数字地球:认识二十一世纪我们所居住的星球

合集下载

智慧博物馆——数字博物馆发展新趋势【范本模板】

智慧博物馆——数字博物馆发展新趋势【范本模板】

智慧博物馆——数字博物馆发展新趋势陈刚摘要:从数字博物馆到智慧博物馆的发展是以人为本理念在博物馆领域深入实践和物联网等新技术在博物馆应用普及的必然结果。

本文简单回顾了数字博物馆发展历程,分析了从数字博物馆到智慧博物馆的发展趋势,提出了智慧博物馆=数字博物馆+物联网+云计算的智慧博物馆发展模式,最后讨论了物联网、云计算、移动互联、大数据技术集成应用对智慧博物馆建设和发展带来的挑战。

关键词:博物馆,数字博物馆,智慧博物馆,物联网,云计算近年来,博物馆领域新技术应用发展极为迅速。

虚拟现实、三维建模、泛在网络、物联网、移动互联、云计算、大数据等各类新技术应用大量涌现.数字博物馆、虚拟博物馆、网络博物馆、掌上博物馆、新媒体博物馆、泛在博物馆、智慧博物馆等新概念层出不穷。

尤其是以数字化、网络化、虚拟化为特征的数字博物馆的发展,将“物"转化“数字”,极大地增强了博物馆展示的表现能力和交互能力,拓展了博物馆展示时间和空间。

数字博物馆的核心是数字资源,数字资源的采集、加工、传播与展示构成了数字博物馆的主要内容。

但是,数字化、网络化、虚拟化只是手段,为人类社会及其发展服务才是数字博物馆发展的根本目标。

“以人为本”理念在博物馆的深入实践和物联网等新技术在博物馆的普及应用,极大地推进了“以数字为中心”的数字博物馆向“以人为中心"的智慧博物馆的发展。

1、数字博物馆发展回顾数字博物馆早期发展主要受到数字图书馆的影响,强调以藏品资源数字化为主要内容。

一般认为,最早的数字博物馆实践是1990年美国国会图书馆启动的“美国记忆”计划。

该计划预期将美国国会图书馆珍藏的数百万件有关美国历史和文化的手稿、书籍、印刷文本、影像及录音等资源数字化,建立数据库,通过网络手段,让所有的学校、图书馆和家庭用户都能像那些公共阅览室的长期读者一样,便捷地接触到这些数字资源。

受此计划影响,1992年,联合国教科文组织启动“世界记忆”计划,在不同国家和地区的不同水准上,将全世界所有有形的和无形的人类文化遗产进行永久性的数字化存储和记忆,通过互联网实现资源共享。

数字地球 观后感

数字地球 观后感

数字地球观后感21世纪的到来,意味着数字地球(GIS)的出现和发展。

这是一场新的技术革命,他使我们获取、存储、处理和显示信息的方法发生天翻地覆的变化。

它使得我们对有关我们所处的星球以及周围环境、文化现象等史无前例的海量数据的处理成为可能,而它们中的大部分信息是有关地球的地表位置有关的信息。

通过观看影片我懂得了数字地球,是对地球的一个多分辨率、三维的显示,而已在其上添加许多与我们所处的星球有关的地学数据。

数字地球,可以使我们只需戴上头盔就可以看到与从太空看到的一样的地球,然后,可以通过工具,随心所欲的对所看到的影响进行放大或者缩小,从而让我们对地球有一个更为充分的了解。

甚至于,它可以使我们听到世界上各种声音,也可以看到一些实时信息,她可以通过对所看到对象进行点击,从而可以看到更为详细的信息。

数字地球所需的技术比较多,包括:科学计算、海量存储、卫星图像、宽带网、互操作、Metadata等等。

数字地球的应用潜力很大,我们可以使用数字地球技术来分析和计算很多方面,比如:指导虚拟外交、打击犯罪、保护生物多样性、预测气候变化、增加农业生产等等。

数字地球的未来前景很广阔,它的广泛应用代表着人类技术的日益进步,倘若成功应用这项技术,它将在教育、未来可持续发展决策、土地利用规划、农业以及危机处理等领域产生广阔的社会和商业效益。

