在数轴上标出原点O,并在A,B,C上方标出他们所表示的有理数;(2)B,C两点间的距离是(3)若点P为数轴上一动点,其对应的数为x①P、B两点之间的距离表示为,若P、B两点之间的距离为5,则x=②若点P到点B、点C的距离相等,则点P对应的数是③若点P到点B、点C的距离之和为7,则点P对应的数是(4)对于任何有理数a①|a﹣1|+|a+5|的最小值为,此时能使|a﹣1|+|a+5|取最小值的所有整数a的和是;②若a>1,则|a﹣1|﹣|a+5|=.③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是.5.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5;B.(+3)+(﹣2)=+1;C.(﹣3)﹣(+2)=﹣5;D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)6.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)7.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.8.有一列数:2,4,8,16,32,…,从第二个数开始,每一个数与前一个数之比是一个常数q,这个常数q是2;根据这个规律,如果a1表示第1个数,即a1=2,a2表示第2个数,…,a n(n为正整数)表示这列数的第n个数.(1)a2019=,a n=.(2)阅读以下材料:如果想求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得:3S=3+32+33+…+320+321②由②减去①式,可以求得S=.对照阅读材料的解法求a1+a2+a3+…+a100的值;(3)记m=a101+a102+a103+…+a2019,求m的个位数.9.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n,例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1,∴1+2+4+8+16+…+230=231﹣1请按照此解答过程,完成下列各题:①求1+5+52+53+54+…+520的值;②求3+2++++…+的值,其中m为正整数.(结果请用含m的代数式表示)10.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.11.100个偶数按每行8个数排成如图所示的阵列:(1)图中方框内的9个数的和与中间的数有什么关系?(2)小童画了一个方框,他所画的方框内9个数的和为360,求这9个数;(3)小郑也画了一个方框,方框内9个数的和为1656,你能写出这9个数吗?如果不能,请说明理由;(4)从左到右,第1至第8列各列数之和分别记为a1、a2、a3、a4、a5、a6、a7、a8,则这8个数中,最大数与最小数之差等于.12.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(a⊕3)⊕1=128,求a的值.13.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.15.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案1.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.2.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.3.解:(1)7与﹣7两数在数轴上所对的两点之间的距离=7﹣(﹣7)=14.(2)所有点A对应的数为﹣1,﹣2,﹣3,﹣4,﹣5;(3)使得|x+3|+|x﹣1|=4这样的整数是﹣3,﹣2,﹣1,0,1;(4)答:有,最小值为5,符合条件的整数有:﹣2,﹣1,0,1,2,3.故答案为:(1)14;(2)﹣1,﹣2,﹣3,﹣4,﹣5;(3)﹣3,﹣2,﹣1,0,1.4.解:(1)如图所示,(2)B,C两点间的距离是|3﹣(﹣1)|=4,故答案为:4;(3)①P、B两点之间的距离表示为|x+1|,若P、B两点之间的距离为5,则x=4或﹣6,故答案为:|x+1|,4或﹣6;②∵点P到点B、点C的距离相等,∴x+1=3﹣x,解得:x=1,∴点P对应的数是1;故答案为:1;③若点P到点B、点C的距离之和为7,则有|x+1|+|3﹣x|=7,解得:x=4.5或﹣2.5;故答案为:4.5或﹣2.5;(4)①当a≥1时,|a﹣1|+|a+5|=a﹣1+a+5=2a+4,∴|a﹣1|+|a+5|的最小值为6,当a≤﹣5时,|a﹣1|+|a+5|=1﹣a﹣a﹣5=﹣2a﹣4,∴|a﹣1|+|a+5|的最小值为6;当﹣5<a<1时,|a﹣1|+|a+5|=1﹣a+a+5=6,综上所述,|a﹣1|+|a+5|的最小值为6;∴|a﹣1|+|a+5|取最小值的所有整数a的和是﹣5﹣4﹣3﹣2﹣1+0+1=﹣14;故答案为:6,﹣14;②当a>1,则|a﹣1|﹣|a+5|=a﹣1﹣a﹣5=﹣6,故答案为:﹣6;③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是③分类讨论:当a≤﹣5;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4﹣a﹣5=﹣4a﹣2,∴当a=﹣5时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为18;当﹣5<a≤﹣2;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4+a+5=﹣2a+8 