扬声器发声电路

合集下载

mems扬声器工作原理

mems扬声器工作原理

MEMS扬声器工作原理概述MEMS扬声器是一种基于微电机系统(MEMS)技术的声学设备,采用了微型化的机械结构和电振荡技术,可将电信号转换为声音信号。

本文将详细探讨MEMS扬声器的工作原理及其相关技术。

MEMS技术简介1.MEMS技术概述微电机系统(MEMS)是一种集成了微机械结构和微电子元器件的技术,可以制造出微小而精确的机械设备。

2.MEMS扬声器的优势 MEMS扬声器以其微型化、低功耗、高声音质量等特点成为一种热门声学设备。

相较于传统电磁式扬声器,MEMS扬声器具有更小的尺寸和更高的效能。

MEMS扬声器的结构与工作原理1.MEMS扬声器的结构 MEMS扬声器的主要组成部分包括振膜、驱动电极、固定电极和回复电极等。

振膜是扬声器的振动部分,通过电流作用产生声音。

驱动电极和固定电极用于施加偏压和电场,控制振膜的振动。

回复电极用于恢复振膜的位置。

2.MEMS扬声器的工作原理 MEMS扬声器工作时,通过施加驱动电极和固定电极之间的电场,使得振膜受力并发生振动。

当电场的方向改变时,振膜会产生正、负交替的运动,从而产生声音。

MEMS扬声器的电振荡技术1.MEMS扬声器的电振荡原理电振荡是指通过施加交流电场使振膜产生机械振动。

MEMS扬声器采用了谐振电路进行电振荡,其中振膜与驱动电极上的电容、电感以及固定电极上的电容构成了谐振电路。

2.MEMS扬声器的频率调节通过调整振膜的特性,可以实现不同频率的声音输出。

一般来说,频率可以通过改变振膜的弹性系数、质量或电场大小来进行调节。

MEMS扬声器的应用MEMS扬声器广泛应用于各种电子设备中,包括智能手机、平板电脑、耳机、手表等。

其小巧的尺寸和优异的声音质量使其成为消费电子产品的理想选择。

1.智能手机中的应用 MEMS扬声器被广泛用于智能手机中,可以用于通话、播放音乐、观看视频等。

它不仅具有较小的体积,还能提供清晰、高质量的声音。

2.其他应用领域 MEMS扬声器还在其他领域有着广泛的应用,如耳机、平板电脑、汽车音响等。

扩音器电路

扩音器电路

扩音器电路手提式D类扩音器CD4046 TWH8751 TWH8751手提式D类扩音器电路如图1所示。

这是一款用锁相环CD4046和TWH8751大功率开关集成电路制作的手提式D 类扩音器(俗称大声公、叫卖器、电喇叭)。

音频信号由IC2锁相环电路的9脚输入,经内部压控振荡器VCO转换成变频方波,再通过内部相位比较器1比较放大后从2脚输出,通过VT1去推动IC3工作,然后由IC3推动扬声器发音。

IC2锁相环电路的9脚无信号输入时,2脚输出电平为0V,IC3停止工作。

图1电路中,VT1选用9014,VD1选用1N4001,IC1运放选用CA3160,IC2锁相环电路选用CD4046,IC3选用达华电子厂生产的大功率开关集成电路TWH8751,也可用大功率的场效应管及达林顿管等代用。

对讲扩音器如图画出了对讲扩音器一个方向的电路(另一个方向的电路与此完全同)。

其核心元件是ICl四运放集成电路LM324,对讲两个方向的放大电路各使用其中两个运算放大器。

话筒BM1采用灵敏度很高的微型驻极体发话器,其型号为84G9,焊接时应注意正负极性。

两级运放ICl-1、ICl-2及外围元件构成固定偏置的负反馈放大器。

R7、R11为负反馈电阻,用来改善电路的稳定性。

电位器RPl用于工作点的微调,使波形上下对称,可减小非线性失真。

ICl-2输出的音频信号经三极管VTl、VT2组成的互补射随功率放大电路放大后,推动喇叭BLl发出响亮的声音。

电阻Rl、电容C3组成退耦滤波电路,用来减小电源交流声。

性能优良的便携式扩音机电路图电子爱好者或维修人员有时外出做广告宣传或播放乐曲时,往往需要一种单端低压直流供电而又能输出大功率的便携式扩音机,而一般便携式录音机放音又往往不大,这里介绍一款性能优良的便携式扩音机电路、或许能满足您的需要。

