4.3.2圆筒设计(外压)解析
外压圆筒设计

才能保证其对筒体的支承作用。
加强圈最大间距:
• 外压圆筒加强圈间距已选定,可按上述图算法确定出筒体厚 •度;如果筒体的D0/se已确定,可从下式解出加强圈最大间距:
• 加强圈实际间距小于或等于算出间距,表明该圆筒能安全承受设计压力。加
有关。
2.设计外压容器
•设计外压容器应使许用外压[p]小于临界压力Pcr,即:稳定条
件
由于Pcr或[p]都与筒体的几何尺寸( δ e、D0、L)有关,通常 采用(一)试算法:
• 1)由工艺条件定内径和筒体长度先假定一个δ e,计 算:
•2)根据筒体计算长度判断属于长圆筒还是短圆筒,再代入相应临界压力计算 式。
圆筒发生了褶绉。
•(2)局部失稳
•
在支座或其他支承处以及在安装运输中由于过大的局部外压也可能引
起
• 局部失稳。
1)临界压力:导致筒体失稳的外压,Pcr
2)临界应力:筒体在临界压力作用下,筒壁内的环向压缩应力 ,
以σcr表示。
a.外压低于Pcr,在压力卸除后能恢复其原先形状,即:发生弹性变形
。
3b).达临到界或压高力于与Pc哪r时些,因产素生有的关曲波形将是不可能恢复的。 ?
• 3)求出相应[p],然后比较[p]是否大于或接近设计压力p,判断假设是否合理
。
外压容器的设计压力:不小于正常工作过程中可能出现的最大内 外压力差。
1)真空容器: a.有安全控制装置(真空泄放阀),取1.25倍最大内外压
差或0.1MPa中较小值; b.无安全控制装置,取0.1MPa。
2)带夹套容器:真空容器的设计压力再加上夹套设计压力作为 内筒容器设计压力。
外压容器的图算法(精)

[ p] 0.0833 E(
e
Ro
)
2
(5)比较:若[p]≥Pc,则以上假设的壁厚满足要 求,否则重新假设,重复以上步骤,直至[P]大于并接 近Pc为止。
【例题】
确定一外压圆筒的壁厚,如图所示。已 知:设计压力 p 0.2MPa , Di 1800mm ,设 t 250 C ,取壁厚附加量C=2mm, 计温度 材料Q345R。取 pc p 0.2MPa
hi
hi / 3 L
L 10350
hi / 3 L
【例题】
解:(1)假设名义厚度
n 14mm
e n C 12mm
D0 Di 2 n 1800 2 14 1828 mm
L 10350 / 3 3450 mm
L / D0 3450/ 1828 1.9
p B
e
D0
若A值落在设计温度下材料线的左方,则直接用 下式计算许用外压力[p],即
e 2 p EA 3 D0
n
一、外压圆筒的图算法
(5)比较:若[P]≥Pc,则以上假设的满足要求, 否则须重新假设名义厚度,重复上述步骤,直至[P] 大于并接近Pc为止。
二、外压封头的图算法
D0 / e 1828/ 12 152
【例题】
解: (2)由图1-134查得A=0.00035; (3)由图1-136可知A=0.00035,落在 250 C 线(插值)直线段,所以
1.86 1.69 E 10 5 1.775 10 5 MPa 2
【例题】
2 2 B EA 1.775 10 5 0.00035 41.42 MPa 3 3 (或从图中直接查取B值)
第四章 外压圆筒和封头的设计

4
临界长度: 临界长度:
Lcr = 1.17 D0
D0 Se
(4-4) )
可按长圆筒进行计算。 当 L ≻ L cr 时,可按长圆筒进行计算。
1.3 外压圆筒的设计计算(External Pressure Vessel Design) 外压圆筒的设计计算( )
外压圆筒的临界压力公式是按一定的理想状态下推导出来的。实际筒体往往存在几何形状不规则、 外压圆筒的临界压力公式是按一定的理想状态下推导出来的。 实际筒体往往存在几何形状不规则、 材料不均匀、载荷不均匀等,因此确定许用工作外压时, 材料不均匀、载荷不均匀等,因此确定许用工作外压时,必须考虑稳定安全系数m,即
[ p] =
B D0 Se
值落在设计温度下材料线的左方, 若A值落在设计温度下材料线的左方,则按下式计算许用外压力 [ p ] : 值落在设计温 t (4-8) ) [ p] = 3 D0 Se 则需重设S 重复上述计算步骤, (5)比较计算压力 pc 与 [ p ],若 pc ≻ [ p ] ,则需重设 n ,重复上述计算步骤,直到 [ p ]大于且接近 )
外压圆筒与封头的设计( 第四章 外压圆筒与封头的设计(Design of External Pressure Cylinder and Head)
