《消元解二元一次方程组》教案

合集下载

消元—解二元一次方程组教案

消元—解二元一次方程组教案

消元—解二元一次方程组教案《消元—解二元一次方程组教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:8.2消元——解二元一次方程组 (第一课时)主题内容简介:实际生活中涉及多个未知数的问题层是普遍存在的,而二元一次方程组是解决含有两个未知数的有力工具。

同时二元一次方程组也是解决后续一些数学间题的基础。

解二元一次方程组就是要把“二元”化归为“一元”,而化归的方法可以是代人消元法。

这一过程同样是解三元(多元)一次方程组的基本思路,由算术到方程再到方程组,其中蕴含的“数式通性”在本节内容中有很好的体现。

学习目标分析(1)会用代入消元法解简单的二元一次方程组。

(2)理解解二元一次方程组的思路是“消元”,经历从未知向已知转化的过程,体会化归思想。

学情分析前需知识掌握情况:学生在小学阶段已经学习了解简易方程,在七年级上学期系统学习了解一元一次方程基本能掌握,也能理解二元一次方程组的概念。

学生观看并理解微课视频,从而帮助自己顺利完成本节课的学习任务应该还是可以的。

对微课的认识:虽然刚接触微课,但学生对其有很强的好奇心。

对于微课,他们充满期待。

在数学课堂上运用微课进行教学将会有利于学生对所学知识的记忆,梳理和掌握,能够更好地提高教学效果。

学生特征分析学习态度:学生对于微课进入数学课堂很感兴趣,微课也能有效促进学生之间的交流,增强了学生之间的合作,提高了学生更好的掌握知识和完成任务的合作技能。

学习风格:学生在学习的过程中比较依赖老师,偏重于讲授法,但是缺乏自主思考问题的能力,需要老师在课堂上经常性的点拨和启发。

微课用于学生学习的教学策略分析微课用于学生学习的目的:使用微课主要是能激发学生学习的兴趣,促进他们自主学习。

本节微课是明确解二元一次方程组的主要思路是“消元”,化二元—次方程组为一元一次方程。

微课用于学生学习的时机:学生可以通过观看并借鉴教师的微课教学,观察、分析、推断,获得数学猜想,体验数学活动充满探索性和创造性。

消元解二元一次方程组教学设计

消元解二元一次方程组教学设计

编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是消元解二元一次方程组教学设计,是优秀的数学教案文章,供老师家长们参考学习。

《消元——二元一次方程组的解法》教案

《消元——二元一次方程组的解法》教案

8.2消元——二元一次方程组的解法(一) 学习目标:1.知识目标:会用代入法解二元一次方程组。

2.能力目标:培养自己的分析能力,能迅速在所给的二元一次方程组中,选择一个系数比较简单的方程进行变形。

3.情感目标:通过研究解决问题的方法,培养同学之间的合作交流意识与探究精神,并体验数学的化归思想。

重点:用代入消元法解二元一次方程组.难点:探索如何用代入法将“二元”转化为“一元”的消元过程.教学过程:一、目标导航,有的放矢1.知识目标:会用代入法解二元一次方程组。

2.能力目标:培养自己的分析能力,能迅速在所给的二元一次方程组中,选择一个系数比较简单的方程进行变形。

3.情感目标:通过研究解决问题的方法,培养同学之间的合作交流意识与探究精神,并体验数学的化归思想。

二、预习导学,分组展示1.把方程12=-y x 写成用含x 的代数式表示y 的形式,结果是y= ___________。

2.方程x+y=4有___________个解,有________个正整数解,它们是___________。

3.把12-=x y 代入方程34=-y x ,消去y ,得关于x 的方程 __________________ 。

(不必化简)。

4.代入消元法:代入消元法的步骤是:5.用代入法解二元一次方程组:⎩⎨⎧=+-=13252y x x y三、合作探究,对抗质疑1.用代入法解二元一次方程组。

x=2y+1(1)2x+3y=2x -3y =-1(2)3x -5y =62.利用二元一次方程组解决生活中的问题。

四、当堂检测,及时反馈(一)判断正误:1.方程4x-2y=2变形得y=1-2x ( )2.方程x-3y=1-x/2写成含y 的代数式表示x 的形式是x=3y+1-x/2( )(二 )填空题1.已知:1341---++b a b a y x =0是二元一次方程,则a b 1+ =________。

