实验六 生物氧化与电子传递

合集下载

《生物化学》生物氧化-电子传递和氧化磷酸化

《生物化学》生物氧化-电子传递和氧化磷酸化
真核生物的电子传递和氧化磷酸化均在线粒体 内膜上进行。原核生物则在质膜上进行。
线粒体结构
外膜: 平滑,含约50%脂类和50%蛋白,蛋白 质中有些可以形成孔道蛋白,能通过分子量 小于4000-5000的物质。
内膜: 含约20%脂类和80%蛋白。它是细胞质 和线粒体基质之间的主要屏障。内膜有许多 向内的折叠,称为嵴。嵴与嵴之间形成区室。 内膜上有许多球状颗粒(内膜球体),内膜 还含有许多富含蛋白质的跨膜颗粒(如电子 传递链颗粒、跨膜运送颗粒等)。
二、氧化磷酸化偶联部位及P/O比
1、P/O比:
1940年,S.Ochoa测定了在呼吸链中O2的消耗与 ATP生成的关系,提出P/O比的概念。
当一对电子经呼吸链传给氧(1/2O2)的过程中所产 生的ATP分子数。实质是伴随ADP磷酸化所消耗的无 机磷酸的分子数与消耗分子氧数之比,称为P/O比。
目前认为,每个NADH+H+的电子对,经传递能将10个 质子泵出,而琥珀酸则为6个质子,每驱动一个ATP合 成需4个质子,则NADH+H+经呼吸链氧化P/O比为2.5 (3), FADH2经呼吸链氧化P/O比为1.5 (2 )。
电子传递抑制剂的使用是研究呼吸链中 电子传递体顺序的有效方法。(阻断部位物 质的氧化-还原状态可以测出)
2)常用的几种电子传递 抑制剂及其作用部位
➢鱼藤酮、安密妥、杀粉蝶菌素: 其作用是 阻 断电子在NADH-Q还原酶内的传递,所以阻断 了电子由NADH向CoQ的传递。
➢抗霉素A:干扰电子在细胞色素还原酶中 Cytb上的传递,所以阻断电子由QH2向CytC1 的传递。
HC OH
HC OH 接受的氢原子
HC OH
HC OH
HC OH