当a=﹣2时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当﹣2<a≤1;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1+a+2﹣a+4+a+5=12;当1<a≤4;|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2﹣a+4+a+5=2a+10,当a=1时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当a>4时,|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2+a﹣4+a+5=4a+2,综上所述,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是12,故答案为:12.5.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2)=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5;③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b).故答案为:D;﹣1010;﹣2017;﹣1008.5,1010.5;(a+b).6.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1019,故答案为﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB=2018,∴则A点表示﹣1008,B点表示1010,③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b);故答案为﹣2015,﹣1008,1010,(a+b).7.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.8.解:(1)∵从第二个数开始,每一个数与前一个数之比是一个常数2∴a2019=22019,a n=2n故答案为:22019,2n.(2)设S100=a1+a2+a3+…+a100①则2S100=a2+a3+…+a100+a101 ②∴②﹣①得:S100=a101﹣a1=2101﹣2∴a1+a2+a3+…+a100的值为:2101﹣2.(2)∵2n的个位数字分别为2,4,8,6,循环a101=2101,a2019=22019101÷4=25...1,(2019﹣100)÷4=479 (3)故m=a101+a102+a103+…+a2019,中的第一个数a101的末位数字为2每相邻4个一组数字求和的个位数字为0,末三项的个位数字为:2,4,8,其和为14 故m=a101+a102+a103+…+a2019的个位数字为:4.∴m的个位数字为4.9.解:(1)q=÷=;a20=或,a n=或;(2)①令S=1+5+52+53+54+…+520……①,等式两边同时乘以5,得5S=5+52+53+54+55+…+521……②,由②式减去①式,得4S=521﹣1,,∴;②令……①等式两边同时乘以,得……②,由②式减去①式,得,∴.故答案为:;或,或.10.解:(1)PA=t;PC=36﹣t;故答案为:t,36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.故答案为:21,5;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.11.解:(1)∵2+4+6+18+20+22+34+36+38=180=9×20,∴图中方框内的9个数的和是中间的数的9倍.(2)设中间数为x,则另外8个数分别为:x﹣18,x﹣16,x﹣14,x﹣2,x+2,x+14,x+16,根据题意得:9x=360,解得:x=40,∴这9个数分别为:22,24,26,38,40,42,54,56,58.(3)假设能成立,设中间数为y,则另外8个数分别为:y﹣18,y﹣16,y﹣14,y﹣2,y+2,y+14,y+16,根据题意得:9y=1656,解得:y=184,∵184÷2÷8=11……4,∴184为第12行第4个数,∴这9个数为:166,168,170,182、184、186、198、200、202.又∵仅有100个数,∴202不存在,∴假设不成立,即方框内9个数的和不能为1656.(4)∵200÷2÷8=12……4,∴尾数200为第13行第4个数,∴a1=2+18+34+...+194==1274,a2=1274+2×13=1300,a3=1300+2×13=1326,a4=1326+2×13=1352,a5=10+26+42+ (186)=1176,a6=1176+2×12=1200,a7=1200+2×12=1224,a8=1224+2×12=1248,∴这8个数中,最大数为1352,最小数为1176,∴1352﹣1176=176.故答案为:176.12.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:a⊕3=a×32+2×a×3+a=16a,16a⊕1=16a×12+2×16a×1+16a=64a,已知等式整理得:64a=128,解得:a=2.13.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.14.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.15.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。