1. 外压圆筒的工程设计 1.1 基本概念
外压容器( 外压容器(External Pressure Container): 凡是外部压力大于内部压力的容器均称为外压容器。如减压蒸馏塔、真空冷凝器、 凡是外部压力大于内部压力的容器均称为外压容器。如减压蒸馏塔、真空冷凝器、带夹套的反应 釜等。 釜等。 外压容器的失稳( 外压容器的失稳(Instability of External Pressure Container ): 壳体在外压作用下承受压应力,但往往是壳壁的压应力还远小于筒体材料的屈服极限时, 壳体在外压作用下承受压应力,但往往是壳壁的压应力还远小于筒体材料的屈服极限时,筒体就 失去原来的几何形状被压瘪或褶皱,这种在外压作用下壳体突然被压瘪的现象称为失稳。 失去原来的几何形状被压瘪或褶皱,这种在外压作用下壳体突然被压瘪的现象称为失稳。失稳是 外压容器失效的主要形式。 外压容器失效的主要形式。 容器失稳型式的分类:容器的失稳形式可分为側向、轴向及局部失稳等几种。 容器失稳型式的分类:容器的失稳形式可分为側向、轴向及局部失稳等几种。
外压圆筒和封头的设计

加强圈结构 加强圈自身在环向的连接要用对接焊,与筒体的连接可采用连续焊或间断焊。装在筒体外部 的坚强圈,其每侧间断焊的总长应不小于容器外圆周长度的二分之一;加强圈装在内部时则 应不少于圆周长度的三分之一。 所需加强圈的最大间距:
Ls 0.86 E t
D0 Se p D0
2.5
pc p
pcr m
(4-5)
对圆筒、锥壳取m=3,球壳、椭圆形和碟形封头取m=15。 由于外压圆筒壁厚的理论计算方法非常复杂,《钢制压力容器》GB150-1998推荐采用图算法。 一、算图的由来(Origin of Rendering) 将长、短圆筒的临界压力计算公式归纳成:
S pcr KE t e D0
S
2 pc
t
t
Qpc D i
式中Q为系数,根据 pc 和 Ri Di 由图查取。
二、椭圆形封头(Elliptical Head) 按外压球壳图算法进行设计,其中椭圆形封头的当量球壳外半径R0按下式确定:
R0 K1D0
D0为椭圆形封头的外径,K1为由椭圆封头长短轴之比确定的形状系数。
将以上关系绘成曲线,即为外压圆筒几何参数计算图,该图适用与任何材料的圆筒。
圆筒许用外应力
pcr KE Se p 3 D0 m
t
3
p D0 KE t Se 2 KE t Se 2 2 AE t cr 3 D0 3 2 D0 3 3 Se
A
系数A>0.1时,取A=0.1。
1.1
D0
Se
2
(4-9)
(2)按下式计算 p 1和 p 2,取两者中的较小值为许用外压力 p ,
外压圆筒计算

《外压圆筒计算》原始数据及计算结果表~~~~~~~~~~~~~~设计单位:武汉纽威制药机械有限公司日期:2011.8 共2页第1页━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━序号名称单位符号数值━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━1 设计外压力(输入正值)....................................................... MPa P 0.1 *2 圆筒内直径.............................................................................. mm Di 1400 *3 设计温度................................................................................... ℃t 120 *4 计算外压力见3.4.4说明(同设计外压力输入0).............. MPa Pc 0 *5 名义厚度(自动计算输入0)............................................... mm δn 0 *6 筒体厚度腐蚀裕量.................................................................. mm C 0 *7 筒体长度(不计封头).............................................................. mm L1 1800 *8 凸形封头曲面深度(标准椭圆形输入0)............................ mm hi 0 *9 凸形封头直边高度(自动计算输入0)................................ mm H0 0 *10 筒体上有无加强圈代号:1..无加强圈;2..有加强圈;选择1~2,A12,1(无加强圈) *11 筒体厚度负偏差(自动查询输入0)..................................... mm C 0 *12 筒体计算长度(图6-1的L 两端封头相同输入0).............. mm L 1297 *13 请选择筒体查系数B 的曲线图代号1~~8 (代码).... CH 8(图6-10) *14 筒体材料................................................................... *(钢板)00Cr17Ni14Mo2 GB 423715 设计温度下筒体材料的许用应力(60mm;120℃)................. MPa 117.6416 设计温度下筒体材料的屈 限(60mm;120℃)..................... MPa σ 139.617 筒体材料类型代号(1为钢板;2为钢管) ................................. LX1 . 118 确定的计算压力........................................................................ MPa Pc .119 采用的封头曲面深度 ................................................................ mm hi 35020 采用的封头直边高度JB/T 4746-2002 ..................................... mm H0 2521 无加强圈时筒体的计算长度(输入的) .................................... mm L 129722 自动计算的初始厚度 ................................................................ mm δo 3.523 重算时的筒体厚度.................................................................... mm δo 524 设计温度下筒体材料的许用应力(5mm;120℃)...................... MPa 117.6425 设计温度下筒体材料的屈 限(5mm;120℃).......................... MPa σ 139.626 查询负偏差按GB 709-88 ......................................................... mm FP .427 采用的筒体厚度负偏差............................................................. mm C .428 筒体厚度附加量C=C +C ................................................ mm C .429 筒体外径.................................................................................... mm Do 141030 筒体的有效厚度...................................................................... mm δe 4.631 GB 150-1998 P30图6-2纵轴值L/Do ..................................... MM .919858232 GB 150-1998 P30图6-2曲线值Do/δe ................................... NN 306.521733 依MM、NN查GB 150-1998 P30图6-2求得的系数A ........ . A 2.737663E-0434 设计温度下筒体材料的弹性模量(按图6-3~6-10) ................... MPa E 187468.635 查GB 150-1998 曲线图6-10 计算的系数B .......................... MPa B 34.1892736 许用外压力(Do/δe>=20)GB 150-1998 P29式6-1 ................... MPa P .111539537 自动计算的设计厚度含附加量............................................... mm δn2 4.875设计单位:武汉纽威制药机械有限公司日期:2011.8 共2页第2页━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━序号名称单位符号数值━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━38 筒体厚度附加量C=C +C ............................................. mm C .439 输入圆整的筒体的名义厚度................................................... mm δn 540 自动计算圆整的筒体名义厚度............................................ mm δn 541 许用外压力与计算外压力之比 P /Pc ............................. 倍ΔP1 1.11539542 外压圆筒计算通过通过43 圆筒质量(不含封头) ............................................................... kg Tz 311.844744 外压圆筒计算结束。
压力容器设计外压圆筒的设计计算

压力容器设计外压圆筒的设计计算压力容器是一种用于贮存和输送液体或气体的设备,它承受着高压环境下的压力。
外压圆筒是其中一种压力容器的设计方式,其承受的是外部环境对容器的压力作用。
在外压圆筒的设计过程中,需要考虑以下几个方面:1.材料的选择:选取适合承受高压的材料,例如碳钢、不锈钢等。
根据压力容器的使用环境和介质特性,选择合适的材料,以保证容器的安全性和可靠性。
2.外压力的计算:根据容器所在环境的压力情况,计算外压力的大小。
外压的计算包括静态外压和动态外压两种情况,其中静态外压是指容器承受的恒定外力,而动态外压则是指容器承受的变化外力。
3.壁厚的计算:根据外压力的大小和材料的强度特性,计算容器的壁厚。
壁厚的计算是为了保证容器在外压力作用下的强度和刚度,以防止容器发生破裂、变形等事故。
4.稳定性的计算:在设计容器的几何形状时,需要考虑外压力对容器的稳定性的影响。
通过计算容器的抗剪稳定系数和抗弯稳定系数,判断容器是否满足稳定的要求。
5.接头设计:容器的接头连接处是容器的弱点,容易发生泄漏和破裂等事故。
在外压圆筒的设计中,需要经过计算和分析,选择合适的接头类型和连接方式,以保证接头的强度和密封性能。
6.强度计算:容器在外压力作用下,需要具备足够的强度承受力。
通过计算容器的主应力和主应变,确定容器的强度和破坏情况。
7.辅助装置的设计:外压圆筒在使用过程中,需要配备相应的辅助装置,如止回阀、减压阀等,以确保容器内压力的稳定和安全。
在设计完成后,需要进行一系列试验和检验,以验证容器的设计是否满足安全和可靠的要求。
总之,外压圆筒的设计计算是一项复杂而重要的工作,需要充分考虑几个方面的因素,以确保容器在高压环境下的安全运行。
《化工机械基础》第5章 外压圆筒与封头解析

5.1 概述 5.1.1.外压容器的失稳 均匀外压——容器壁 内产生压应力; 外压在小于一定值时 ——保持稳定状态; 外压达到一定值时, 容器就失去原有稳定性突 然瘪塌,变形不能恢复。
——失稳
1
回忆压杆失稳过程中应力的变化:
※压力小于一定值时,卸掉载荷,压杆恢复原形。 ※压力达到一定值时,压杆突然弯曲变形,变形不 能恢复。 ※失稳是瞬间发生的,压应力突然变为弯曲应力。
2.筒体几何尺寸的影响
Pcr =500水柱 壁厚为试件(1)的3/5,其他相同 Pcr =300水柱 长度为试件(2)的2倍,其他相同 Pcr =120~150水柱
比试件(3)增加一个加强圈,其他相同 12 Pcr =300水柱
序 号 1 2 3 4
筒径 D mm 90 90 90 90
筒长 L mm 175 175 350 350
7
(3).局部失稳
载荷:局部压力过大
局部范围的壳体壁内的压 应力突变为弯曲应力。
