外压圆筒的设计计算
4.3.2圆筒设计(外压)解析

特点:反复试算
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
二、图算法原理(标准规范采用)
难点
假设:圆筒仅受径向均匀外压,而不受轴向外压,与圆环一 样处于单向(周向)应力状态。
3
将式
t pcr 2.2 E D o
2
(2-92)
厚度 t 改为有效 厚度δe,得:
2.59 Et pcr (2-97) LDO DO t
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
二、图算法原理(续)
长圆筒临界压力
pcr 2.2 E (
e
Do
)
3
短圆筒临界压力
pcr = 2.59E
L Do
δ e 2.5 ( ) Do δ e 0.5 0.45( ) Do
令 B=
代入式(4-21)整理得:
cr pcr D o cr E 2Ee
(4-21)
Do [ p]
e
2 E cr m
D0 p e
4.3.2.4 外压圆筒设计
二、图算法原理(续)
4.3.2.4 外压圆筒设计
过程设备设计
(2)厚度计算图(不同材料):B—A关系曲线(续)
2 2 2 B E cr E cr cr m 3 3
短圆筒
刚性圆筒 这种壳体的L/Do较小,而t / Do较大,故刚性较好。 其破坏原因是由于器壁内的应力超过了材料屈极 限所致。计算时,只要满足强度要求即可。
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
长圆筒临界压力:
t pcr 2.2 E D o
压力容器设计外压圆筒的设计计算

本节重点
外压容器设计参数的规定; 设置加强圈的目的及结构要求 。
本 节 完
单击此处添加副标题
谢谢大家!
由该式建立B与A的关系图
第三节 外压圆筒的设计计算
工程设计方法
外压圆筒 (Do/te)
薄壁圆筒(Do/te≥20)
失稳
Do/te=20
厚壁圆筒(Do/te<20)
失稳
强度失效
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
Do/te≥20薄壁筒体,稳定性校核:
c. 由材料选——厚度计算图(图4-12~图4-15)
(b)
A在材料线左方时, ,按(b)式计算许用外压[p]:
系 数 A
设计温度
根据
(a)
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
图算法求解过程
第三节 外压圆筒的设计计算
pc>[p]——假设tn不合理 ——重设tn,直到满足
pc≤[p]且较接近—— 假设的名义厚度tn合理
容器外部:焊接的总长不小于 筒体外圆周长的1/2
3、加强圈的结构设计
工字钢
其它型钢
常用 型钢
扁钢
角钢
材料:多为碳素钢。 筒体为贵重金属,在筒体外部设置碳素钢加强圈, 节省贵重金属。
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
第四章 外压容器设计
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
特点:反复试算,比较繁琐。
图算法
解析法
外压圆筒设计
第三节 外压圆筒的设计计算
图算法原理:(标准规范采用)
03
为避开材料的弹性模量E(塑性状态为变量),采用应变表征失稳时的特征:
外压圆筒计算

《外压圆筒计算》原始数据及计算结果表~~~~~~~~~~~~~~设计单位:武汉纽威制药机械有限公司日期:2011.8 共2页第1页━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━序号名称单位符号数值━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━1 设计外压力(输入正值)....................................................... MPa P 0.1 *2 圆筒内直径.............................................................................. mm Di 1400 *3 设计温度................................................................................... ℃t 120 *4 计算外压力见3.4.4说明(同设计外压力输入0).............. MPa Pc 0 *5 名义厚度(自动计算输入0)............................................... mm δn 0 *6 筒体厚度腐蚀裕量.................................................................. mm C 0 *7 筒体长度(不计封头).............................................................. mm L1 1800 *8 凸形封头曲面深度(标准椭圆形输入0)............................ mm hi 0 *9 凸形封头直边高度(自动计算输入0)................................ mm H0 0 *10 筒体上有无加强圈代号:1..无加强圈;2..有加强圈;选择1~2,A12,1(无加强圈) *11 筒体厚度负偏差(自动查询输入0)..................................... mm C 0 *12 筒体计算长度(图6-1的L 两端封头相同输入0).............. mm L 1297 *13 请选择筒体查系数B 的曲线图代号1~~8 (代码).... CH 8(图6-10) *14 筒体材料................................................................... *(钢板)00Cr17Ni14Mo2 GB 423715 设计温度下筒体材料的许用应力(60mm;120℃)................. MPa 117.6416 设计温度下筒体材料的屈 限(60mm;120℃)..................... MPa σ 139.617 筒体材料类型代号(1为钢板;2为钢管) ................................. LX1 . 118 确定的计算压力........................................................................ MPa Pc .119 采用的封头曲面深度 ................................................................ mm hi 35020 采用的封头直边高度JB/T 4746-2002 ..................................... mm H0 2521 无加强圈时筒体的计算长度(输入的) .................................... mm L 129722 自动计算的初始厚度 ................................................................ mm δo 3.523 重算时的筒体厚度.................................................................... mm δo 524 设计温度下筒体材料的许用应力(5mm;120℃)...................... MPa 117.6425 设计温度下筒体材料的屈 限(5mm;120℃).......................... MPa σ 139.626 查询负偏差按GB 709-88 ......................................................... mm FP .427 采用的筒体厚度负偏差............................................................. mm C .428 筒体厚度附加量C=C +C ................................................ mm C .429 筒体外径.................................................................................... mm Do 141030 筒体的有效厚度...................................................................... mm δe 4.631 GB 150-1998 P30图6-2纵轴值L/Do ..................................... MM .919858232 GB 150-1998 P30图6-2曲线值Do/δe ................................... NN 306.521733 依MM、NN查GB 150-1998 P30图6-2求得的系数A ........ . A 2.737663E-0434 设计温度下筒体材料的弹性模量(按图6-3~6-10) ................... MPa E 187468.635 查GB 150-1998 曲线图6-10 计算的系数B .......................... MPa B 34.1892736 许用外压力(Do/δe>=20)GB 150-1998 P29式6-1 ................... MPa P .111539537 自动计算的设计厚度含附加量............................................... mm δn2 4.875设计单位:武汉纽威制药机械有限公司日期:2011.8 共2页第2页━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━序号名称单位符号数值━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━38 筒体厚度附加量C=C +C ............................................. mm C .439 输入圆整的筒体的名义厚度................................................... mm δn 540 自动计算圆整的筒体名义厚度............................................ mm δn 541 许用外压力与计算外压力之比 P /Pc ............................. 倍ΔP1 1.11539542 外压圆筒计算通过通过43 圆筒质量(不含封头) ............................................................... kg Tz 311.844744 外压圆筒计算结束。
外压容器设计11

三、加强圈的设计计算
二、加强圈尺寸
参数A、B
cr
A
Pcr Do 2Ete
(4 - 26)
式中te为圆筒在设置加强圈后的等效壁厚
38
三、加强圈图算法的基本步骤
(1)设定加强圈个数n,计算加强圈间距Ls=L/(n-1)
(2)选定加强圈(扁钢、角钢或工字钢), 计算B,
(3)由B查A,若交不到,计算A
▪ 有一个圆筒容器,材料为20R,E 2105 MPa ▪ 圆筒内径D2=1000mm,壁厚S=10mm,长度
为20m,常温操作,承受均匀气体外压力, 求: ▪ 1、当圆筒椭圆度为0.2%时的临界压力; ▪ 2、当圆筒长度改为2m时重新计算。
52
44
三、外压法兰的计算
外压法兰仍利用Water 对内压法兰建立的 应力公式进行计算。
在预紧情况下,外压法兰与内压法兰的力 矩计算相同;
在操作状态下,因流体轴向静压力的方向 与内压时相反,升压时螺栓力降低,垫片反 力反而增加,故可以假定W=0,P3=P1+P2
45
三、外压法兰的计算
46
三、外压法兰的计算
m
“ 设计规定”稳定性系数m=3,此时要求了圆筒的 不圆度e
16
第二节 外压薄壁圆筒的稳定性计算
一、受均布侧向外压的长圆筒的临界压力 二、受均布侧向外压短圆筒的临界压力 三、轴向受压圆筒的临界应力
17
一、受均布侧向外压的长圆筒的临界压力
基本概念:长圆筒与短圆筒 当圆筒的长度与直径之比较大时,其中间部
29
第三节 外压圆筒的设计计算
一、解析法 二、图算法
30
第三节 外压圆筒的设计计算
一、解析法 基本原则:
第五章--外压圆筒与封头的设计

刚性筒是强度破坏,计算时只要满足强度要求即 可。
21
四、临界压力的理论计算公式
1、长圆筒
pcr
2Et
1 2
e
D0
3
pcr 临界压力, MPa; e 筒体的有效壁厚, mm;
失稳后的情况
10
11
二、容器失稳型式的分类
1、按受力方向分为侧向失稳与轴向失稳
侧向失稳
p
容器由均匀侧向外压 引起的失稳,叫侧向 失稳 特点:横截面 由原来的圆形被压瘪 而呈现波形
外压圆筒侧向失稳后的形状
波数与临界压力Pcr相对应,较少的 波纹数对应较低的临界压力。
12
轴向失稳
轴向失稳由ቤተ መጻሕፍቲ ባይዱ向压应力引起,失稳后其 经线由原来的直线变为波形线,而横断 面仍为圆形。
24
2、钢制短圆筒
pcr 2.59E t
e / D0
L / D0
2.5
L 筒体的计算长度, mm;
圆筒外部或内部两相邻刚性构件之间的最大距离
25
外压圆筒的计算长度L如何确定? (1)当圆筒上无加强圈时:
L=圆筒长+2×封头直边段+ 2×1/3封头曲面深度
26
外压圆筒的计算长度L如何确定?
