热解的基本原理和方式

合集下载

固体废物的热解的技术

固体废物的热解的技术
(2)加热速率对产品成分比例影响较大。一般,在较低和较 高的加热速率下热解产品气体含量高。
(3)废料在反应器中的保温时间决定了物料分解转化率。 保温时间长,分解转化率高,热解充分,但处理量少; 保温时间短,则热解不完全,但处理量高。 (4)废物成分:有机物成分比例大,热值高,可热解性较好,
产品热值高,可回收性好,残渣少;含水率低,干燥耗热 少,升温到工作温度时间短;较小的颗粒尺寸促进热量传 递,保证热解过程的顺利进行。
(5)反应器类型:一般固定燃烧床处理量大,而流态燃烧床 温度可控性好。气体与物料逆流行进,转化率高,顺流行 进可促进热传导,加快热解过程。
(二)热解工艺分类
一个完整的热解工艺包括进料系统、反应器、回收净化
系统、控制系统几个部分。其中,反应器部分是整个工艺的
核心,热解过程在其中发生,其类型决定了整个热解反应的
轮,成倾斜排列,相邻圆 桶间旋转方向相反,有独 立的一次空气导管,由圆 桶底部经滚筒表面的送气 孔到达废物层。
2、炉床型焚烧炉
采用炉床盛料,燃烧在 炉床上物料表面进行, 适于处理颗粒小或粉末 状固体废物以及泥浆状 废物,分为固定炉床和 活动炉床两大类。 (1)固定炉床-多段炉 又叫多膛炉或机械炉, 是一种有机械传动装置 的多膛焚烧炉,可以长 期连续运行、可靠性相 当高的焚烧装置,广泛 应用于污泥的焚烧处理。 缺点:机械设备较多, 需要较多维修与保养; 需要二次燃烧除臭。 固定床。
(2)活动炉床-旋转窑焚烧炉 活动炉床:转盘式、隧道式、回转式。
旋转窑焚烧炉:应用最多的活动炉床焚烧炉。它是一个略微 倾斜而内衬耐火砖的钢制空心圆筒,窑体通常很长,通 过炉体整体转动达到固体废物均匀混合并沿倾斜角度向 出料端移动。
根据燃烧气体和固体废物前进方向是否一致,旋转窑焚烧炉 分为顺流和逆流两种。前者常用于处理高挥发性固废; 后者常用于处理高

生物质热解技术

生物质热解技术
所有的动植物和微生物。 生物质能是太阳能以化学能形式储存在生物质中的能量形式,
以生物质为载体的能量。 生物质能直接或间接地来源于绿色植物的光合作用,可转化为
常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种 可再生能源。
2、生物质能的分类
传统生物质能
在发展中国家小规模应用的生物质能,主要包括农村生活用能 (薪柴、秸秆、稻草、稻壳及其它农业生产的废弃物和畜禽粪便 等);
③ 当温度高于300℃时, 橡胶分解加快, 断裂出来的化学物质分子 量较小, 产生的油流动性较好, 而且透明
橡胶的热解处理
废轮胎高温热解靠外部加热使化学链打开, 有机物得以分 解或液化、汽化。热解温度在250℃~500℃范围内,当温 度高于250℃时, 破碎的轮胎分解出的液态油和气体随温度 升高而增加,400℃以上时依采用的方法不同, 液态油和固 态炭黑的产量随气体产量的增加而减少。
污染
无氧或缺氧 吸热 气、油、炭黑 贮存或远距离运输 二次污染较小
研究报道表明,热解烟气量是焚烧的1/2,NO是焚 烧的1/2,HCl是焚烧的1/25,灰尘是焚烧的1/2。
3 热解的过程及产物
固体废物热解过程是一个复杂的化学反应过程。包括大分 子的键断裂,异构化和小分子的聚合等反应,最后生成各 种较小的分子。
供热方 式
➢直接加热 、间接加热

热解温 度不同
➢高温热解、中温热解、低温热解


热解炉 结构
➢固定床、移动床、流化床和旋转炉

艺 分
产物物 理形态
➢气化方式、液化方式、炭化方式
类 热解、
燃烧位 置
➢单塔式和双塔式
是否生 成炉渣
➢造渣型和非造渣型

热解气的气化过程

热解气的气化过程

热解气的气化过程热解气是一种颇为特殊的气化过程,它可将固体、液体或气体的物质通过热裂解或蒸汽重整等方式转变为气态化合物,常被用于替代化石能源,用以增加能源来源的多样性。