生物体内的氧化还原反应与电子传递

生物体内的氧化还原反应与电子传递

生物体内的氧化还原反应与电子传递氧化还原反应是指物质中电子的转移,其中氧化剂接受电子,而还原剂则提供电子。

生物体内的氧化还原反应和电子传递是生命活动的重要组成部分,驱动着细胞代谢和细胞呼吸。

在这篇文章中,我们将探讨生物体内氧化还原反应与电子传递的相关机制。

1. 生物体内氧化还原反应的基础在生物体内,氧化还原反应的基础是分子中的原子之间电子的转移。

从能级角度来看,当一个原子失去电子时,它的能量将升高,并变为一种带正电的离子,也称为氧化剂。

而获得电子的原子将获得能量并变为带负电的离子,也称为还原剂。

生物体内的氧化还原反应通常涉及糖类、脂肪和蛋白质等有机化合物以及氧和水等无机化合物。

2. 酶的作用及其中的去氧化剂和还原剂生物体内的许多酶通过促进氧化还原反应来催化许多生命过程。

生物酶可以作为催化剂来提高氧化还原反应的速率。

常见的生物酶包括脱氢酶、过氧化物酶、还原酶和氧化酶等。

在这些酶中,一些酶起到去氧化剂的作用,即接受电子,而另一些酶则起到还原剂的作用,即提供电子。

通过这种方式,酶可以调节细胞中的氧化还原反应,维持细胞的健康状态。

例如,细胞色素c氧化酶是人体中最重要的酶之一,负责维持细胞的内能平衡。

该酶能够将细胞色素c还原为Fe3+,同时将O2还原为H2O,并同时释放能量和电子。

在这个过程中,氧化还原反应可以用化学方程式来表示为:2Fe2+ + 1/2O2 + 2H+ --> 2Fe3++ H2O。

3. 生物体内的电传递生物体内的电子传递是氧化还原反应的重要组成部分。

电子传递定义为生物体内电荷转移的过程,通常由酶系统和电子传递因子来介导。

电子传递过程也是生命的基础,从而为细胞提供能量、调节代谢、产生ATP以及减轻氧化损伤等等。

生物体内电子传递通常通过线粒体、细胞质以及质膜来实现,产生浓度梯度。

线粒体和质膜通过氢离子的转移来产生浓度梯度。

这些梯度可以使用包括ATP合成酶在内的酶系统来驱动以外的代谢过程。

生物化学第24章生物氧化——电子传递和氧化磷酸化作用

生物化学第24章生物氧化——电子传递和氧化磷酸化作用

原电池的结构
检流计 负极,氧化反应 负极, 正极,还原反应 正极,
电解装置
阴极,还原反应 阴极, 阳极,氧化反应 阳极,
电极电势和电动势
RT [电子受体] 能斯特方程 E n = E 0 + ln b nF [电子供体]
a
式中E 为标准电极电势, 式中 0 为标准电极电势,即反应物和产物的活 度都为1( 如果是气体则为1atm) , 温度 ℃ 下的 度都为 ( 如果是气体则为 ) 温度25℃ 电极电势。规定氢电极的标准电极电势为0。 电极电势。规定氢电极的标准电极电势为 。令标准 氢电极为负极,其它电极为正极, 氢电极为负极 , 其它电极为正极 , 得到电池的电动 此电动势即为其它电极的标准电极电势。 势,此电动势即为其它电极的标准电极电势。 两个电极组成电池的电动势
电子传递链
呼吸电子传递链主要由蛋白质复合体组成, 呼吸电子传递链主要由蛋白质复合体组成 , 在线粒体内膜上有4种参与电子传递的蛋白质复 在线粒体内膜上有 种参与电子传递的蛋白质复 合体, 合体,分别为 NADH-Q还原酶 NADH-Q还原酶(NADH-Q reductase) 还原酶( reductase) 琥珀酸- 还原酶 还原酶( 琥珀酸-Q还原酶(succinate-Q reductase) ) 细胞色素还原酶( 细胞色素还原酶(cytochrome reductase) ) 细胞色素氧化酶( 细胞色素氧化酶(cytochrome oxidase) )
电子传递形成跨膜的 质子梯度
在电子传递过程中, 伴随有H 在电子传递过程中,还伴随有 +从线粒体内膜 的基质侧,向内膜的外侧运输, 的基质侧,向内膜的外侧运输,结果造成跨线粒体 内膜的质子梯度,这样在膜内外既造成质子的浓度 内膜的质子梯度, 梯度,又造成电势梯度, 梯度,又造成电势梯度,这种电化学势梯度贮存有 能量。 能量。也就是电子传递过程中释放的能量转变成跨 线粒体内膜的电化学势梯度中贮存的能量。 线粒体内膜的电化学势梯度中贮存的能量。当质子 由膜的外侧向内侧运动时,推动ATP合成。这个过 合成。 由膜的外侧向内侧运动时,推动 合成 程称为氧化磷酸化。 程称为氧化磷酸化。

《生物化学》生物氧化-电子传递和氧化磷酸化

《生物化学》生物氧化-电子传递和氧化磷酸化
电子在从FADH2转移到CoQ上的标准氧化还 原电势变化不能产生足够的自由能来合成ATP, 因此此步骤没有ATP生成。
延胡索酸
2e+2H+
琥珀酸
FADH2
2Fe3+ 2(Fe-S)
FAD
2Fe2+ Ⅱ
CoQH2 CoQ
3)细胞色素还原酶
(细胞色素bc1复合体、复合体Ⅲ、辅酶Q-细胞色素C还原酶 )
ADP+Pi ATP
ADP+Pi ATP
NADH
FMN 复合体 I
Fe-S
NADH 脱氢酶
CoQ
Cyt b Fe-S Cyt c1
复合物 III
细胞色素 C还原酶
Cyt c
Cyt aa3
复合物 IV
细胞色素C
氧化酶
O2
1) NADH-Q还原酶 (NADH脱氢酶、复合体Ⅰ)
NADH-Q还原酶是电子传递链中第一个质 子泵,它是一个大的蛋白质复合体。
自由能变化(单位:KJ/ mol)
( -0.4 氧 还 -0.2
电 位
0
) 0.2
0.4
NADH
69.5 复合物 I
Q Cyt b
40.5
复合物 III
Cyt c Cyt a
0.6
复合物 IV 102.3
O2
0.8
ADP+Pi ATP 合成1mol ATP需30.5KJ
所以,3个 ATP共截获的能量为: 3×30.5 K=J 43% 69.5+40.5+102.5 KJ
合成酶
血红素
线粒体基质
4)细胞色素氧化酶
(复合体Ⅳ、细胞色素c氧化酶 )
是嵌在线粒体内膜的跨膜蛋白。其辅基包括两个血红 素 cyta、a3 组成及2个铜原子(CuA,CuB),构成4 个氧化-还原活性中心。