第五章 外压圆筒与封头的设计
教学重点: (1)失稳和临界压力的概念; (2)影响临界压力的因素; (3)外压容器的图算法设计。
教学难点: 图算法的原理。
1
压力容器失效常以三种形式表现出来:
①强度;②刚度;③稳定性
是压力容器标准所要控制的几种失效形式。
外压容器的图算法(精)

[ p] 0.0833 E(
e
Ro
)
2
(5)比较:若[p]≥Pc,则以上假设的壁厚满足要 求,否则重新假设,重复以上步骤,直至[P]大于并接 近Pc为止。
【例题】
确定一外压圆筒的壁厚,如图所示。已 知:设计压力 p 0.2MPa , Di 1800mm ,设 t 250 C ,取壁厚附加量C=2mm, 计温度 材料Q345R。取 pc p 0.2MPa
hi
hi / 3 L
L 10350
hi / 3 L
【例题】
解:(1)假设名义厚度
n 14mm
e n C 12mm
D0 Di 2 n 1800 2 14 1828 mm
L 10350 / 3 3450 mm
L / D0 3450/ 1828 1.9
p B
e
D0
若A值落在设计温度下材料线的左方,则直接用 下式计算许用外压力[p],即
e 2 p EA 3 D0
n
一、外压圆筒的图算法
(5)比较:若[P]≥Pc,则以上假设的满足要求, 否则须重新假设名义厚度,重复上述步骤,直至[P] 大于并接近Pc为止。
二、外压封头的图算法
D0 / e 1828/ 12 152
【例题】
解: (2)由图1-134查得A=0.00035; (3)由图1-136可知A=0.00035,落在 250 C 线(插值)直线段,所以
1.86 1.69 E 10 5 1.775 10 5 MPa 2
【例题】
2 2 B EA 1.775 10 5 0.00035 41.42 MPa 3 3 (或从图中直接查取B值)
4.3.2_圆筒设计(外压)_

4.3.2.4 外压圆筒设计
图算法原理 工程设计方法
重 点
主要内容
圆筒轴向许用应力的确定 有关设计参数的规定 加强圈的设计计算
难点
4.3.2.4 外压圆筒设计
过程设备设计
复习
p
4.3.2.4 外压圆筒设计
p
p
a 失稳现象
b
c
外载荷达到某一临界值,发生径向挠曲,并迅速 外载荷达到某一临界值,发生径向挠曲, 压扁或波纹。 增加,沿周向出现压扁或波纹 增加,沿周向出现压扁或波纹。 壳体失稳时所承受的相应压力,称为临界压力, 壳体失稳时所承受的相应压力,称为临界压力, 用Pcr表示。 表示。
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
④根据圆筒类型,选用相应公式计算临界压力 Pcr; 根据圆筒类型, ;
Hale Waihona Puke pcr 选取合适的稳定性安全系数m,计算许用外压[p]= ⑤选取合适的稳定性安全系数 ,计算许用外压 m
的大小。 且较为接近, ⑥比较设计压力 p 和 [p] 的大小。若p≤[p]且较为接近, 且较为接近 则假设的名义厚度δn符合要求;否则应重新假设 , 则假设的名义厚度 符合要求;否则应重新假设δn, 符合要求 重复以上步骤,直到满足要求为止。 重复以上步骤,直到满足要求为止。 解析法求取 外压容器许 用压力
3
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
三、工程设计方法
重点
失稳
薄壁圆筒( 薄壁圆筒(Do/δe≥20) )
外压圆筒 (Do/δe)
Do/δe=20
失稳 厚壁圆筒( 厚壁圆筒(Do/δe<20) ) 强度失效
压力容器设计外压圆筒的设计计算

压力容器设计外压圆筒的设计计算压力容器是一种用于贮存和输送液体或气体的设备,它承受着高压环境下的压力。
外压圆筒是其中一种压力容器的设计方式,其承受的是外部环境对容器的压力作用。