1. 热解气的基本原理热解气的基本原理是利用高温条件下的化学反应将物质原子键裂解,从而产生含氢气体,如氢气、一氧化碳和甲烷等,其反应式一般可以表示为CnHmOx => nH2 + mCO。

热解气一般是由高温下的干馏、蒸汽重整等能量密集过程产生。

进一步来讲,这些化学反应需要在高温高压的环境下进行,而这些条件的实现大都需要先进行能量输入,例如煤炭干馏需要通过加热将煤炭加热至合适的温度才能对其进行热解。

2. 热解气得到的气体性质在热解气的过程中,所得到的气体主要有氢气、一氧化碳、甲烷等,都是含碳、含氢的化合物。

比如,一氧化碳的化学性质非常稳定,且容易被燃烧,所以在工业生产中常作为燃料;而氢气则是可以被用作燃料和制造其他化学制品的重要原料之一。

3. 热解气的应用由于热解气能以较低成本转化为高价值的气体化学品,所以热解气技术在许多方面得到了广泛应用。

首先,在工业领域,热解气可以在生产过程中替代化石燃料,从而减少碳排放和空气污染,以达到更加环保的效果。

其次,在农业领域,热解气可以用作生产氮肥的原料,从而能够提高农作物的产量并减少对天然气的依赖。

此外,在生活领域,热解气可以被用作燃料汽车的氢燃料源,从而减少对石油燃料的依赖。

总之,热解气的气化过程不仅能够为人类社会提供更为多样性的能源来源,同时其提供的气态化合物也可被广泛地应用于化工、电力、石油等多个领域中。

虽然热解气的气化过程牵涉到高温、高压等复杂的物理化学变化,但是人们通过不断创新,不断提高现有技术和研发新技术,努力推进热解气技术的应用和发挥,相信它一定能发挥更大的作用。