生物化学学习题氧化还原反应和电子传递链

生物化学学习题氧化还原反应和电子传递链

生物化学学习题氧化还原反应和电子传递链生物化学学习题: 氧化还原反应和电子传递链在生物化学中,氧化还原反应和电子传递链是两个重要的概念。

氧化还原反应(Redox)涉及氧化和还原两个过程,是生命体内许多关键代谢途径中的核心步骤。

电子传递链是细胞内能量代谢的主要途径之一,通过电子的顺序传递来产生能量。

本文将详细介绍氧化还原反应和电子传递链的基本原理和重要作用。

一、氧化还原反应1. 氧化还原反应概述氧化还原反应是指一种或多种物质的氧化态和还原态之间的相互转化过程。

其中,氧化是指物质失去电子,还原是指物质获得电子。

在生物体中,氧化还原反应常以电子的转移为基础进行。

2. 氧化还原反应中的重要概念(1)氧化剂(oxidizing agent):能够接受电子的物质,它自身被还原。

(2)还原剂(reducing agent):能够给予电子的物质,它自身被氧化。

(3)氧化态(oxidation state):物质在化学反应中失去电子所具有的电荷状态。

(4)还原态(reduction state):物质在化学反应中获得电子所具有的电荷状态。

3. 氧化还原反应在生物体内的作用(1)能量产生:氧化还原反应是产生细胞内能量的重要途径,如细胞呼吸中的氧化过程。

(2)代谢调节:氧化还原反应参与多种代谢途径的调控,如葡萄糖分解、脂肪酸氧化等。

(3)维持氧化还原平衡:细胞内氧化还原反应可以维持细胞的内环境稳定,抵抗外界环境的氧化胁迫。

二、电子传递链1. 电子传递链概述电子传递链是生物体内能量代谢的核心过程之一,位于细胞线粒体内的线粒体内膜上。

通过一系列蛋白质复合物和细胞色素的电子传递,将电子从高能量形式的底物转移到低能量形式的受体,产生质子梯度并最终生成ATP。

2. 电子传递链中的重要组分(1)辅酶:如辅酶NAD+和辅酶FAD。

它们能够接受和给予电子,参与电子传递链的电子传递。

(2)蛋白质复合物:包括复合物Ⅰ、Ⅱ、Ⅲ和Ⅳ。

它们通过相互作用和电子传递来促进电子的输送。

生物氧化-电子传递

生物氧化-电子传递

动物机体能量的产生与转移与利用
营养物质经过生物氧化生成二氧化碳和水, 营养物质经过生物氧化生成二氧化碳和水,在 此过程中释放能量。其中一部分以热的形式释放, 此过程中释放能量。其中一部分以热的形式释放, 另一部分被“截获”并储存到ATP分子中(使 分子中( 另一部分被“截获”并储存到 分子中 ADP+Pi ATP, 即磷酸化),可以作为有用功 即磷酸化), ),可以作为有用功 在各种生理活动,如肌肉收缩(机械能)、 )、神经传 在各种生理活动,如肌肉收缩(机械能)、神经传 电能)、生物合成(化学能)、分泌吸收( )、生物合成 )、分泌吸收 导(电能)、生物合成(化学能)、分泌吸收(渗 透能)中利用。 透能)中利用。 因此, 因此,ATP(三磷酸腺苷)被称为机体中通用 (三磷酸腺苷) 的能量货币。 的能量货币。
高能磷酸化合物有转移其磷酰基的倾向, 高能磷酸化合物有转移其磷酰基的倾向, 形成较低能量的磷酸脂。ATP是磷酰基的传递体 是磷酰基的传递体。 形成较低能量的磷酸脂。ATP是磷酰基的传递体。
线粒体——细胞的动力站 细胞的动力站 线粒体
生物氧化过程主要在线粒体的内膜上进行, 生物氧化过程主要在线粒体的内膜上进行,内膜上分布着 许多的酶和电子传递体,构成两条呼吸链 呼吸链。 许多的酶和电子传递体,构成两条呼吸链。内膜上结合的 颗粒(内膜粒子,或称基粒、三分体等)具有ATP合酶的 颗粒(内膜粒子,或称基粒、三分体等)具有 合酶的 活性, 活性,称FoF1ATPase 。
1、 烟酰胺脱氢酶类
NAD+
辅酶
NADP+
作用: 作用:递氢体
递氢机制
呼吸链
2H + NAD+
NADH + H+