数字地球计划允许我们回应人为或自然灾害,或允许我们在我们长期所面临的环境挑战问题上进行合作。

数字地球技术的出现,是具有时代意义的,我们应该更好的开发和完善数字地球技术,在可持续发展的前提下,努力发展技术,发展生产力,用技术使生活更美好。

这部影片,对我很有启发意义,值得我们学习。

数字地球技术,也是未来数字领域不可或缺的角色。

谈谈你对数字地球的认识

谈谈你对数字地球的认识

谈谈你对数字地球的认识数字地球,首先是数字,而二十一世纪的数字,是建立在计算机科学的基础之上。

从1964年的“埃尼阿克”(ENIAC)的诞生到现在,我们的生活发生了翻天覆地的变化。

当我们早上起来,打开自己的PDA,查看备忘录,收发邮件;之后打开电脑,浏览新闻;出门购物,商家用网络管理自己的商品,确保您购物愉快;行车上路,交通部门对特殊路段进行实时监控,方便人们出行;吃饭的时候,可以上网浏览一下餐馆信息。

这些我们生活的方方面面都已经里不开计算机。

现在的人们,一顿饭不吃可以,但是一天不上网,那是不行。

当人们从计算机科学中获得便利的时候,我们更希望它能更好的服务与我们。

这样,我们更加需要一个极为数字的地球,来满足我们。

数字地球,一个以地球坐标为依据的、具有多分辨率的海量数据和多维显示的地球虚拟系统。

首先,我们需要足够精确的地球信息,精确到地球上每一平方米的土地,甚至是地面以下的;足够大的网络带宽,够我们顺畅的浏览;足够海量的数据库,能够存储下巨大的地球信息。

当然,这些只是首先,只是我们建立数字地球的一些根本需求。

当世界上有80%的事情都和空间信息有关的时候,那么数据的采集将变得十分的困难。

试想一下,把时间暂停在这一秒,看看我们周围,有多少事情发生;再前进一秒,看看那些事情已经改变。

而我们,肯定不只是希望看到一秒的地球,我们渴望看到过去,看到未来。

要建立起整个中国的数字地球时,仅影响数据就有53T,而中国的面积只占地球面积的1.88%。

面对这样的海量数据,存储,查找等方面都是难题,由此,元数据库的建设是非常必要的。

它是关于数据的数据,通过它可以了解有关数据的名称、位置、属性等信息,从而大大减少用户寻找所需数据的时间。

其次,信息不能只是仅仅的存储,还需要进行计算才能够被人们所使用,而地球上发生的大部分的事,都是非线性的,变化过程复杂,而空间时间跨度又大,这样计算的难度呈几何倍数增加,我们只能依靠于超级计算机的计算能力,及开发新的算法。

认识数字地球

认识数字地球

认识“数字地球”0前言自“数字地球”的概念被提出以来,已经引起了世界各国的广泛关注,并受到了多国政界学术界和产业界的热烈响应。

“数字地球”这一概念的提出,既是人们认识世界、改造世界客观需要,更是知识经济、信息社会发展的必然进程。

构筑“数字地球”对于提高人们的生活质量、促进科学技术的进步,实现经济与社会的可持续发展有着十分重要的意义。

然而,“数字地球”在目前还仅仅是一个概念,关于它的科学含义还没有一种公认的解释,距离它的实现也还有很漫长的路要走,因此,需要我们大家就“数字地球”的理论、技术以及实现作进一步地探讨和研究。

1“数字地球”的产生背景地球———我们人类共同居住的家园。

古往今来,几乎人类的所有活动都发生在地球上。

但是经过漫长的人类活动和自然变迁,地球已向我们敲响了警钟:人口膨胀、资源短缺、环境恶化和灾害频繁等等,人类正面临着一系列可持续发展的难题。

如何应对这一艰巨的挑战,严峻的形势要求我们不断探索地球的奥秘和规律,深入认识和研究地球,以便科学地协调人地关系,有效地改善生存环境,努力营造一个适合子孙后代长期生存和发展的家园。