该电路虽然结构简单,但非常实用,它采用蓄电池供电,输出功率强劲。

电路原理:电路原理如图所示,它包括话筒输入和线路输入两个通道,苏州部分采用飞利浦公司推出的音频功率放大集成电路TDA1519,该电路具有工作电源电压范围宽、增益高、输出功率大、失真度小,外围元件少等特点,并具有负载短路、开路、过热等保护功能,TDA1519的优良性能决定了扩音的优越性,图中S为扩音机的静噪控制开关‘;整流管1N5404是为防止蓄电池反接烧毁集成电路而设置的。

几种高品质音调电路

几种高品质音调电路

几种高品质音调电路功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术(摩机)–––––制作一款高品质的音调板来替换原机音调部分。

下面就向广大发烧友介绍几款品质极佳的音调电路供爱好者选择。

其中以 LM4610N、LM1036N最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代发烧精品,笔者建议首选LM4610N。

图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用。

需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。

(欲获更高的水准NE5532N 可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了)。

图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。

利用该电路的缺点是要多增加一对功板电路及增多一组接线柱。

相对来说需要多花点钱,但采用前级分频的优点却是非常明显的:①改善了低音音质;②兼顾了高低音扬声器的发声效率;③解决了以住电路中高低音扬声器联接时存在的阻抗不匹配问题;④音调调节的动态范围明显变大。

最简易声控电路(声控灯,声控开关,声控门铃)

最简易声控电路(声控灯,声控开关,声控门铃)

声控灯1这里有个电路,通过调节电位器得大小,可以调节时间。

可以参考哦声控灯2时间、亮度可调声控灯3一、电路工作原理下图就是声控电路得电原理图。

当您对着声控电路得小话筒拍手或喊叫时,电路中得继电器会开始工作,工作几秒钟继电器会自动停止、电路中得小话筒可以把声音信号转变为电信号,通过三极管VT1得放大去触发后面得控制电路、三极管VT2、VT3及其电阻器、电容器组成单稳态电路。

电阻器R4为三极管VT2提供了基极电流;而三极管VT3得基极电流则就是从三极管VT2得集电极电阻R5上得到得。

三极管VT2集电极与三极管VT3基极之间就是直接耦合得;而三极管VT3集电极与三极管VT2基极之间得耦合则就是由电容器C3来完成得。

单稳态电路得特点就是它只有一个稳定状态。

电路在没有信号输入时,选择合理得R4阻值,使三极管VT2稳定在饱与状态;此时它得集电极电压约为0.3V以下。

这样使三极管VT3稳定在截止状态。

这就就是单稳态电路得稳定状态。

当信号中得一个负脉冲通过C2到达三极管VT2得基极时,三极管VT2开始趋向截止,它得集电极电流减小,集电极电压升高;经过直接耦合,使三极管VT3得基极电压升高,三极管VT3开始导通,它得集电极电压下降;经电容C3得耦合又使三极管VT2得基极电压进一步下降(虽然这时负脉冲已经不再存在),形成一个正反馈,很快达到一个新得状态。

此时三极管VT2截止,三极管VT3饱与导通。

这就就是单稳态电路得暂稳态现象。

单稳态电路得暂稳态就是不能持久得、在暂稳态期间,电容器C3通过电阻器R4进行放电,随着放电得进行三极管VT2得基极电压逐渐升高,当它达到0、5V以上时,三极管VT2开始导通,正反馈现象再次发生,整个电路很快又回到VT2饱与导通,VT3截止得稳定状态。

电容器C3通过电阻器R4得放电过程决定了电路暂稳态得维持时间、根据计算,这个时间t—0。

7×R4×C3。

在本电路中电阻R4为270kΩ,电容C3为47μF,所以t=0。

NE555应用

NE555应用

NE555脉冲电路
一、实验目的
利用NE555芯片设计电子节拍器电路,实现扬声器(蜂鸣器)发声频率的控制。

二、实验器材
NE55芯片、电阻(1KΩ)、变阻器(250KΩ)、电解电容2个(22μF)、扬声器(蜂鸣器)、导线、焊台、9V直流电源等
三、实验步骤
1.原理图
2.实验原理
总电路如上图所示。