2.若()063222=+-+-+y x y x ,则=+y x _________ 。

最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。

8.2 消元——解二元一次方程组教学设计(教案)

8.2 消元——解二元一次方程组教学设计(教案)

8.2 消元——解二元一次方程组教学设计(教案)1教学目标:1、学会用代入法解未知数系数的绝对值不为1的二元一次方程组;2、使学生熟练地掌握用代入法解二元一次方程组;3、使学生进一步理解代入消元法所体现出的化归意识;2教学重点和难点重点:学会用代入法解未知数系数的绝对值不为1的二元一次方程组;难点:进一步理解在用代入消元法解方程组时所体现出的化归意识3教学方法在教师的指导下进行类比和诱思探究的教学方法。

4教学过程 4.1 第一学时教学活动活动1【导入】一、从学生原有的认知结构提出问题:口答填空。

(课件出示问题)活动2【讲授】学习新知一、结合简单的二元一次方程组题的解答,教师引导学生归纳总结出用代入消元法解方程组的一般步骤(先提问,后教师用投影打出)①方程变形:将其中一个方程的某个未知数用含有另一个未知数的代数式表示出来(X=aY+b或Y=aX+b)②代入消元:将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程。

③方程求解:解出一元一次方程的解,再将其代入到原方程或变形后的方程中求出另一个未知数的解,最后得出方程组的解。

④口算检验。

二、解方程组{3x+4y=165x-6y=33分析:该方程组中的每一个方程都不是以含有一个未知数的代数式表示另一个未知数的形式,因此不能直接代入,应先将其中的某个方程变形,是用含x的代数式表示y,还是用含y的代数式表示x呢?引导学生通过观察得出,由于方程①中x的系数的绝对值是3,较小,故由方程①得出用含y的代数式表示x。

(本题的解答过程由学生板书完成;通过师生的共同探讨,得出选择未知数的系数的绝对值比较小的一个方程进行变形,可使解题较为简便)活动3【活动】牛刀小试(投影)已知方程组:4x-7y=212x-25y=-2对于方程组,指出下列方法中比较简捷的解法是( )(A)利用①,用含x的代数式表示y,再代入②;(B)利用①,用含y的代数式表示x,再代入②;(C)利用②,用含x的代数式表示y,再代入①;(D)利用②,用含x的代数式表示x,再代入①;比比看,你有更新的解法吗:{5x+2y=253x+4y=15可由①得2Y=25-5X代入②进行整体代入。

《消元──解二元一次方程组》教学设计

《消元──解二元一次方程组》教学设计

《消元──解二元一次方程组》教学设计(第1课时)一、内容和内容解析1.内容代入消元法解二元一次方程组2.内容解析二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。

其解法将为解决这些问题的工具。

如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等.解二元一次方程组就是要把二元化为一元。

而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。

化归思想在本节中有很好的体现。

本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.二、目标和目标解析1.教学目标(1)会用代入消元法解一些简单的二元一次方程组(2)理解解二元一次方程组的思路是消元,体会化归思想2.教学目标解析(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,(2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想三、教学问题诊断分析1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。

需要结合实际问题进行分析。

由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向一元一次方程转化的思路2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

四、教学过程设计1.创设情境,提出问题问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。

设胜x场,负(10-x)场。

根据题意,得2x+(10-x)=16x=6,则胜6场,负4场教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.问题2 对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