实现人类社会的可持续发展,为“数字地球”的诞生起到了催化作用。

人类社会的发展已进入了一个崭新的时代(信息时代)。

在信息时代,生产力的发展,已不再仅依赖生产资料(原材料、机器)、劳动力和资金,而主要依靠包括知识与技术在内的各种有用信息。

如今,我们一方面拥有大量的各种有用信息,但另一方面又没有对这些信息充分加以利用。

在新的历史时期,信息已成为人类社会发展生产力的基本要素,人们如何获取和利用各种有用的信息也已成为经济发展的动力。

人类社会对全球各种有用信息的迫切需要,为“数字地球”的诞生创造了必要的条件。

随着信息技术的不断发展,全球定位系统、遥感和地理信息系统已成为人们对地球进行科学研究的重要技术手段。

目前,全球定位系统技术已达到较高的水平,其定位精度一般可达到m级,若采用差分方法,定位精度还可提高到cm级;遥感技术已形成从航空遥感到卫星遥感的对地观测系统,其空间分辨率可从4000m 到cm 级,波段覆盖从紫外线到超长波的240个波段,探测周期能从每隔十多天一次到每天数次;地理信息系统技术已具备对大量数据进行有效存储和管理的能力,并且还可对这些数据进行查询、统计、分析和显示输出的处理。

《数字地球》教案(3)(1)

《数字地球》教案(3)(1)

数字地球[教学目标]<知识与技能>举例说出全球定位系统(GPS)在定位导航中的应用。

结合实例,了解遥感(RS)在资源普查、环境和灾害监测中的应用。

运用相关资料,了解地理信息系统(GIS)在城市管理中的功能。

<过程与方法>在获取和应用数字地球的相关知识的过程中,理解数字地球的含义,锻炼学生搜集地理信息的能力,以及对地理知识进行分析、提取、整理的技能。

<情感态度与价值观>激发学生运用信息技术探究,解决地理问题的兴趣,提高学生对环境、资源、人口问题的整体认识,形成全球意识。

[教学重点]理解数字地球的定义,特点理解数字城市的意义[教学难点]明确3S技术的概念和区别[教学方法]讲授法、对比分析法[教具]课本,多媒体[教学过程]<导入>还记得我们以前学习过节3S技术吗?RS:主要用于地理信息数据的获取,能在很短时间内获取某区域全面资料的技术。

GPS:主要用于地理信息的空间定位,能为无人区科学考察的科技工作者全天侯提供本人具体地理位置的技术。

GIS:主要用来对地理信息数据进行管理、查询、更新、空间分析和应用评价,能对获得的地理信息进行处理、分析、管理、显示、输出的技术。

<新课>认识“数字地球”有了以上的回顾,我们来认识一下数字地球:数字地球的提出美国前副总统戈尔于1998年1月31日在加利福尼亚科学中心所做的“数字地球------认识21世纪我们这颗星球”的演讲中首次提出的。

他指出:数字地球是指一个以地理坐标为依据的、具有高分辨率和海量数据、立体显示地球信息的技术系统。

数字地球的核心思想用数字化的手段整体性地解决与空间位置相关的问题和最大限度地利用信息资源,它需要很多学科,特别是信息科学技术的支撑,如信息高速公路、高分辨率卫星影像、空间信息技术、大容量数据处理与存贮技术、可视化和虚拟现实技术,并与遥感、地理信息系统、全球定位系统技术相融合。