其工作原理为:利用NE555芯片连接成的时钟发生器电路能产生一定频率的方波脉冲,从而驱动扬声器(蜂鸣器)
产生一定频率的响声,而通过改变变阻器的阻值可以改变产生的方波脉冲的频率及占空比,从而改变扬声器(蜂鸣器)的发声频率,实现类似电子节拍器的功能。

3.实验过程
首先,根据实验原理图挑选相应的器件,然后根据原理图在焊接板上科学布置各个器件及连接线的位置,然后根据电路图将各个器件焊接好,最后接上电源,调节变阻器的阻值以改变扬声器(蜂鸣器)的发生频率。

4.实验结果
焊接得到的电路图如下图所示:
在接通电源后,扬声器(蜂鸣器)以一定频率发出声音,调节变阻器的阻值,发生频率改变,基本达到了电子节拍器的功能。

5.心得感受
本次课程设计让我体会到了电子在实践中的应用,增强了对电子
的热爱,同时还加强了对所学理论的理解和应用,培养了团队协作、认真细致的工作精神,为今后的工作打下了坚实的基础。

在实验前,要规范自己的电路图, 准备好实验中所需要的元器件。

做好实验前的准备工作。

然后在电路板上选好合适的点,使元器件间
保持通路。

接着在焊接时,要规范自己的焊接点,保证各个元器件的焊接点独立。

最简易声控电路(声控灯,声控开关,声控门铃)

最简易声控电路(声控灯,声控开关,声控门铃)

声控灯1这里有个电路,通过调节电位器的大小,可以调节时间。

可以参考哦声控灯2时间、亮度可调声控灯3一、电路工作原理下图是声控电路的电原理图。

当你对着声控电路的小话筒拍手或喊叫时,电路中的继电器会开始工作,工作几秒钟继电器会自动停止。

电路中的小话筒可以把声音信号转变为电信号,通过三极管VT1的放大去触发后面的控制电路。

三极管VT2、VT3及其电阻器、电容器组成单稳态电路。

电阻器R4为三极管VT2提供了基极电流;而三极管VT3的基极电流则是从三极管VT2的集电极电阻R5上得到的。

三极管VT2集电极与三极管VT3基极之间是直接耦合的;而三极管VT3集电极与三极管VT2基极之间的耦合则是由电容器C3来完成的。

单稳态电路的特点是它只有一个稳定状态。

电路在没有信号输入时,选择合理的R4阻值,使三极管VT2稳定在饱和状态;此时它的集电极电压约为0.3V以下。

这样使三极管VT3稳定在截止状态。

这就是单稳态电路的稳定状态。

当信号中的一个负脉冲通过C2到达三极管VT2的基极时,三极管VT2开始趋向截止,它的集电极电流减小,集电极电压升高;经过直接耦合,使三极管VT3的基极电压升高,三极管VT3开始导通,它的集电极电压下降;经电容C3的耦合又使三极管VT2的基极电压进一步下降(虽然这时负脉冲已经不再存在),形成一个正反馈,很快达到一个新的状态。

此时三极管VT2截止,三极管VT3饱和导通。

这就是单稳态电路的暂稳态现象。

单稳态电路的暂稳态是不能持久的。

在暂稳态期间,电容器C3通过电阻器R4进行放电,随着放电的进行三极管VT2的基极电压逐渐升高,当它达到0.5V以上时,三极管VT2开始导通,正反馈现象再次发生,整个电路很快又回到VT2饱和导通,VT3截止的稳定状态。

电容器C3通过电阻器R4的放电过程决定了电路暂稳态的维持时间。

根据计算,这个时间t—0.7×R4×C3。

在本电路中电阻R4为270kΩ,电容C3为47μF,所以t=0.7×270×103×47×10-6~9秒。

扬声器发声电路

扬声器发声电路

扬声器发声电路一、引言1、选题意义经过一学期的学习,我们已掌握了一些简单的电路的特性以及元器件的作用,但我们对生活中已经应用了许久的电路依然陌生,比如简单的喇叭、闹钟、信号灯等。

我们在学习中刚刚接触到一些皮毛知识,而把这些知识运用到炉火纯青的地步是有一些难度的,所以我们以模拟扬声器声响电路为题设计电路,可以提高我们对555芯片的认识,可以巩固我们所学的相关理论知识,实践所掌握的电子制作技能,完成一个实际的电子产品,进一步提高分析问题、解决问题的能力。