在外压圆筒的设计过程中,需要考虑以下几个方面:1.材料的选择:选取适合承受高压的材料,例如碳钢、不锈钢等。
根据压力容器的使用环境和介质特性,选择合适的材料,以保证容器的安全性和可靠性。
2.外压力的计算:根据容器所在环境的压力情况,计算外压力的大小。
外压的计算包括静态外压和动态外压两种情况,其中静态外压是指容器承受的恒定外力,而动态外压则是指容器承受的变化外力。
3.壁厚的计算:根据外压力的大小和材料的强度特性,计算容器的壁厚。
壁厚的计算是为了保证容器在外压力作用下的强度和刚度,以防止容器发生破裂、变形等事故。
4.稳定性的计算:在设计容器的几何形状时,需要考虑外压力对容器的稳定性的影响。
通过计算容器的抗剪稳定系数和抗弯稳定系数,判断容器是否满足稳定的要求。
5.接头设计:容器的接头连接处是容器的弱点,容易发生泄漏和破裂等事故。
在外压圆筒的设计中,需要经过计算和分析,选择合适的接头类型和连接方式,以保证接头的强度和密封性能。
6.强度计算:容器在外压力作用下,需要具备足够的强度承受力。
通过计算容器的主应力和主应变,确定容器的强度和破坏情况。
7.辅助装置的设计:外压圆筒在使用过程中,需要配备相应的辅助装置,如止回阀、减压阀等,以确保容器内压力的稳定和安全。
在设计完成后,需要进行一系列试验和检验,以验证容器的设计是否满足安全和可靠的要求。
总之,外压圆筒的设计计算是一项复杂而重要的工作,需要充分考虑几个方面的因素,以确保容器在高压环境下的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验压力
pT 1.25 p
带夹套外压容器
夹套容器是由内筒和夹套组成的多腔压力容器,各腔的 设计压力通常是不同的,应在图样上分别注明内筒和夹 套的试验压力值。
内筒试验压力
pT 1.25 p
第三节 外压圆筒的设计计算
夹套: 按内压容器确定试验压力。
注意:
在确定了夹套试验压力后,还必须校核内 筒在该试验压力下的稳定性。 如不能满足外压稳定性要求,则在作夹套 的液压试验时,必须同时在内筒保持一定 的压力,以确保夹套试压时内筒的稳定性。
不论长圆筒或短圆筒,失 稳时周向应变(按单向应 力时的虎克定律)为:
cr
cr
E
pcr Do 2Ete
第三节 外压圆筒的设计计算
将长、短圆筒的 pcr公式分别代入应变式中,得
长圆筒
cr
cr
E
1.1 ( Do )2
te
短圆筒
cr
cr
E
1.30 t Do L Do
pi
)max
的规定
无安全装置时:p=0.1Mpa
2、带夹套的真空容器 p取真空容器的设计压力加上夹套压力
3、其它外压容器(包括带夹套的外压容器)
p应不小于容器正常工作过程中可能出现的最大内
外压力差
即:p≥(po-pi)max
注意:最大内外压差的取值
压力试验
不带夹套的外压容器和真空容器
第三节 外压圆筒的设计计算
计算长度
第三节 外压圆筒的设计计算
计算长度:筒体外部或内部两相邻刚性构件之间的最大距 离,通常封头、法兰、加强圈等均可视为刚性构件。
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
加强圈的设计计算
目的
将度长、圆提筒高转筒pcr化体为稳L短定D2.圆性o59筒。ED,to2t可以有效地减小筒体厚
L/Do、Do/te都有关。 与材料弹性模量E无关,对任何钢材的筒体都适用。
第三节 外压圆筒的设计计算
(2)厚度计算图(不同材料):B-A关系曲线
由L/Do,Do/te—查—图4-11——周向应变A——找出A与 pcr的关系——判定筒体在操作外压力下是否安全。
临界压力pcr,稳定性安全系数m,许用外压力[p],
(b)
第三节 外压圆筒的设计计算
图算法求解过程
第三节 外压圆筒的设计计算