生物氧化与氧化磷酸化—电子传递链

生物氧化与氧化磷酸化—电子传递链

(五)Cytc
接受复合体Ⅲ传递来电子,并传递给复合体Ⅳ 辅基:血红素C 位于膜间隙 可以移动的水溶性电子
20
(六)复合体Ⅳ (Cytc氧化酶 )
将电子从Cyt c传递给分子氧,催化分子氧还原为 H2O, 泵出2个H+ /2e- 。
辅基:Cu-Cu中心(CuA ) 血红素a,血红素a3 Fe-Cu中心( CuB )
多个异戊二烯
半醌型泛醌
泛醌
15
16
17
(四)复合体Ⅲ(CoQ-CytC 还原酶)
1. 接受CoQ传递来的电子,并泵出4个H+ /2e-
2. 还原酶的辅基: 血红素b L
血红素bH
Fe-S
血红素c1
18
4.复合体Ⅲ的电子传递途径:
QH2
Cytb,Fe-S,Cytc1
复合体Ⅲ的电子传递
Cytc
19
8
(二)复合体Ⅱ(琥珀酸-辅酶Q还原酶)
1.另一条呼吸链的入口 2.将电子和氢从琥珀酸传递给CoQ 3.辅基: FAD
Fe-S簇
heme b
4.电子传递途径: 琥珀酸 FAD,Fe-S簇 CoQ
复合体Ⅱ的H2
FADH2 Fe3+S Fe2+S
FAD
21
22
复合体Ⅳ的传递途径: Cytc CuA Cyt a Cyt a 3 C uB O2
23
电 子 传 递 链
24
25
第二节 呼吸链(respiratory chain)
26
一、概念: 呼吸链(respiratory chain):代谢物脱下的氢原子通
过多种酶所催化的连锁反应逐步传递,最终与 氧结合生成水的传递链,也叫电子传递链 ( electron transfer chain )。 递氢体:传递氢的酶或辅酶 电子传递体:传递电子的酶或辅基/辅酶