七年级数学下册《消元解二元一次方程组》教案、教学设计

七年级数学下册《消元解二元一次方程组》教案、教学设计
1.重难点一:二元一次方程组的抽象理解
学生在理解二元一次方程组时,往往难以从实际问题中抽象出数学模型。因此,将实际问题转化为数学语言是教学的重点和难点。
2.重难点二:消元法的灵活运用
消元法是解二元一次方程组的关键,但学生对代入消元法和加减消元法的掌握程度不一,如何让学生在实际问题中灵活运用两种方法,是教学的重点和难点。
2.分步骤引导,注重探究
在教学过程中,教师将引导学生分步骤掌握消元法的原理和步骤。通过小组合作、讨论,让学生在实践中探究、发现、总结规律,提高解决问题的能力。
3.多样化教学,因材施教
针对不同学生的认知水平,采用多样化的教学手段,如直观演示、案例分析、互动提问等,使学生在轻松愉快的氛围中掌握知识。
4.紧密联系实际,培养应用能力
3.重难点三:实际问题的解决能力
将二元一次方程组应用于解决实际问题,需要学生具备较强的观察能力和创新意识。培养学生将数学知识应用于实际问题的能力,是教学的重点和难点。
(二)教学设想
为了突破以上重难点,本章节教学设想如下:
1.创设情境,激发兴趣
教学中,将结合学生的生活实际,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣,引导学生主动探索二元一次方程组的奥秘。
教学中,将设计一系列实际问题,引导学生运用二元一次方程组解决。通过实际操作,培养学生将数学知识应用于生活的能力,提高数学素养。
5.强化练习,巩固提高
针对本章节的重难点,设计有针对性的练习题,让学生在练习中巩固所学知识,提高解题能力。
6.评价与反馈,促进成长
教学过程中,注重对学生的评价与反馈,及时了解学生的学习情况,调整教学策略。通过鼓励性评价,激发学生的学习信心,促进他们不断成长。
4.掌握利用二元一次方程组解决生活中的问题,如购物、交通等,培养将数学知识应用于实际生活的能力。

消元——解二元一次方程组教案(教学设计)

消元——解二元一次方程组教案(教学设计)

另一个方程的,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简
称代入法。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。

1.用代入法解方程组
x y 3x 8y
3
14
① ②
解:由①,得 x y 3

把③代入②得 3(y 3) 8 y 14
消元——解二元一次方程组
【教学目标】
1.亲历消元思想的探索过程,体验分析归纳得出代入消元法,进一步发展学生的探究、 交流能力。
2.掌握二元一次方程组解法。 3.熟练运用代入消元法,加减消元法。
【教学重难点】
重点:掌握用代入消元法解二元一次方程组。 难点:会运用加减消元法解二元一次方程组。
【教学过程】
再代入另一个方程的,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元
法,简称代入法。
(3)当二元一次方程组的两个方程中同一未知数的系数互为相反数或相等时,把这两个
方程的两边分别相加或相减吗,就能消去这个未知数,得到一个一元一次方程。这种方法叫做
加减消元法,简称加减法。
2.消元法解二元一次方程组在解题中的具体应用。
解这个方程得: y 1
把 y 1代入③,得 x 2
1/5
所以这个方程组的解是