生物质热解原理与技术

生物质热解原理与技术

生物质热解原理与技术生物质热解是将生物质原料在高温、无氧或低氧气氛下加热分解的过程,其产物可以用于能源、化工等领域。

生物质热解技术被认为是一种可持续的能源生产方式,因为它可以利用可再生的生物质原料,减少对化石燃料的依赖,同时减少环境污染。

生物质热解的原理是利用热能将生物质原料中的有机物分解成气体、液体和固体三种产物。

生物质热解的反应过程可以分为三个阶段:干燥、热解和气化。

在干燥阶段,生物质原料中的水分被蒸发出来,此时生物质原料温度升高。

在热解阶段,生物质原料中的有机物开始分解,产生一些易挥发的产物,如水、酚等。

在气化阶段,生物质原料中的产物被进一步分解,产生大量的气体产物,如一氧化碳、二氧化碳和甲烷等。

生物质热解的技术包括固定床热解、旋转炉热解、流化床热解和微波热解等。

固定床热解是最常用的技术之一,它是将生物质原料放置在固定的床上,通过加热使其分解。

旋转炉热解则是通过旋转的方式将生物质原料加热分解。

流化床热解是将生物质原料放置在流化床中,通过气体流动使其分解。

微波热解则是利用微波加热生物质原料。

生物质热解的产物包括固体炭、液体油和气体。

固体炭可以用作固体燃料,液体油可以用于发电、加热和化工等领域,气体则可以用于发电或者制氢等领域。

生物质热解技术的优点是可以利用可再生的生物质原料,减少对化石燃料的依赖,同时减少环境污染。

但是,生物质热解技术也存在一些缺点,如生物质原料的供应不稳定、生产成本较高等问题。

生物质热解是一种可持续的能源生产方式,其原理是利用热能将生物质原料中的有机物分解成气体、液体和固体三种产物。

生物质热解技术具有广阔的应用前景,但是需要进一步完善技术和降低成本。

热解

热解
③ 当温度高于300℃时, 橡胶分解加快, 断裂出来的化学物 质分子量较小, 产生的油流动性较好, 而且透明。
.
废橡胶热解产物
轮胎热解所得产品的组成中气体占22%(重量)、 液体占27%、炭灰占39%、钢丝占12%。 ➢在气体组成主要为甲烷(15.13%)、乙烷(2.95%)、 乙烯(3.99%)、丙烯(2.5%)、一氧化碳(3.8%),水、 CO2、氢气和丁二烯也占一定的比例。 ➢在液体组成主要是苯(4.75%)、甲苯(3.62%)和其 他芳香族化合物(8.50%)。
低温热解:T<600℃。农业、林业 和农业产品加工后的废物用来生产低硫 低灰的炭,生产出的炭视其原料和加工 的深度不同,可作不同等级的活性炭和 水煤气原料。
.
此外,按热分解与燃烧反应是否在同一设备中进行, 热分解过程可分成单塔式和双塔式。按热解过程是 否生成炉渣可分成造渣型和非造渣型。按热解产物 的状态可分成气化方式、液化方式和碳化方式。还 有的按热解炉的结构将热解分成固定层式、移动层 式或回转式,由于选择方式的不同,构成了诸多不 同的热解流程及热解产物。
影响热解产物的生成比例。通过加热温度和 加热速率的结合,可控制热解产物中各组分 的生成比例。
3.停留时间 决定物料分解转化率。
为了充分利用原料中的有机物质,尽量脱出 其中的挥发分,应延长物料在反应器中的停 留时间。
停留时间长,热解充分,但处理量少;停留 时间短,则热解不完全,但处理量大。
.
4.物料性质
3、热解工艺分类
.
直接(内部)供热:供给适量空气使
有机物部分燃烧,提供热解所需热量
按供热方式
(获得低品位燃气)
间接(外部)供热:从外界供给热 解所需热量
(燃气品位高但供热效率低)

固体废物的热解的基本原理和处理技术

固体废物的热解的基本原理和处理技术

二、热解过程及产物
1. 有机物的热解反应可以用下列通式来表示:
上述反应产物的收率取决于原料的化学结构、 物理形态和热解的温度及速度。
如Shafizadeh等人对纤维素的热解过程进行 了较为详细的研究后.提出了用下图描述纤维 素的热解和燃烧过程。
2. 热解反应所需的能量取决于各种产物的生 成比,而生成比又与加热的速度、温度及原 料的粒度有关。
他认为通过部分燃烧热解产物来直接提供 热解所需热量的情况,应该称为部分燃烧 (Partial-combustion)或缺氧燃烧 (starved-air-combustion)。
他还提倡将二者统称为PTGL(Pyrolysis, Thermal Gasfication or Liquification) 过程。美国化学会为了表示对J.Jones的 尊敬采纳了这一倡议,而将在欧洲和日本 广为流行的不进行破碎、分选,直接焚烧 的方式称为mass burning。
(4)由于保持还原条件,Cr3+不会转化为Cr6+;
(5)NOx的产生量少。
美国:微生物学、热化学两条技术 路线
热化学:
(1)以产生热、蒸汽、电力为目的的燃烧技术;
(2)以制造中低热值燃料气、燃料油和炭黑为目 的的热解技术;
(3)以制造中低热值燃料气或NH3、CH30H等 化学物质为目的的气化热解技术
废塑料 高热值——焚烧——损伤焚烧设备; 焚烧产物——二噁英的主要来源 所以,各国制定……限制大量焚烧废塑料
——塑料热解制油技术的发展
第一节 热解原理及方法
一、热解的定义
热解在英文中使用“pyrolysis”一词.在工 业上也称为干馏。它是将有机物在无氧或 缺氧状态下加热,使之分解为:

化学反应机理中的热解反应

化学反应机理中的热解反应

化学反应机理中的热解反应化学反应是物质发生变化的过程,其中热解反应是一种常见的反应类型。

热解反应是指在高温下,化合物因吸热而被分解成更简单的物质的化学反应。

在这篇文章中,我们将探讨热解反应的机理及其在实际应用中的重要性。

一、热解反应的基本原理热解反应是一种热化学反应,其中化合物在高温下被分解成较简单的物质,同时伴随着能量的吸收。

热解反应通常需要高温条件来提供足够的能量,使化合物中的化学键断裂,从而产生新的物质。

热解反应的机理可以分为两个主要步骤:初步断裂和副反应。

初步断裂是指在高温条件下,化合物中的离子或原子之间的化学键发生断裂,形成自由基或反应中间体。

这个过程需要吸收热量,因为化学键的断裂需要克服化学键的结合能。

在初步断裂之后,副反应会发生。

副反应是指产生的自由基或反应中间体在高温下进一步参与其他反应,形成最终产物。

这些副反应可以是链式反应、烷基化、芳香化等不同的反应机制。

副反应的产物可以根据反应条件以及化合物的性质而变化。

二、热解反应的应用热解反应在许多领域中都有重要应用。

以下是其中一些常见的应用领域:1. 化学合成热解反应可以用于有机合成中,通过高温分解复杂的有机化合物,生成所需的有机物。

这种方法可以高效地合成各种有机化合物,包括药物、染料和聚合物等。

2. 燃料加工在石油加工和生物质能源领域,热解反应广泛应用于燃料的制备和转化过程。

通过高温分解原料,例如煤、木材或其他可再生能源,可以产生气体、液体或固体燃料。

3. 废物处理热解反应可以用于处理废物和污染物。

通过高温分解废物,可以将其转化为能源或其他有用的物质。

这种方法不仅可以有效降低废物的体积,还可以减少对环境的污染。

4. 材料制备热解反应也用于材料制备领域。

通过高温分解金属盐或金属有机化合物,可以制备金属氧化物、陶瓷材料、纳米颗粒等。

这些材料在电子、光学和催化等领域具有广泛的应用价值。

三、热解反应的挑战与展望尽管热解反应在许多领域中有广泛应用,但仍面临一些挑战。

概述生物质热解的基本原理

概述生物质热解的基本原理

概述生物质热解的基本原理
生物质热解是一种将生物质分解成可燃性气体、液体和固体炭的热化学过程。

其基本原理是通过在高温下加热生物质,使其发生热裂解,产生一系列气体、液体和固体产物。

具体而言,生物质热解的过程可以分为三个阶段:干燥阶段、热解阶段和固化阶段。

在干燥阶段,生物质中的水分被蒸发,使得生物质与热能相互作用。

在热解阶段,生物质中的有机物开始分解,并释放出可燃性气体和液体产品。

这些产品包括甲烷、一氧化碳、一氧化二氮、醋酸等。

在固化阶段,热解产物进一步分解生成可燃性固体炭。

这些炭可以作为生物质燃料使用,也可以用于制备材料、活性炭等。

生物质热解的基本原理是通过高温将生物质中的有机物分解成可燃性气体、液体和固体炭。

这一过程可以将生物质转化为更高能值的燃料,同时也可以利用热解产生的气体和液体产品。

生物质热解是一种重要的生物能源转化技术,具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着现代工业的发展,热解处理已经成为了一种有发展前 景的固体废物处理方法之一。它可以处理城市垃圾,污泥, 废塑料,废橡胶等工业以及农林废物、人畜粪便等在内术方面
焚烧
热解
空气注入量
需供給充足的氧,因此 排管直径较大
需无氧/低氧 ,因此只需少量氧气 需无氧/低氧 ,因此排管直径较小
他认为通过部分燃烧热解产物来直接提供热解所需热量 的 情 况 , 应 该 称 为 部 分 燃 烧 (Partial-combustion) 或 缺氧燃烧(starved-air-combustion)。
热解是一种传统的生产工艺,大量应用于木材、煤炭、重 油、油母页岩等燃料的加工处理,已经有了非常悠久的历 史。70年代初期,热解被应用于城市固体废物,固体废物 经过这种热解处理后不但可以得到便于储存和运输的燃料 和化学产品,而且在高温条件下所得到的炭渣还会与物料 中某些无机物与重金属成分构成硬而脆的惰性固态产物, 使其后续的填埋处置作业可以更为安全和便利地进行。
热解反应过程可用下列简式表示:
有机固体废物
可燃性气体+有机液体+固体残渣
热解过程是很复杂的,它与诸多因素有关,例如固体废 物种类、固体废物颗粒尺寸、加热速率、终温、压力、 加热时间、热解气氛等。
热解反应所需的能量取决于各种产物的生成比。
固体废物热解是否得到高能量产物,取决于原料中氢转 化为可燃气体与水的比例。 美国城市垃圾的典型化学组成为C30H48N0.5S0.05,其H/C 值低于纤维素和木材质。 日本城市垃圾的典型化学组成为C30H53N0.34S0.02Cl0.09。其 H/C值高于纤维素。
设备体积