生物氧化氧化电子传递链和氧化磷酸化作用生物氧化氧化电子

生物氧化氧化电子传递链和氧化磷酸化作用生物氧化氧化电子

11.1生物氧化、氧化电子传递链和氧化磷酸化作用生物氧化、氧化电子传递链和氧化磷酸化作用一、生物氧化的概念和特点。

糖,脂,蛋白质等有机物质在细胞中进行氧化分解,生成CO2,H2O并释放出能量,这个过程称生物氧化。

生物氧化是需氧细胞呼吸代谢过程中的一系列氧化还原作用,又称细胞氧化或细胞呼吸。

特点:反应条件温和,多步反应,逐步放能。

生物氧化在活细胞中进行,pH中性,反应条件温和,一系列酶和电子传递体参与氧化过程,逐步氧化,逐步释放能量,转化成ATP。

真核细胞,生物氧化多在线粒体内进行,在不含线粒体的原核细胞中,生物氧化在细胞膜上进行。

二、氧化电子传递过程生物氧化过程中形成的还原型辅酶(NADH和FADH2),通过电子传递途径,使其重新氧化,此过程称为电子传递过程。

在电子传递过程中,还原型辅酶中的氢以负质子(H —)形式脱下,其电子经一系列的电子传递体(电子传递链)转移,最后转移到分子氧上,质子和离子型氧结合生成H2O。

三、氧化电子传递链由NADH到O2的氧化电子传递链主要包括FMN、辅酶Q(CoQ)、细胞色素b、c1、c、a,a3及一些铁硫蛋白。

氧化电子传递链位于原核生物的质膜上,真核生物中位于线粒体的内膜上。

电子载体的标准势能△G o /是逐步下降的,电子沿着电势升高的方向流动。

其中有三个部位的势能落差△G较大,足以形成ATP(ADP磷酸化需要的自由能=7.3Kal/mol.)。

这三个部位正好是氧化磷酸化部位。

细胞内供能物质的彻底氧化产物是CO2、H2O其中CO2主要是在三羟酸循环中产生,水是在电子传递过程的最后阶段产生。

四、电子传递链的酶和电子载体呼吸链中的电子载体都是和蛋白质结合存在(包括NAD+、FMN、铁硫中心、细胞色素)。

这些蛋白质大都是水不溶性的,嵌在线粒体的内膜上。

NAD+是许多脱氢酶的辅酶,FMN是NADH脱氢酶的辅酶。

1、NAD+和NADP+脱氢酶分别与NAD+或NADP+结合,催化底物脱氢,这类酶称为与NAD(P)相关的脱氢酶,多数脱氢酶以NAD+为辅酶,少数以NADP+为辅酶(如G-6-P脱氢酶)少数酶能以NAD+或NADP+两种辅酶(Glu脱氢酶)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六生物氧化与电子传递(3学时)一实验目的与要求 1. 掌握电子在电子传递链中的传递过程;2. 了解体外实验中研究电子传递链的方法。

二实验原理生物氧化过程中代谢物脱下的氢由NAD+ 或FAD接受生成还原型NADH或FADH2,再经一系列电子传递体传递,最后与氧结合生成水。

这些存在于线粒体内膜上的氧化还原酶及其辅酶依次排列,顺序地起传递电子或电子和质子的作用,称为电子传递链或呼吸链。

在体内,代谢中间产物琥珀酸在线粒体琥珀酸脱氢酶(辅酶FAD)的作用下脱氢氧化生成延胡索酸,脱下的氢使FAD还原成FADH2,再经电子传递链传递,即FADH2→Q→细胞色素(b→c1→c→aa3),最后与氧结合生成水。

在体外实验中,组织细胞生物氧化生成琥珀酸的量可采用在琥珀酸脱氢时伴有颜色变化的化合物作氢受体来研究。

本实验以2,6-二氯酚锭酚(DPI)为氢受体,蓝色的DPI从还原型黄素蛋白(FADH2)接受电子,生成无色的还原型DPI·2H,蓝色消失,其反应过程如下:琥珀酸+FAD→延胡索酸+ FADH2DPI(蓝色)+ FADH2→DPI·2H(无色)+FAD根据褪色时间可测定生物氧化过程中各代谢物与琥珀酸之间在代谢途径中的距离。

三、试剂及材料磷酸钾缓冲溶液(PBS,50mmol/L,pH7.4):0.2mol/L磷酸二氢钾溶液500ml和0.2mol/L 氢氧化钠溶液395ml混合加水至2000ml。

猪心,2,6-二氯酚锭酚(1.5mmol/LPBS),葡萄糖溶液(90mmol/LPBS),琥珀酸溶液(90mmol/LPBS),乳酸溶液(90mmol/LPBS),NAD+(5mmol/L磷酸盐缓冲溶液)。

四、仪器设备绞肉机,纱布,细砂,研钵,冰浴,恒温水浴。

五、操作方法1. 心肌提取液的制备称取绞碎的心肌糜3g,置250ml烧杯中,加冰冷的去离子水200ml,搅拌1min,静置1min,小心倾去水层,同法洗涤3次后,以细纱布过滤并轻轻挤压除去过多液体。

将肉糜转移至冰冷的研钵中,加等量细砂和PBS5ml,在冰浴中研磨至糊状,再加PBS15ml,抽提(至少5min),双层纱布过滤,滤液收集于试管,置冰浴中备用。

2. 底物的氧化取6支试管编号,按下表依次加入各试剂(单位ml)管号 1 2 3 4 5 6DPI 0.5 0.5 0.5 0.5 0.5 0.5 葡萄糖溶液0.5 0.5 ————琥珀酸溶液——0.5 0.5 ——乳酸溶液————0.5 0.5NAD+0.5 —0.5 —0.5 —将试管摇匀后于37℃中保温5min,加已经37℃水浴预保温5分钟的心肌提取液各1ml,混匀并继续保温。

3. 观察观察各管颜色变化,记录各管褪色时间,30min不褪色者记为不褪色。

分析实验结果所说明的问题。

六、注意事项1. 无色(还原型)DPI·2H与氧接触可重新氧化成蓝色的(氧化型)DPI,所以观察本实验结果时切勿振摇试管。

2. 体外实验亦可用甲烯蓝作为受氢体,再类似实验条件下蓝色的甲烯蓝(氧化型)受氢还原成无色甲烯蓝(还原型)。

七、思考题1. 名词解释:电子传递链;氧化磷酸化作用;解偶联作用;高能化合物2. 实验结果记录及分析3. 讨论下列问题:常见的呼吸链电子传递抑制剂有哪些?它们的作用机制是什么?实验七SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量(4学时)一、实验目的学习SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量的实验原理,掌握相应的实验技术。