2、设计目标在电子技术课中我们学到了许多有关电子技术方面的知识,其中我们学到了555芯片的原理与功能,那些只是书本上的理论知识,我们没有将这些所学的知识应用到实践中去,不能说明我们对555芯片已经熟知,所以通过此次的设计我们要对555芯片的内部结构及其级联等方面的应用有更深层次的了解。

比如应用一个555芯片可以带动扬声器发出声响,但这种声响声音单一,发音效果不太好听。

此次课程设计不仅为了提高我们对555芯片的认识,也是为了拓宽我们的知识面,提高综合素质。

通过电子元器件认识与系统设计,能够进一步熟悉电子元件的结构、工作原理和使用方法。

其次,了解电路理论的实际应用,掌握电子系统的装配和调试工艺,提高我们自己的实际操作的能力。

巩固课堂所学的知识,提高把理论知识应用于实际中的能力,同时通过实习活动,既要我们收集与自己设计题目有关的设计资料,又要掌握扬声器发声电路的设计方法和调试技术,数字模拟扬声器发声电路的综合设计、分析与调试方法。

我们所做的是模拟扬声器发声的装置,该装置简单易懂,制作比较方便,通过对电路的设计,以及对电子市场中元器件的调查和焊接的过程,大大提高了我们的动手能力。

3、小组成员及分工小组成员及分工情况如下所示。

小组成员及分工情况姓名学号分工设计、查找、买元件、焊接、写报告姓名学号分工设计、查找、买元件、焊接、写报告二、作品说明1、功能本设计题目名称为扬声器发声模拟电路的设计。

NE5532N组成的高中低音音调及音量控制电路

NE5532N组成的高中低音音调及音量控制电路

功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术(摩机)–––––制作一款高品质的音调板来替换原机音调部分。

下面就向广大发烧友介绍几款品质极佳的音调电路供爱好者选择。

其中以LM4610N、LM1036N最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代发烧精品,笔者建议首选LM4610N。

图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节 RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用.需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。

(欲获更高的水准NE5532N可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了). 字串4字串5图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。

利用该电路的缺点是要多增加一对功板电路及增多一组接线柱。

相对来说需要多花点钱,但采用前级分频的优点却是非常明显的:①改善了低音音质;②兼顾了高低音扬声器的发声效率;③解决了以住电路中高低音扬声器联接时存在的阻抗不匹配问题;④音调调节的动态范围明显变大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扬声器发声电路一、引言1、选题意义经过一学期的学习,我们已掌握了一些简单的电路的特性以及元器件的作用,但我们对生活中已经应用了许久的电路依然陌生,比如简单的喇叭、闹钟、信号灯等。

我们在学习中刚刚接触到一些皮毛知识,而把这些知识运用到炉火纯青的地步是有一些难度的,所以我们以模拟扬声器声响电路为题设计电路,可以提高我们对555芯片的认识,可以巩固我们所学的相关理论知识,实践所掌握的电子制作技能,完成一个实际的电子产品,进一步提高分析问题、解决问题的能力。

2、设计目标在电子技术课中我们学到了许多有关电子技术方面的知识,其中我们学到了555芯片的原理与功能,那些只是书本上的理论知识,我们没有将这些所学的知识应用到实践中去,不能说明我们对555芯片已经熟知,所以通过此次的设计我们要对555芯片的内部结构及其级联等方面的应用有更深层次的了解。

比如应用一个555芯片可以带动扬声器发出声响,但这种声响声音单一,发音效果不太好听。

此次课程设计不仅为了提高我们对555芯片的认识,也是为了拓宽我们的知识面,提高综合素质。

通过电子元器件认识与系统设计,能够进一步熟悉电子元件的结构、工作原理和使用方法。

其次,了解电路理论的实际应用,掌握电子系统的装配和调试工艺,提高我们自己的实际操作的能力。

巩固课堂所学的知识,提高把理论知识应用于实际中的能力,同时通过实习活动,既要我们收集与自己设计题目有关的设计资料,又要掌握扬声器发声电路的设计方法和调试技术,数字模拟扬声器发声电路的综合设计、分析与调试方法。