数字地球的特点(1)、数字地球具有空间性、数字性和整体性,这三者的融合统一,是数字地球与其他信息系统相区别的根本标志。

(完整)中图版高中地理必修三《数字地球》课件)精品PPT资料精品PPT资料

(完整)中图版高中地理必修三《数字地球》课件)精品PPT资料精品PPT资料

数字地球的基本定义
把地球上每一个确定点(点的范围 因需要可大可小)的相关信息和数据组 织起来,然后进一步组合地球上所有这 样的点,构造一个能包容自然和人类大 多数数据和信息的虚拟地球,这就是数 字地球(digital earth)。
数字地球的核心思想
一、用数字化的手段来处理整个地球的自然 和社会活动诸方面的问题。
儿童如果独自外出,他的 母亲可以打开实时跟踪屏,利 用接收到的信息来看护自己的 孩子。
思想有多远,我们就能走多远。
开放性作业
小短文:畅想数字地球时代的生活。 表 演:围绕数字地球时代的生活为主
题,自编短剧或相声,在班会 或科技节上表演。 辩论会:围绕数字地球对未来生活的影 响是利大于弊还是弊大于利开 展辩论。
时空变化装入电脑中,实现网上流通,并使之最大限 通俗地讲,数字地球(Digital Earth)就是用数字的手法将地球、地球上的活动及整个地球环境的时空变化装入电脑中,实现网上流
通,并使之最大限度地为人类的生存、可持续发展和日常的工作、学习、生活、娱乐服务。
中数体字验 地度太球空的地漫重步要的信为美息妙源人滋—味—类高分辨的率卫生星影存像 、可持续发展和日常的工作、学习、
能够通过一定方式方便地获得他们所想 “数字地球”与可持续发展 表 演:围绕数字地球时代的生活为主
网络及分布式数据库
全球பைடு நூலகம்位系统
地理信息系统(GIS )
信息管理
管理
咨询
数据整理
头戴式虚拟现实成像设备
戴上数据仪器,可以在虚拟空间 中体验太空漫步的美妙滋味
卫 星 影 像
“ 快 台鸟 湾” 的卫 卫星 星拍 影摄 像的 中 国
数字地球的最大特征与依据——虚拟现实技术 戴上数据仪器,可以在虚拟空间

数字地球的核心思想

数字地球的核心思想
3、数字地球的最大特征和依据 ——虚拟现实技术
二、数字地球技术基础
1、全球网络与大容量存储技术
二、数字地球技术基础
1、全球网络与大容量存储技术 2、高分辨率卫星遥感技术
为人类提供反映地表地理要素动态变化 的翔实数据
数字地球最基本的空间数据
乞力马扎罗的积雪
这座这“赤座道“上赤的道雪上 的峰雪”峰海拔”5海89拔5米5,895 米 融永减的化,久少变永减性, 暖积反 趋久少雪映 势,性的了 ,积反融气 有雪映化候 人了的 断气言候:的不变久暖的趋将势来,, 有赤人道断上将言见:不不到久雪的 将来峰,景赤象道了上!将见 不到雪峰景象了!
1)用数字化的手段来处理整个地球的自然和 社会活动等方面的信息。 2)最大限度地利用资源,并使普通百姓能够 通过一定方式方便地获得他们所想了解的有 关地球的信息。
[学生活动]用更简明的词语,总结数字地球的核心思想
二、数字地球技术基础
1、数字地球的基础 ——全球网络与大容量存储技术
2、数字地球的重要信息源 ——高分辨率卫星影像
[思考:现在的网络状况能不能满足数字地球的需要?]
2、数字地球的重要信息源
高分辨 率卫星
卫星图片=数字地球?
3、数字地球的信息呈现方式
——虚拟现实技术
/data/3dvenues/
美 国 纽 约 市 区 的 卫 星 影 像
比较起始画面和终了画面哪个尺度大? 哪个分辨率高?
1、数字地球的基本定义
数字地球是信息化的地球,即地球的虚拟对 照体。
数字地球将有关地球上每一点的信息,按地 球的地理坐标加以整理,然后构成一个全球 的信息模型。人们可以快速、形象、完整地 了解地球上的任何一点、任何方面的信息, 从而实现“信息就在指尖上”的梦想。