二、实验原理聚丙烯酰胺凝胶是由单体丙烯酰胺(Acrylamide,简称Acr)和交联剂N,N –甲叉双丙烯酰胺(Methylence-bisacry-lamide,简称Bis)在催化剂和加速剂的作用下聚合交联形成的具有分子筛效应的三维网状结构凝胶。

凡以此凝胶为支持物的电泳均称为聚丙烯酰胺凝胶电泳(Polyacrylamide gel electrophoresis,简称PAGE)。

凝胶筛孔大小、机械强度和透明度等物理参数,主要取决于凝胶浓度(T%)及交联度(C%),随着这两个参数的改变,可获得对待测分子进行分离、分辨的最适孔径。

T%=[(丙烯酰胺g + 甲叉双丙烯酰胺g)/总体积]×100C%=[甲叉双丙烯酰胺g/(丙烯酰胺g + 甲叉双丙烯酰胺g)]×100 丙烯酰胺凝胶电泳根据其有无浓缩效应,分为连续系统与不连续系统两大类。

在连续系统中缓冲溶液pH值及凝胶浓度相同,带电颗粒在电场的作用下主要靠电荷及分子筛效应得以分离;而在不连续系统中,不仅具有前两种效应,还具有浓缩效应,使电泳具有良好的清晰度和分辨率。

电泳时样品的浓缩效应主要由以下原因产生:(1)凝胶孔径的不连续。

在不连续的PAGE 中,电泳凝胶由上下两层不同pH、不同孔径的浓缩胶和分离胶组成,在电场的作用下,蛋白质颗粒在大孔的浓缩胶中泳动的速度快,当进入小孔分离胶时,其泳动过程受阻,因而在两层凝胶交界处,由于凝胶孔径的这种不连续性造成样品位移受阻而压缩成很窄的区带。

(2)缓冲体系离子成分及pH值的不连续性。

在Tris-甘氨酸缓冲体系中,各胶层中均含有HCl,HCl在任何pH溶液体系中均容易离解出Cl-,它在电场中迁移率最大;甘氨酸等电点为6.0,在pH6.8的浓缩胶中,离解度很低,仅有0.1%~1%的NH2CH2COO-,因而在电场中的迁移速度很慢;大部分蛋白质pI在5.0左右,在此电泳环境中都以负离子形式存在。

通电后,这三种负离子在浓缩胶中都向正极移动而且它们的泳动率按m d a ch > m p a p > m q a q排序(有效迁移率等于迁移率m与离解度a的乘积)。

于是蛋白质就在快、慢离子形成的界面处,被压缩成极窄的区带。

(3)是由电位梯度的不连续性所至。

电泳开始后,由于Cl_-的迁移率最大,很快超过蛋白质,因此在快离子后面,形成一个离子浓度低的电导区,由此产生一个高的电位梯度,使蛋白质和慢甘氨酸离子在快离子后面加速移动,当快离子和慢离子的移动速度相等的稳定状态建立后,由于蛋白质的有效迁移率正好介于快、慢离子之间而被浓缩形成一狭小的区带。

当样品进入分离胶后,凝胶pH变为8.8,此时甘氨酸解离度大大增加,其有效迁移率也因此加大,并超过所有蛋白质分子。

这样,快慢离子的界面(由溴酚蓝指示剂标记)总是跑在被分离的蛋白质样品之前,不再存在不连续的高电势梯度区域。

于是,蛋白质样品在一个均一的电势梯度和均一的pH条件下,通过凝胶的分子筛作用,根据各种蛋白质所带的净电荷不同,具有不同迁移率而达到分离目的。

垂直平板电泳凝胶是在两块垂直放置、间隔几个毫米的平行玻璃中进行的,所得的是垂直平板状的凝胶。

垂直平板电泳有以下优点:一系列样品能在同一块凝胶板上进行,显色条件也相同;平板表面大,有利于凝胶冷却;易于进行光密度扫描测定。

SDS-聚丙烯酰胺凝胶电泳是聚丙烯酰胺凝胶电泳的一种特殊形式。

实验证明,在蛋白质溶液中加入十二烷基硫酸钠(SDS)这阴离子表面活性剂和巯基乙醇后,巯基乙醇能使蛋白质分子中的二硫键还原;SDS能使蛋白质的氢键、疏水键打开,并结合到蛋白质分子上,形成蛋白质–SDS复合物。