初一下册数学练习题及答案

初一下册数学练习题及答案

初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。

答案:42. 一个数的立方根是3,那么这个数是______。

答案:27三、计算题1. 计算下列各题,并写出计算过程。

(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。

证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。

2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。

五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。

2. 一个水池的长是15米,宽是10米,求水池的面积。

答案:水池的面积为长×宽=15×10=150平方米。

通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。

希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。

七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标

七年级数学下册 二元一次方程组经典练习题+答案解析100道  人教新课标

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

七年级下册数学题及答案

七年级下册数学题及答案

难题集及答案1 .如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD= AB。

于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=______;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=______;(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= _____;(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.122 .如图,△ABC是等腰直角三角形,∠A=90°,CD∥AB,CD=AB=4cm,点P是边AB上一动点,从点A出发,以1cm/s的速度从点A向终点B运动,连接PD交AC于点F,过点P 作PE⊥PD,交BC于点E,连接PC,设点P运动的时间为x(s).(1)若△PBC的面积为y(cm2),写出y关于x的关系式;(2)在点P运动的过程中,何时图中会出现全等三角形?直接写出x的值以及相应全等三角形的对数.3 。

已知:点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,且PM=PN.(1)当点M在线段AB上,点N在线段AC的延长线上时(如图1),求证:BM=CN;(2)在(1)的条件下,AM+AN=_________AC;(3)当点M在线段AB的延长线上时(如图2),若AC:PC=2:1,PC=4,求四边形ANPM 的面积.4 .如图①,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的正方向运动,点B以每秒n个单位长度沿y轴正方向移动.(1)若|m+2n-5|+|2m—n|=0,试分别求出1秒后,A、B两点的坐标;(2)如图②,设∠4的邻补角和∠3的邻补角的平分线相交于点P.试问:在点A、B运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.5 .如图,已知∠AOB=25°,把∠AOB绕顶点O按逆时针旋转55°到∠MON,点C、D分别是OB、OM上的点,分别作C点关于OA、ON的对称点E、F,连接DE、DF.(1)求∠ECF的度数;(2)说明DE=DF的理由.6 。

数学试题及答案七下

数学试题及答案七下

数学试题及答案七下一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333D. √4答案:B2. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 一个数的绝对值是它本身,这个数可能是:A. 任何数B. 非负数C. 非正数D. 负数答案:B4. 以下哪个表达式等于x^2 - 2x + 1?A. (x-1)^2B. (x+1)^2C. (x-2)^2D. (x+2)^2答案:A5. 一个等腰三角形的底边长为6,腰长为5,其周长为:A. 16B. 17C. 18D. 19答案:C6. 一个数的立方根是2,这个数是:A. 6B. 8C. -8D. 0答案:B7. 一个角的补角是它的两倍,这个角是:A. 30°B. 60°C. 90°D. 120°答案:A8. 一个数除以-1/2等于它本身,这个数是:A. 0B. 2C. -2D. 1答案:A9. 一个数的平方等于16,这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C10. 一个数的倒数是-1/3,这个数是:A. 3B. -3C. 1/3D. -1/3答案:B二、填空题(每题2分,共20分)11. 如果一个数的平方是25,那么这个数是______。