数字地球的概念与实现方式

数字地球的概念与实现方式

数字地球的概念与实现方式在当今科技飞速发展的时代,“数字地球”这个词汇越来越多地出现在我们的视野中。

那么,究竟什么是数字地球?它又是如何实现的呢?数字地球,简单来说,就是对真实地球及其相关现象的统一性的数字化重现与认识。

它利用大量的地理信息数据,构建一个虚拟的地球模型,让人们能够更加直观、全面、深入地了解我们所生活的这个星球。

数字地球所包含的内容极其丰富。

它涵盖了地球上的各种自然和人文信息,比如地形地貌、气候气象、土壤植被、水资源、矿产资源、城市规划、交通网络、人口分布、经济活动等等。

通过将这些信息数字化,并进行整合和分析,我们可以在数字地球上实现对地球的全方位观测和研究。

那么,数字地球是如何实现的呢?这需要依靠一系列先进的技术手段。

首先,数据采集是基础。

要构建数字地球,必须获取大量准确、详细的地理信息数据。

这包括通过卫星遥感技术获取的高分辨率影像,通过航空摄影测量获取的地形数据,通过地面测量获取的控制点坐标等等。

此外,还有来自各种统计部门、科研机构、企业和个人的相关数据。

这些数据来源广泛、类型多样,需要进行有效的整合和管理。

其次,数据处理和存储至关重要。

采集到的海量数据需要进行处理和分析,以提取有用的信息。

这涉及到图像处理、地理信息系统(GIS)技术、数据分析算法等。

同时,这些数据需要存储在强大的数据库中,以便随时调用和查询。

云计算技术的发展为数字地球的数据存储和处理提供了强大的支持,使得大规模的数据管理变得更加高效和便捷。

再者,网络通信技术是数字地球实现的关键。

只有通过高速、稳定的网络,才能将分布在不同地点的数据和信息快速传输和共享,让用户能够实时访问和使用数字地球的服务。

另外,可视化技术让数字地球变得更加直观和生动。

通过三维建模、虚拟现实(VR)、增强现实(AR)等技术,将数字地球中的信息以逼真的图像和场景呈现给用户,让人们仿佛身临其境般地感受地球的各种现象和变化。

在实际应用中,数字地球具有广泛的用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Digital Earth: Understanding Our Planet in 21st Century数字地球:认识二十一世纪我们所居住的星球Al GORE阿尔·戈尔A new wave of technological innovation is allowing us to capture, store, process and display an unprecedented amount of information about our planet and a wide variety of environmental and cultural phenomena. Much of this information will be "georeferenced" - that is, it will refer to some specific place on the Earth's surface.The hard part of taking advantage of this flood of geospatial information will be making sense of it. - turning raw data into understandable information. Today, we often find that we have more information than we know what to do with. The Landsat program, designed to help us understand the global environment, is a good example. The Landsat satellite is capable of taking a complete photograph of the entire planet every two weeks, and it's been collecting data for more than 20 years. In spite of the great need for that information, the vast majority of those images have never fired a single neuron in a single human brain. Instead, they are stored in electronic silos of data. We used to have an agricultural policy where we stored grain in Midwestern silos and let it rot while millions of people starved to death. Now we have an insatiable hunger for knowledge. Yet a great deal of data remains unused.Part of the problem has to do with the way information is displayed. Someone once said that if we tried to describe the human brain in computer terms, it looks as if we have a low bit rate, but very high resolution. For example, researchers have long known that we have trouble remembering more than seven pieces of data in our short-term memory. That's a low bit rate. On the other hand, we can absorb billions of bits of information instantly if they are arrayed in a recognizable pattern within which each bit gains meaning in relation to all the others a human face, or a galaxy of stars.The tools we have most commonly used to interact with data, such as the "desktop metaphor" employed by the Macintosh and Windows operating systems, are not really suited to this new challenge. I believe we need a "Digital Earth". A multi-resolution, three-dimensional representation of the planet, into which we can embed vast quantities of geo-referenced data.Imagine, for example, a young child going to a Digital Earth exhibit at a local museum. After donning a head-mounted display, she sees Earth as it appears from space. Using a data glove, she zooms in, using higher and higher levels of resolution, to see continents, then regions, countries, cities, and finally individual houses, trees, and other natural and man-made objects. Having found an area of the planet she is interested in exploring, she takes the equivalent of a "magic carpet ride" through a 3-D visualization of the terrain. Of course, terrain is only one of the many kinds of data with which she can interact. Using the systems' voice recognition capabilities, she is able to request information on land cover, distribution of plant and animal species, real-time weather, roads, political boundaries, and population. She can also visualize the environmental information that she and other students all over the world have collected as part of the GLOBE project. This information can be seamlessly fused with the digital map or terrain data. She can get more information on many of the objects she sees by using her data glove to click on a hyperlink. To prepare for her family's vacation to Yellowstone National Park, for example, she plans the perfecthike to the geysers, bison, and bighorn sheep that she has just read about. In fact, she can follow the trail visually from start to finish before she ever leaves the museum in her hometown.She is not limited to moving through space, but can also travel through time. After taking a virtual field-trip to Paris to visit the Louvre, she moves backward in time to learn about French history, perusing digitized maps overlaid on the surface of the Digital Earth, newsreel footage, oral history, newspapers and other primary sources. She sends some of this information to her personal e-mail address to study later. The time-line, which stretches off in the distance, can be set for days, years, centuries, or even geological epochs, for those occasions when she wants to