大约每克蛋白质可结合1.4克SDS,蛋白质分子一经结合了一定量的SDS阴离子,所带负电荷量远远超过了它原有的电荷量,从而消除了不同种类蛋白质间原有电荷的差别。

同时,SDS与蛋白质结合后,还引起了蛋白质构象的变化,使它们在水溶液中的形状近似于长椭圆棒,不同蛋白质的SDS复合物的短轴长度均为1.8mm,而长轴则随蛋白质的相对分子量成正比的变化。

这样的蛋白质–SDS复合物,在凝胶电泳中的迁移率不再受蛋白质原有电荷和形状的影响,仅取决蛋白质分子量的大小。

故可根据标准蛋白质分子量的对数和迁移率所做的标准曲线,求出未知物的分子量。

三、试剂与仪器(一)试剂(所用水为重蒸水)1.30%单位胶储备液(Acr:Bis=29:1)称58g丙烯酰胺(Acr)溶于180mL双蒸水,再加入2g甲叉双丙烯酰胺(Bis),溶解后定容至200mL,过滤备用。

2.分离胶缓冲液(pH8.8,3mol/L Tris-HCl)称取36.33g Tris溶于80mL双蒸水中,在pH计上用HCl调pH至8.8,然后定容至100mL。

3.浓缩胶缓冲液(pH6.8,1mol/L Tris-HCl)称12.11g Tris溶于80mL双蒸水中,在pH计上用HCl调pH至6.8,加水定容至100mL。

4.10% SDS:称取10g SDS,在65℃下用水溶解并定溶至100mL。

5.10%过硫酸铵(AP,聚合用催化剂)称5g AP溶解于50mL双蒸水中,最好临用之前新鲜配制。

也可置于4℃冰箱中避光保存,7天后重配。

6.10% N,N,N',N'–四甲基乙二胺(TEMED)(聚合用加速剂)移取0.1mL TEMED稀释至1.0mL。

置于4℃保存。

7.Tris-Gly电极缓冲溶液:称取7.5g Tris盐和36g甘氨酸用水溶解,再加入10%SDS 25mL,用水定容至500mL,备用。

临用时稀释5倍。

8.50mmol / L Tris-HCl (pH6.8)缓冲溶液称取0.606g Tris溶于80mL双蒸水,在pH计上用HCl调pH至6.8,然后加水至100mL。

9.加样缓冲溶液:吸取50mmol / L Tris-HCl (pH6.8)缓冲溶液3.2mL、10%SDS 溶液11.5mL、β-巯基乙醇2.5mL、溴酚蓝2mg以及甘油5 mL,用水溶解并定容至50mL。

10.染色液称取0.5g考马斯亮蓝R–250溶于甲醇和冰醋酸混合液(80mL/20mL)中,过滤备用。

11.脱色液取150mL甲醇与50mL冰醋酸混溶,加双蒸水至500mL。

12.3%琼脂溶液。

13.标准分子量蛋白(电泳专用试剂)。

(二)仪器1、直流稳压稳流电泳仪,电流100mA,电压400V—500V。

2、夹芯式垂直电泳槽,DYYⅢ 2A型,1.0mm梳槽。

四、操作方法(一)电泳槽安装夹芯式垂直电泳槽两侧为有机玻璃制成的电极槽,两电极槽中间夹有一个由凹形硅胶框,长短玻璃板及样品槽模板组成(如图所示)。

电泳槽分上贮槽(白金电极面对短玻璃板)、下贮槽(白金电极面对长玻璃板),回纹状玻璃管用于冷凝。

两电泳槽与凝胶模间靠贮液槽螺钉固定。

夹心垂直电泳槽示意图凝胶模示意图1、导线接头;2、下电极缓冲液槽;1、样品槽定位模扳;2、长玻璃板;3、凹型橡胶板;4、样品槽模板;3、短玻璃板;4、凹型橡胶框。

5、固定螺丝;6、上电极缓冲液槽;7、冷凝系统。

图1 垂直板电泳槽结构示意图1.组装前各部件应做彻底清洗,尤其是长短玻璃及凹形带槽橡胶框,须用少许洗衣粉彻底清洗,晾干后才能使用。

相关文档
最新文档