我们所做的是模拟扬声器发声的装置,该装置简单易懂,制作比较方便,通过对电路的设计,以及对电子市场中元器件的调查和焊接的过程,大大提高了我们的动手能力。

3、小组成员及分工小组成员及分工情况如下所示。

小组成员及分工情况姓名学号分工设计、查找、买元件、焊接、写报告姓名学号分工设计、查找、买元件、焊接、写报告二、作品说明1、功能本设计题目名称为扬声器发声模拟电路的设计。

经过电路设计和市场调查,选择出简单可行且成本较低的扬声器发声模拟电路。

该设计是由两片555芯片、五个电阻、三个电容、一个滑动变阻器、一个开关、一个扬声器、一节12V的干电池以及若干导线组成的。

若电路焊接成功,则第一片555组成的多谐振荡器将会产生低频信号,第二片555组成的多谐振荡器将会产生高频信号来运载之前产生的低频信号,当信号传递到扬声器之后,扬声器会发出“滴答,滴答”的声音。

2、操作说明按下开关便可以发生“滴答,滴答”的声音,调节滑动变阻器2R的阻值,通过改变第一片的555芯片的占空比,进而控制高音与低音的时间T H、T L,可以任意调节滴答声的效果。

三、基本原理1、原理图双极性型5G555的主要性能参数如表1所示。

表1 双极性型5G555的主要性能参数参数名称符号单位参数电源电压VCCV 5~16电源电流ICCmA阈值电压VTH V ccV32触发电压VTR V ccV31输出低电平VOLV 1输出高电平VOHV 13.3CMOS型7555的主要性能参数如表2所示。

表2 CMOS型7555的主要性能参数参数名称符号单位参数电源电压VCCV 3~18电源电流ICCμA 60阈值电压VTH V Vdd32触发电压VTR V Vdd31输出低电平VOLV 0.1输出高电平VOHV 14.8(1)555定时器器件特性555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。

集成时基电路555的电源电压范围较宽,可在5~16V范围内使用(TTL型,若为CMOS型的555芯片,则电压范围可在2~18V 内),电路的输出有缓冲器,因而有较强的带负载能力。

基于以上对555定时器参数及性能的分析,认为以555定时器搭建的电路能够驱动小功率扬声器发音,选择适当的外部电阻电容等器件与555定时器配合使用能够使此设计得以实现。

2、电路图设计及器件参数选择(1) 电路概述:所设计的扬声器发声电路主要有两个连接为多谐振荡器的555定时器及相关外围组件组成。

具体电路图如图1所示。

通过555(1)控制高频声音和低频声音的持续时间,555(2)作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。

(2) 扬声器高低音发声机理:555(1)主要通过V01输出占空比一定的方波信号控制555(2)的控制端电压,当V01输出为高电平时,555(2)控制电压端V co为高电平,由振荡频率f的计算公式可知此时振荡频率较低,为低音;相对应,当V01输出为低电平时,555(2)控制电压端V co为低电平,此时振荡频率较高,为高音。

而高低音的持续时间则由555(1)决定。

扬声器发声电路如图1所示。

R110.0kΩR2150.0kΩR310.0kΩR4 10.0kΩR5 100.0kΩC1 10µFC230µFC30.01µFVCCOUTU1555_TIMER_RATEDGNDDISRSTTHRCONTRIVCC12VR6100ΩKey=A40 %XLV1InputU2555_VIRTUALGNDDISOUTRSTVCCTHRCONTRI图1 扬声器发声电路图3、555定时器内部结构及工作原理(1)内部结构:555定时器内部结构如图2所示。

555定时器逻辑符号和引脚如图3所示。

V i1(TH):高电平触发端,简称高触发端,又称阈值端,标志为TH 。

V i2(TR ):低电平触发端,简称低触发端,标志为TR 。

V CO :控制电压端。

V O :输出端。

Dis :放电端。

Rd :复位端。

555定时器内含一个由三个阻值相同的电阻R 组成的分压网络,产生31V CC 和32V CC图2 555定时器内部结构R5KR5KR5KC1C2G1G2G3RdVi1(T H)Vi2(T R)VCCTVc oR1VoVo'Dis QQ SR..T H6T R 2Di s7V C C8R d4Q3G N D1Vc o555512345678GNDT RVoRdVc o T HDi s VCC 555..(a ) 555的逻辑符号(b ) 555的引脚排列图3 555定时器逻辑符号和引脚两个基准电压;两个电压比较器C1、C2;一个由与非门G1、G2组成的基本RS触发器(低电平触发);放电三极管T和输出反相缓冲器G3。