learn more about dinosaurs.Obviously, no one organization in government, industry or academia could undertake such a project. Like the World Wide Web, it would require the grassroots efforts of hundreds of thousands of individuals, companies, university researchers, and government organizations. Although some of the data for the Digital Earth would be in the public domain, it might also become a digital marketplace for companies selling a vast array of commercial imagery and value-added information services. It could also become a "collaboratory"—a laboratory without walls for research scientists seeking to understand the complex interaction between humanity and our environment.Technologies needed for a Digital EarthAlthough this scenario may seem like science fiction, most of the technologies and capabilities that would be required to build a Digital Earth are either here or under development. Of course, the capabilities of a Digital Earth will continue to evolve over time. What we will be able to do in 2005 will look primitive compared to the Digital Earth of the year 2020. Below are just a few of the technologies that are needed:Computational Science: Until the advent of computers, both experimental and theoretical ways of creating knowledge have been limited. Many of the phenomena that experimental scientists would like to study are too hard to observe - they may be too small or too large, too fast or too slow, occurring in a billionth of a second or over a billion years. Pure theory, on the other hand, cannot predict the outcomes of complex natural phenomena like thunderstorms or air flows over airplanes. But with high-speed computers as a new tool, we can simulate phenomena that are impossible to observe, and simultaneously better understand data from observations. In this way, computational science allows us to overcome the limitations of both experimental and theoretical science. Modeling and simulation will give us new insights into the data that we are collecting about our planet.Mass Storage: The Digital Earth will require storing quadrillions of bytes of information. Later this year, NASA's Mission to Planet Earth program will generate a terrabyte of information each day. Fortunately, we are continuing to make dramatic improvements in this area.Satellite Imagery: The Administration has licensed commercial satellites systems that will provide 1-meter resolution imagery beginning in early 1998. This provides a level of accuracy sufficient for detailed maps, and that was previously only available using aerial photography. This technology, originally developed in the U.S. intelligence community, in incredibly accurate. As one company put it, "It's like having a camera capable of looking from London to Paris and knowing where each object in the picture is to within the width of a car headlight."Broadband networks: The data needed for a digital globe will be maintained by thousands of different organizations, not in one monolithic database. That means that the servers that areparticipating in the Digital Earth will need to be connected by high-speed networks. Driven by the explosive growth of Internet traffic, telecommunications carriers are already experimenting with 10 gigabit/second networks, and terrabit networking technology is one of the technical goals of the Next Generation Internet initiative. The bad news is that it will take a while before most of us have this kind of bandwidth to our home, which is why it will be necessary to have Digital Earth access points in public places like children's museums and science museums.Interoperability: The Internet and the World Wide Web have succeeded because of the emergence of a few, simple, widely agreed upon protocols, such as the Internet protocol. The Digital Earth will also need some level of interoperability, so that geographical information generated by one kind of application software can be read by another. The GIS industry is seeking to address many of these issues through the Open GIS Consortium.Metadata: Metadata is "data about data." For imagery or other georeferenced information to be helpful, it might be necessary to know its name, location, author or source, date, data format, resolution, etc. The Federal Geographic Data Committee is working with industry and state and local government to develop voluntary standards for metadata.Of course, further technological progress is needed to realize the full potential of the Digital Earth, especially in areas such as automatic interpretation of imagery, the fusion of data from multiple sources, and intelligent agents that could find and link information on the Web about a particular spot on the planet. But enough of the pieces are in place right now to warrant proceeding with this exciting initiative.Potential ApplicationsThe applications that will be possible with broad, easy to use access to global geospatial information will be limited only by our imagination. We can get a sense of the possibilities by looking at today's applications of GIS and sensor data, some of which have been driven by industry, others by leading-edge public sector users:Conducting virtual diplomacy: To support the Bosnia peace negotiations, the Pentagon developed a