8
局部失稳:
9
5.2 临界压力
5.2.1 .临界压力概念(pcr)
当外压低于临界压力(p< pcr)时, 压缩变形可以恢复;
当外压等于临界压力( p= pcr)时,壁内压缩应力和变 形发生突变,变形不能恢复。
导致筒体失稳的压力称为该筒体的临界压力。
13
3.圆筒的椭圆度和材料不均匀性的影响
筒体失稳不是因为它存在椭圆度或材料不 均匀而引起的。但是,筒体存在椭圆度或材 料不均匀,会使其失稳提前发生。 椭圆度e=(Dmax –Dmin)/DN
14
5.2.3 长圆筒、短圆筒及刚性圆筒 1.钢制长圆筒 临界压力公式:
2E t S e 3 p cr ( ) 2 1 DO 钢制圆筒 0.3 则上式成为 Se 3 p cr 2.2 E ( ) Do
外压圆筒与封头的设计

5.2临界压力
5.2.1临界压力的概念 临界压力:导致筒体失稳的压力。以pcr表示。 5.2.2影响临界压力的因素 1、筒体几何尺寸的影响 主要考虑筒体的L/D和S/D。 2、筒体材料性能的影响 圆筒失稳时,在绝大多数情况下,筒壁内的压 应力并没有达到材料的屈服点(是弹性失稳) 。 故这种情况失稳与材料的屈服点无关,只与材料的 弹性模数E和泊松比μ有关。材料的弹性模数E和泊 松比μ越大,其抵抗变形的能力就越强,因而其临 界压力也就越高。
上一内容 下一内容 回主目录
返回
2019/1/10
5.4外压球壳与凸形封头的设计
5.4.2凸面受压封头的设计
凸面受压封头所需的最小厚度,按受外压球壳和 球形封头图算法进行设计,具体要求见表5-2。
例题
上一内容
下一内容
回主目录
返回
2019/1/10
5.5外压圆筒加强圈的设计
5.5.1加强圈的作用与结构
上一内容
下一内容
回主目录
返回
2019/1/10
5.5外压圆筒加强圈的设计
加强圈允许割开或削弱而不需补强的最大弧长间断 值,可由图5-19查得。
上一内容
下一内容
回主目录
返回
2019/1/10
加强圈的作用:缩短圆筒的长度,增加圆筒的刚 性。
常用加强圈的结构:如图5-16所示。 5.5.2加强圈的间距 如果筒体的Do、Se已经确定,使该筒体安全承受 所规定的外压pc所需加强圈的最大间距,可以由钢 制短圆筒的临界压力的计算公式解出:
( Se / Do ) Ls 2.59 E Do mp
t 2.5
上一内容 下一内容 回主目录
返回
2019/1/10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点:反复试算
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
二、图算法原理(标准规范采用)
难点
假设:圆筒仅受径向均匀外压,而不受轴向外压,与圆环一 样处于单向(周向)应力状态。
3
将式
t pcr 2.2 E D o
2
(2-92)
厚度 t 改为有效 厚度δe,得:
2.59 Et pcr (2-97) LDO DO t
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
二、图算法原理(续)
长圆筒临界压力
pcr 2.2 E (
e
Do
)
3
短圆筒临界压力
pcr = 2.59E
L Do
δ e 2.5 ( ) Do δ e 0.5 0.45( ) Do
令 B=
代入式(4-21)整理得:
cr pcr D o cr E 2Ee
(4-21)
Do [ p]
e
2 E cr m
D0 p e
4.3.2.4 外压圆筒设计
二、图算法原理(续)
4.3.2.4 外压圆筒设计
过程设备设计
(2)厚度计算图(不同材料):B—A关系曲线(续)
2 2 2 B E cr E cr cr m 3 3
短圆筒
刚性圆筒 这种壳体的L/Do较小,而t / Do较大,故刚性较好。 其破坏原因是由于器壁内的应力超过了材料屈极 限所致。计算时,只要满足强度要求即可。
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
长圆筒临界压力:
t pcr 2.2 E D o
过程设备设计
4.3.2.4 外压圆筒设计
图算法原理
工程设计方法
重 点
主要内容
圆筒轴向许用应力的确定 有关设计参数的规定 加强圈的设计计算
难点
4.3.2.4 外压圆筒设计
过程设备设计
复习
p
4.3.2.4 外压圆筒设计
p
p
a
失稳现象
b
c