Rd是复位端,低电平有效。

复位后, 基本RS触发器的Q端为1(高电平),经反相缓冲器后,输出为0(低电平)。

V CO为控制电压端,在V CO端加入电压,可改变两比较器C 1、C2的参考电压。

不加控制电压时,要在V CO和地之间接0.01μF(电容量标记为103)电容。

放电管Tl的输出端Dis为集电极开路输出。

(2)工作原理:该电路主要通过两片555定时器模拟扬声器发声电路,输出周期性变化的高频信号和低频信号,驱动扬声器发出高音低音周期交替的声音。

将两片555定时器分别连接成多谐振荡器,其中555(1)的作用是控制高频声音和低频声音的持续时间,其输出V o1是555(2)的控制电压;555(2)的作用是控制高低音的频率,作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。

分析图1的电路:在555定时器的V CC端和地之间加上电压,当V CO悬空时,比较器C1的同相输入端接参考电压V T+=32V CC,比较器C2反相输入端接参考电压V T-=31V CC;当V CO接控制电压V e时,比较器C1的同相输入端接参考电压V T+=V e,比较器C2反相输入端接参考电压V T-=21V e。

现做如下规定:当TH端的电压>V T+时,写为V TH=1,当TH端的电压<V T+时,写为V TH=0。

当TR端的电压>V T-时,写为V TR=1,当TR端的电压<V T-时,写为V TR=0。

低触发:当输入电压V i2<V T-且V i1<V T+时,V TR=0,V TH=0,比较器C2输出为低电平,C1输出为高电平,基本RS触发器的输入端S=0、R=1,使Q=1,Q=0,经输出反相缓冲器后,V O=1,T截止。

这时称555定时器“低触发”。

保持:若V i2>V T-且V i1<V T+,则V TR=1,V TH=0,S=R=1,基本RS触发器保持,V O和T 状态不变,这时称555定时器“保持”。

高触发:若V i1>V T+,则V TH=1,比较器C1输出为低电平,无论C2输出何种电平,基本RS触发器因R=0,使Q=1,经输出反相缓冲器后,V O=0,T导通。

这时称555定时器“高触发”。

根据555定时器的控制功能,可以制成各种不同的脉冲信号产生与处理电路电路,例如,施密特触发器、单稳态触发器、自激多谐振荡器等。

4、555定时器接成多谐振荡器(1)连接方法:将555定时器的V i1和V i2连在一起结成施密特触发器,然后将V O经RC积分电路接回输入端即构成了多谐振荡器。

多谐振荡器原理图如图4所示。

图4 多谐振荡器原理图(2) 多谐振荡形成机理:初始时刻,V c为0时,V i2<V T- 且V i1<V T+,555定时器处于低触发状态,V O=1,T截止,电容C经过R1、R2充电;当V c上升到V T-时,V i2>V T-,V i1<V T+,处于保持状态,电容继续充电,V c继续升高,V O=1,T截止;当V c=V T+时,V i1>V T+,555定时器处于高出发状态,V O=0,T导通,电容C经过R2、T放电,V c降低,当V c下降到V T-时,V i2<V T-且Vi1<V T+,电路再次进入低触发状态,电容C经过R1、R2充电……以此循环往复,电容V c 上的电压在V T-和V T+之间往复振荡,V o端输出具有一定占空比的方波脉冲,通过调节R W 或电容C,可得到不同的时间常数;还可产生周期和脉宽可变的方波输出。

(3)相关公式推导:通过V c 的波形球的电容C 的充电时间1T 和放电时间2T 计算公式如下: 充电时间1T 计算公式:()112lnCC T CC T V V T R R C V V -+-=+-放电时间2T 计算公式:2220lnln 0T T T T V VT R C R C V V ++---==-故电路的振荡周期为:()12122lnln CC T T CC T T V V VT T T R R C R C V V V -++--=+=++-当V co 悬空(接电容后接地),+T V =32V CC ,-T V =31 V CC 时,()112ln 2T R R C =+ 22ln 2T R C = 振荡周期:12(2)ln 2T R R C =+ 振荡频率:121(2)ln 2f T R R C ==+四、方案实施及结果分析 1、元件清单元器件清单如表所示。

相关文档
最新文档