答案:±512. 一个数的绝对值是5,这个数可能是______。

答案:5或-513. 一个角的余角是45°,这个角是______。

答案:45°14. 一个等腰三角形的底边长为8,腰长为10,其周长为______。

答案:2815. 一个数的立方根是-2,这个数是______。

答案:-816. 一个角的补角是它的三倍,这个角是______。

答案:45°17. 一个数除以-1/3等于它本身,这个数是______。

答案:018. 一个数的平方等于9,这个数可能是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.1. 用一副三角板不能画出A.75°角B.135°角C.160°角D.105°角2. 如图,直线a ,b 相交于点O ,若∠1=40°,则∠2等于 A.50° B.60° C.140° D.160°3. 在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是4. 下面正确的是A.三条直线中一定有两条直线平行B.两条直线同时与第三条直线相交,那么它们一定平行C.若直线∥22,l l ∥3l ,…1-n l ∥n l ,那么1l ∥n lD.直线13221,,l l l l l 则⊥⊥∥3l5. 下列命题正确的是A.若∠MON+∠NOP=90º则∠MOP 是直角B.若α与β互为补角,则α与β中必有一个为锐角.另一个为钝角C.两锐角之和是直角D.若α与β互为余角,则α与β均为锐角6. 如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB =55º,则∠BOD 的度数是 A.35º B.55º C.70º D.110º1 2 a bA B C A B C D B E C O DA.7. 已知:如图,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是 A.相等 B.互余 C.互补 D.互为对顶角8. 已知∠α=35°19′,则∠α的余角等于A.144°41′B. 144°81′C. 54°41′D. 54°81′9. 如图,直线l 1与l 2相交于点O ,1OM l ⊥,若44α∠=︒,则β∠等于 A.56︒ B.46︒ C.45︒ D.44︒10. 如图,已知∠1=∠2,∠3=80O,则∠4=A.80OB. 70OC. 60OD. 50O11. 如图,AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =______________度。