virtual-reality landscape that allowed the negotiators to take a simulated aerial tour of the proposed borders. At one point in the negotiations, the Serbian President agreed to a wider corridor between Sarajevo and the Muslim enclave of Gorazde, after he saw that mountains made a narrow corridor impractical.Fighting crime: The City of Salinas, California has reduced youth handgun violence by using GIS to detect crime patterns and gang activity. By collecting information on the distribution and frequency of criminal activities, the city has been able to quickly redeploy police resources.Preserving biodiversity: Planning agencies in the Camp Pendelton, California region predict that population will grow from 1.1 million in 1990 to 1.6 million in 2010. This region contains over 200 plants and animals that are listed by federal or state agencies as endangered, threatened, or rare. By collecting information on terrain, soil type, annual rainfall, vegetation, land use, and ownership, scientists modeled the impact on biodiversity of different regional growth plans.Predicting climate change: One of the significant unknowns in modeling climate change is the global rate of deforestation. By analyzing satellite imagery, researchers at the University of New Hampshire, working with colleagues in Brazil, are able to monitor changes in land cover and thus determine the rate and location of deforestation in the Amazon. This technique is now being extended to other forested areas in the world.Increasing agricultural productivity: Farmers are already beginning to use satellite imageryand Global Positioning Systems for early detection of diseases and pests, and to target the application of pesticides, fertilizer and water to those parts of their fields that need it the most. This is known as precision farming, or "farming by the inch."The Way ForwardWe have an unparalleled opportunity to turn a flood of raw data into understandable information about our society and out planet. This data will include not only high-resolution satellite imagery of the planet, digital maps, and economic, social, and demographic information. If we are successful, it will have broad societal and commercial benefits in areas such as education, decision-making for a sustainable future, land-use planning, agricultural, and crisis management. The Digital Earth project could allow us to respond to manmade or natural disasters - or to collaborate on the long-term environmental challenges we face.A Digital Earth could provide a mechanism for users to navigate and search for geospatial information - and for producers to publish it. The Digital Earth would be composed of both the "user interface" - a browsable, 3D version of the planet available at various levels of resolution, a rapidly growing universe of networked geospatial information, and the mechanisms for integrating and displaying information from multiple sources.A comparison with the World Wide Web is constructive. [In fact, it might build on several key Web and Internet standards.] Like the Web, the Digital Earth would organically evolve over time, as technology improves and the information available expands. Rather than being maintained by a single organization, it would be composed of both publically available information and commercial products and services from thousands of different organizations. Just as interoperability was the key for the Web, the ability to discover and display data contained in different formats would be essential.I believe that the way to spark the development of a Digital Earth is to sponsor a testbed, with participation from government, industry, and academia. This testbed would focus on a few applications, such as education and the environment, as well as the tough technical issues associated with interoperability, and policy issues such as privacy. As prototypes became available, it would also be possible to interact with the Digital Earth in multiple places around the country with access to high-speed networks, and get a more limited level of access over the Internet.Clearly, the Digital Earth will not happen overnight.In the first stage, we should focus on integrating the data from multiple sources that we already have. We should also connect our leading children's museums and science museums to high-speed networks such as the Next Generation Internet so that children can explore our planet. University researchers would be encouraged to partner with local schools and museums to enrich the Digital Earth project possibly by concentrating on local geospatial information.Next, we should endeavor to develop a digital map of the world at 1 meter resolution.In the long run, we should seek to put the full range of data about our planet and our history at our fingertips. In the months ahead, I intend to challenge experts in government, industry, academia, and non-profit organizations to help develop a strategy for realizing this vision. Working together, we can help solve many of the most pressing problems facing our society, inspiring our children to learn more about the world around them, and accelerate the growth of a multi-billion dollar industry.一场新的技术革新浪潮正允许我们能够获取、储存、处理并显示有关地球的空前浩瀚的数据以及广泛而又多样的环境和文化数据信息。

相关文档
最新文档