外载荷达到某一临界值,发生径向挠曲,并迅速 增加,沿周向出现压扁或波纹。 壳体失稳时所承受的相应压力,称为临界压力, 用Pcr表示。
临界压力
受周向均匀外压薄壁回转壳体的弹性失稳问题
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
外压圆筒分成三类: 长圆筒 两端的边界影响可以忽略,压瘪时波数 n=2 ,临 界压力Pcr仅与t / Do有关,而与L/Do无关。 两端的边界影响显著,压瘪时波数为 n>2 的正整 数, Pcr不仅与t / Do有关,而且与L/Do有关。
GB150, பைடு நூலகம்SME Ⅷ-1 均取m=3,代入上式得:
(4-25)
εcr
A
ζcr
B
建立B与A的关系图
4.3.2.4 外压圆筒设计
二、图算法原理(续)
4.3.2.4 外压圆筒设计
过程设备设计
(2)厚度计算图(不同材料):B—A关系曲线(续) 若利用材料单向拉伸应力——应变关系 对于钢材(不计Bauschinger效应) ,拉伸曲线与压缩曲线 大致相同,将纵坐标乘以 2/3,即可作出B与A的关系曲线。
的虎克定律)为:
(4-21)
为避开材料的弹性模量E(塑性状态为变
量),采用应变表征失稳时的特征。
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计 二、图算法原理(续) 将长、短圆筒的Pcr公式分别代入应变式中,得 1 .1 cr 长圆筒 D ( 0 )2
过程设备设计
(4-22)
e
短圆筒
cr
L 0.5 Do 1.5 D 0.45( ) ( ) e o e
1.3 Do
(4-23)
cr f ( L / Do , Do / e )
(4-24)
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计 二、图算法原理(续) (1)几何参数计算图:
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计 二、图算法原理(续) 圆筒在Pcr作用下,
过程设备设计
产生的周向应力
不论长圆筒或短圆筒,失稳
pcr Do cr 2 e
cr pcr D o cr E 2Ee
代入长圆 筒、短圆 筒临界压 力公式
时周向应变(按单向应力时
注 意
4.3.2.4 外压圆筒设计
特点
图4-6
外压或轴向
受压圆筒和 管子几何参 数计算图 (用于所有 材料) εcr
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
(2)厚度计算图(不同材料):B—A关系曲线 已知 L/Do,Do/δe 查几何算图 (图4-6)
周向应变A(横坐标)
过程设备设计
与材料弹性模量E 无关,对任何材料
L/Do—Do/δe—A 关系曲线
的筒体都适用
令 A=εcr , 以A作为横坐标,L/Do作为纵坐标, Do/δe作为参量绘成曲线;见图4-6 长圆筒——与纵坐标平行的直线簇,失稳时 周向应变A与L/Do无关; 短圆筒——斜平行线簇,失稳时A与 L/Do、Do/δe 都有关。
找出A—Pcr 的关系(类似于εcr—ζcr)
判定筒体在操作外压力下是否安全
4.3.2.4 外压圆筒设计
二、图算法原理(续)
4.3.2.4 外压圆筒设计
过程设备设计
(2)厚度计算图(不同材料):B—A关系曲线(续)
临界压力Pcr,稳定性安全系数m,许用外压力[p],
故
pcr=m[p]
m[p]D o cr 2 E e
3
(2-92)
短圆筒临界压力:
2.59 Et pcr LDO DO t
2
(2-97)
临界长度Lcr :
Lcr 1.17Do
Do t
(2-98)
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计 解析法 外压圆筒设计 图算法
过程设备设计
一、解析法求取外压容器许用压力 ①假设筒体的名义厚度δn; ②计算有效厚度δe; ③求出临界长度Lcr,将圆筒的外压计算长度L与Lcr进行 比较,判断圆筒属于长圆筒还是短圆筒;
4.3.2.4 外压圆筒设计
4.3.2.4 外压圆筒设计
过程设备设计
④根据圆筒类型,选用相应公式计算临界压力 Pcr;
pcr ⑤选取合适的稳定性安全系数m,计算许用外压[p]= m
⑥比较设计压力 p 和 [p] 的大小。若p≤[p]且较为接近, 则假设的名义厚度δn符合要求;否则应重新假设δn, 重复以上步骤,直到满足要求为止。 解析法求取 外压容器许 用压力