x y

2 1
根据例题的解题方法,让学生自己动手练习。 练习:根据市场调查,某种消毒液的大瓶装( 500g )和小瓶装( 250g )两种产品的销售
数量(按瓶计算)比为 2 : 5 。某厂每天生产这种消毒液 22.5t ,这些消毒液应该分装大、小瓶 两种产品各多少瓶?
四、习题检测
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时
★新课标要求
(一)知识与技能
1.掌握用加减消元法解二元一次方程组的步骤.
2.能运用加减法解二元一次方程组.
3.培养学生的计算能力和应用数学解决实际问题的意识.
(二)过程与方法
经历探索用“消元”方法把二元一次方程组转化为一元一次方程,从而求方程组的解的过程,体会“消元”方法在解方程中的作用.
(三)情感、态度与价值观
方法一: ;
方法二:
方法一得到的方程是我们学过的一元一次方程.大家很容易解得 .所以该篮球队胜18场,负 场.
二、进行新课பைடு நூலகம்
1.代入消元法的概念
方法二得到的是二元一次方程组,怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么联系?
学生活动:思考、讨论、发现二元一次方程组中第1个方程 说明 ,将第2个方程 的 换为 ,这个方程就化为一元一次方程 .
学生活动:一生板演,余生自做.
教师活动:针对学生的解答进行点评.
分析:问题中包含两个条件: ,大瓶所装消毒液+小瓶所装消毒液=总生产量.
解:设这些消毒液应该分装 大瓶和 小瓶.
根据大、小瓶数的比以及消毒液分装量与总生产量的数量关系,得
由 ,得
把 代入 ,得 .
解这个方程,得 .
把 代入 ,得 .
所以这个方程组的解是
四、课后练习
1.把下列方程改写成用含 的式子表示 的形式:
(1) ;
(2) .
2.用代入法解下列方程组:
(1)
(2)
3.有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛.了;篮、排球队各有多少支参赛?
4.张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城.他骑车的平均速度是15千米/小时,步行的平均速度是5千米/小时,路程全长20千米.他骑车与步行各用多少时间?
★教学方法
通过复习上节课利用代入法解二元一次方程组的方法及其解题思想,引入新课,让学生观察比较,从而发现只要将相同未知数前的系数化为绝对值相等的值,即可实施加减消元法.进一步让学生探究用代入法还是用加减法解方程组更简单,明确用加减法解题的优越性.通过反复的训练、归纳;再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.
3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.教师启发、引导,学生观察、试验、比较、思考,讨论、交流学习成果.
★教学过程
一、引入新课
教师活动:请同学们回忆上节课我们讨论的篮球联赛的问题.大家可以得到两种方程﹙组﹚.设此篮球队胜 场,负 场.
1.进一步理解解二元一次组的消元思想,在化“未知为已知”的过程中,体验化归的数学美.
2.根据方程组的特点,引导学生多角度思考问题,培养开拓创新意识.
★教学重点
进一步渗透消元思想,掌握用加减消元法解二元一次方程组的原理及一般步骤;能熟练运用加减法解二元一次方程组.
★教学难点
明确用加减法解二元一次方程组的关键是必须使两个方程中同一个未知数的系数的绝对值相等
解:由 ,得
把 代入 ,得 .(把 代入 可以吗?)
解这个方程,得 .
把 代入 ,得 .(把 代入 或 可以吗?)
所以这个方程组的解是
教师归纳总结强调:
(1)一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程”由于方程 是由方程 得到的,所以它只能代入方程 ,而不能代入方程 .
2.通过研究解决问题的方法,培养学生合作交流意识与探究精神.
★教学重点
用代入法解二元一次方程组,基本方法是消元化二元为一元.
★教学难点
用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.
★教学方法
1.关于检验方程组的解的问题.教学时要强调代入“原方程组”和“每一个”这两点.
2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.
《消元——解二元一次方程组》教案1
第一课时
★新课标要求
(一)知识与技能
1.知道代入法的概念.
2.会用代入消元法解二元一次方程组.
(二)过程与方法
1.通过探索,了解解二元一次方程的“消元”思想,初步体会数学的化归思想.
2.培养探索、自主、合作的意识,提高解题能力.
(三)情感、态度与价值观
1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣.
2.学习用代入消元法解二元一次方程
教师活动:把下列方程写成用含 的式子表示 的形式:
(1) ;(2) .
学生活动:独立完成,回答结果.
教师活动:出示例1,巡视,指导学生解答.
例1:用代入法解方程组
学生活动:解答例1,体验代入消元法解二元一次方程组,试着归纳用消元法解二元一次方程组的步骤.
分析:方程 中 的系数是1,用含有 的式子表示 ,比较就简便.
(2)个未知数的值后,把它代入方程 都能得到另一个未知数的值,其中代入方程 最简捷.
教师活动:指导学生认真阅读教材P 例2.要求学生阅读思考找出题目中所包含的等量关系,列出二元一次方程组,并解答.
例2:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为 .某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?
教师活动:介绍消元思想,师生共同归纳代入消元法的概念.
归纳:
消元思想:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.
上面的解法,是把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
答:这些消毒液应该分装 大瓶和 小瓶.
上面解方程组的过程可以用下面的框图表示:
三、课堂总结
这节课我们介绍了二元一次方程组的一种解法---代入消元法.了解到解二元一次方程组的基本思想是“消元”,即把二元变成“一元”.在学习方法上,还要学会主动探索,从不同的角度来思考问题的学习方法,逐步理解数学的转化思想和整体代入思想.
相关文档
最新文档