ABCDE F 2 1OO l 2l 1βα12. 如图,经过平移,扇形上的点A 移到了F ,作出平移后的扇形.13. 如图,如果AD ∥BC,那么可以推出哪些结论?把可推出的结论都写出来:___________________________________________.14. 已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……, n A 平分1n AA -, 则n AA =_______________cm.15. 如图,直线AB CD ∥,EF CD ⊥,F 为垂足.如果20GEF =o∠,那么1∠的度数是 °.16. 线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.E A D B CABC D1EFG17. 小宁和婷婷在一起做拼图游戏,他们用“、△△、=”构思出了独特而有意义的图形并根据图形还用简洁的语言进行了表述:观察以上图案(1)这个图案有什么特点?(2)它可以通过一个“基本图案”经过怎样的平移而形成?(3)在平移的过程中,“基本图案”的大小、形状、位置是否发生了变化?你能解释其中的道理吗?18. 如图,在△ABC中,DE∥BC,EF∥AB,则∠B相等的角有____个.19. 如图,不添加辅助线,请写出一个能判定ACEB//的条件: .20. 如下图中,AO⊥BO,CO⊥DO,∠AOC=55º,则∠BOD=______.AD EB F CAB CDED A CO BGF E D C B A 2121. 如图,设DE ∥BC,∠1=∠2,CD ⊥AB,请说明 (1)FG ⊥AB.(2)若把题设中的“DE ∥BC ”与结论中的“FG ⊥AB ”对调后,还正确吗?试说明.(3)若把题设中的“∠1=∠2”与结论中的“FG ⊥AB ”对调呢?22. 已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23. 一个角的补角与它的余角的度数之比是3:1,求这个角的度数.24. 如图,已知AB ∥CD ∥EF,GC ⊥CF,∠ABC=65º,∠EFC=40º,求∠BCG 的度数.A B GC D E F25. 根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB的角平分线OC;(3)反向延长OC得射线OD;(4)分别在射线OA、OB、OD上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG有什么关系?∠EFG、∠EGF、∠GEF有什么关系?26. 如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?32 1O F CAD EB(1)不等式组的解集是________,整数解有________.(2)不等式组,⎩⎨⎧<->+-483212x x 的解集是________.(3)不等式组⎩⎨⎧≤-->+422x xx 的解集是_______.(4)不等式组⎩⎨⎧+≤-->+-94754)1(2x x x 的解集是________.(1)不等式组⎪⎩⎪⎨⎧-≤-->xx x 28432的最小整数解为_________.[ ] A .-1 B .0 C .1 D .4(2)不等式⎩⎨⎧->≤23x x 的解集,在数轴上表示正确的是_________.[ ](3)满足不等式-1<312-x ≤2的非负整数解的个数是_________.[ ] A .5 B .4C .3D .无数个(4)如果不等式组⎩⎨⎧<+>-0b x a x 的解集是3<x <5,那么a 、b 的值分别为_________.[ ]A .a =3 b =5B .a =-3 b =-5C .a =-3 b =5D .a =3 b =-5已知5x -2y =6,当x 满足6≤7x -1<13时,请确定y 的取值范围.四、用数学眼光看世界弟弟上午八点钟出发步行去郊游,速度为每小时4千米;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是多少?1.由方程可得到用x 表示y 的式子是 .2.如果31x y =⎧⎨=-⎩是方程38x ay -=的一个解,那么a = .3.若3350m n m n x y +-+=是二元一次方程,则m = ,n = .4.已知3x y -+与2(32)x y +-互为相反数,则x = ,y = .5.已知甲数、乙数的和为50,甲数的2倍比乙数的3倍大4,设甲数为x ,乙数为y ,由题意,可得方程组 .6.下列方程中是二元一次方程的是( ). A .35a a b -= B .245x y -= C .37mn -= D .10.5y x+=7.二元一次方程3215x y +=在自然数范围内的解的个数是( ). A .1个 B .2个 C .3个 D .无数个8.如果二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,那么k 的值是( ). A .34 B .34- C .43 D .43-9.某船顺流航行的速度为a ,逆流航行的速度为b ,则水流速度为( ). A .2a b + B .2a b- C .a b - D .以上都不正确10.甲、乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各结余400元,若设甲的年收入为x 元,年支出为y 元,则可列方程组( ).A .4002740034x y x y -=⎧⎪⎨+=⎪⎩B .4002740034x y x y +=⎧⎪⎨-=⎪⎩ C .4002440037x y x y -=⎧⎪⎨-=⎪⎩ D .4002740034x y x y -=⎧⎪⎨-=⎪⎩11.解方程组37528y x x y =-⎧⎨+=⎩12.解方程组25 1.715108x y x y +=⎧⎨-=⎩13.七年级安排学生住宿,若每间宿舍住6人,则有4人住不下;若每间宿舍住7人,则有一间宿舍只住3人,且空余11间宿舍.求七年级住校学生数和宿舍间数.14.某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品的进价每件20元,利润率是15%,共获利278元.问甲、乙两种商品各购进了多少件?1.方程在正整数范围内的解有()A.无数个 B.2个 C.3个 D.4个2.若是方程组的一个解,则a、b的值分别是()A.1,2 B.4,0 C. D.0,43.若方程组的解x和y的值相等,则k的值等于()A.4 B.10 C.11D.124.代数式,当时,其值是3,当时,其值是4,则代数式的值是()A. B.C. D.1.在①②③这三对数值中__________是方程的解,__________是方程的解,因此__________是方程组的解.2.把方程变形,用含x的代数式表示y,则y=__________.3.在方程中,当时,y=__________.4.若是方程的解,那么a=__________.5.若是方程组,则m=__________,n=__________.6.若二元一次方程的解也满足,则代数式__________.1.用代入法解下列方程组(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)4.关于x、y的二元一次方程组的解是互为相反数的两个数,求m 的值.1、关于线段,下列判断正确的是()(A)只有一个端点;(B)有两个以上的端点;(C)有两个端点;(D)没有端点。

2、下列说法不正确的是()(A)射线是直线的一部分;(B)线段是直线的一部分;(C)直线是无限延长的;(D)直线的长度大于射线的长度。

3、下列说法中,正确的是()(A)延长射线的OA;(B)延长直线AB;(C)延长线段CD(D)反向延长直线AB4、经过一点的直线有条;经过两点的直线有条,并且只有条,经过不在同一直线上的三点最多可画条直线。

5、探照灯射出的光线,给我们的印象似。

6、笔直的窗帘轨,至少需要个钉子才能将它固定,理由是7、观察如图,指出图形中有多少条线段,请用字母表示出来。

8、画出下列语句表达的图形:(1)点A在直线a上,点B在直线a外;(2)直线a、b、c相交于点M;(3)直线a、b相交于点A,直线b、c相交于点B,直线a、c相交于点c。

相关文档
最新文档