pc≤[p]且较接近—— 假设的名义厚度tn合理 d. pc>[p]——假设tn不合理 ——重设tn,直到满足
第三节 外压圆筒的设计计算
设计压力
四、设计参数
1、真空容器 有安全装置时:p
min10..215M( Ppoa
3、加强圈的结构设计
第三节 外压圆筒的设计计算
扁钢
常用 角钢 型钢 工字钢
其它型钢
设置 位置
容器内部:焊接总长不小于 筒体内圆周长的1/3
容器外部:焊接的总长不小于 筒体外圆周长的1/2
材料:多为碳素钢。 筒体为贵重金属,在筒体外部设置碳素钢加强圈, 节省贵重金属。
第三节 外压圆筒的设计计算
加强圈的形式及连接结构
外压圆筒的设计计算
特点:反复试算,比较 繁琐。
解析法
外压圆筒设计 图算法
图算法原理:(标准规范采用)
第三节 外压圆筒的设计计算
pcr
2.2E
t Do
3
(4-8)
pcr
2.59Et2 LDo Do
t
(4-15)
cr
pcr Do 2te
为避开材料的弹性模量E(塑性状态为变量),采用 应变表征失稳时的特征:
厚壁圆筒(Do/te<20)
失稳 失稳 强度失效
Do/te≥20薄壁筒体,稳定性校核:
第三节 外压圆筒的设计计算
a. 假设名义厚度tn,令te=tn-C,算出L/Do和Do/te;
b. 以L/Do、Do/te值由图4-11查取A值(遇中间插值),若 L/Do值大于50,则用L/Do=50查图;若L/Do值小于0.05, 则用L/Do=0.05查图
加强圈的间距
加强圈设计
截面尺寸 结构设计
第三节 外压圆筒的设计计算
1、加强圈的间距 设置加强圈,必须使其属于短圆筒才有实际作用。 加强圈数量增多,Lmax值减小,筒体厚度减薄;反 之,筒体厚度须增加。
2、加强圈截面尺寸的确定 目 的: 增强筒壁截面的抗弯曲能力
方法思路: 通过增加截面惯性矩 J 来提高筒壁截面的抗 弯曲能力,满足 Js大于并接近J
12~图4-15为几种常用钢材的厚度计算图。温度不同,
曲线不同;
#直线部分表示材料处于弹性,属于弹性失稳, B与A成
正比,由A查B时,若与曲线不相交,则属于弹性失稳,
可由
B 2 EA ,求取B。 3
B [ p]Do t
工程设计方法
第三节 外压圆筒的设计计算
外压圆筒 (Do/te)
薄壁圆筒(Do/te≥20) Do/te=20
故
pcr=m[p]
cr
cr
E
pcr Do 2Ete
cr
m[ p]Do 2Ete
即
Do[ p] te
2 m
E cr
第三节 外压圆筒的设计计算
令 B= [ p]Do ,GB150取m=3,代入上式得:
te
B
2 3
E cr
2 3
cr
由该式建立B与A的关系图
#以A和B为坐标轴的厚度计算图,以σ-ε为基础,图4-
c. 由材料选——厚度计算图(图4-12~图4-15)
第三节 外压圆筒的设计计算
根 系 数A 据 设计温度
B 按(a)式计算许用外压[p]
温度对应的曲线在 图上没有时,插值
p B
(a)
Do te
A在材料线左方时,B 2AE ,按(b)式计算许用外压
[p]:
3
p
2 AE
3Do te
1.5
cr f (L / Do , Do / te )
第三节 外压圆筒的设计计算
(1)几何参数计算图:L/Do-Do/te-A关系曲线
令A=εcr,以A作为横坐标,L/Do作为纵坐标,
Do /te作为参量绘成曲线;见图4-11 长圆筒——与纵坐标平行的直线簇,失稳时
周向应变A与L/Do无关; 短圆筒——斜平行线簇,失稳时A与
加强圈两侧的间断焊缝可错开或并排,但焊缝之间 的最大间隙对外加强圈为8δn,对内加强圈12δn(δn为 筒体的名义厚度)。
3、加强圈的结构设计(续)
第三节 外压圆筒的设计计算
要求:
# 加强圈应整圈围绕在筒体的圆周上,不许任意 削弱或割断。
# 设置在内部的加强圈,若开设排液孔、排气孔, 削弱或割断的弧长不得大于图4-18所给定的值。