废弃物反应 有氧条件下的氧化反应
无氧条件下的还原反应
设备的形态
敞开式結构
封闭式結构
二次污染
Dioxin 重金属的大气污染
无Dioxin. 重金属分解后残渣残留
固体废物的热解与焚烧相比有下列优点:
① 可以将固体废物中的有机物转化为以燃料气、燃料油和炭 黑为主的贮存性能源;
② 由于是缺氧分解,排气量少,热解产生的NOx,SOx,HCl 等较少,生成的气体或油能在低空气比下燃烧,有利于减 轻对大气环境的二次污染;
热解工艺及成分
7.1.3 热解方式分类
按加热方式
直接(内部)加热:供给适量空气使有机物 部分燃烧,提供热解所需热量
(获得低品位燃气)
间接(外部)加热:从外界供给热解所需 热量
(燃气品位高但供热效率低)
直接加热(内热式热解)
内热式热解也称为部分 燃烧热分解,反应器中的可 燃性垃圾或部分热解产物燃 烧,以燃烧热使垃圾发生热 分解。通常得到4000-8000 kJ/m3的低品位燃料气。
③ 废物中的硫、重金属等有害成分大部分被固定在炭黑中; ④ 由于保持还原条件,Cr3+不会转化为Cr6+; ⑤ NOx的产生量少; ⑥ 热分解残渣中无腐败性的有机物,而且灰渣熔融能防止金
属类物质溶出; ⑦ 能处理不适合焚烧和填埋的难处理物。
焚烧和热分解的比较
经济方面
焚烧
设备投资规模 投资费用过多 (费用高)
7.1.2.2 热解产物
热解产物中包括: 气体:CH4、H2、H2O、CO、CO2、NH3、H2S、HCN等; 有机液体:有机酸、芳烃、焦油、甲醇、丙酮、乙酸等; 固体残渣:灰渣、炭黑等含纯碳和聚合高分子的含碳物。 上述反应产物的收率取决于原料的化学结构、物理形态 和热解的温度及速度。 低温低速——重新结合成热稳定性固体——固体产率 增加 高温高速——全面裂解——气态产物增加 粒度大物料——均匀需时长——二次反应多
外热法式热解是将垃圾置于密闭的容器中,在绝热的条件下,热 量由反应容器的外面通过器壁进行传递,垃圾被间接加热而发生分解。 因不伴随燃烧反应,可得到15000-25000kJ/m3的高热值燃料气。
③①②外外外无热热热空式式气式回双进竖转入塔窑井,流炉热化解炉 垃构产高温器产不圾造品 的 内度生高热破复运品热进合 气。解质值行适 体碎杂行、较;,。 中气和。稳好加气但混化液定,热化转有和化,炉大具均效燃所易有匀率内量烧较,和易氮需控在热气一动制效,个力,率热反大但低值应,,
一般的固体燃料,剩余H/C值均在0~0.5之间。
美国城市垃圾的该H/C值位于泥煤和褐煤之间;
日本城市垃圾的该H/C值则高于所有固体燃料——垃圾中 塑料含量较高。
从氢转换这一点来看,甚至可以说城市垃圾优于普通的固 体燃料。但在实际过程中,还同时发生其他产物的生成反 应,不能以此来简单地评价城市垃圾的热解效果。
②① 竖内井热式式熔单融塔气流化化炉炉 结构同简时单进;行热熔解融温、度热低解;和热气 化解,产资物源主化要效是果燃好气;,占热地值面低积, 小二不,次利能污于适染利应小用各。。种垃圾的处理; ③ 内热式气流热分解炉 ④ 内热式回转热分解炉
SUCCESS
THANK YOU
2019/6/10
间接加热(外热式热解)
热解
低价的设备规模(费用少)
维护费用
维护费用多
维护费用少,简单的管理和 替换零配件即可
操作费用 作业环境 需要面积
操作费用高 恶劣
大 (需要宽敞用地)
操作费用少 好
小(需要少量空间)
7.1.2 热解原理
7.1.2.1 热解过程
固体废物的热解是一个复杂连续的化学反应过程,它包 含了大分子键的的断裂、异构化和小分子的聚合等反应, 最后生成较小的分子。 在热解的过程中,其中间产物存在两种变化趋势,一是 由大分子变成小分子,直至气体的裂解过程;二是由小 分子聚合成大分子的聚合过程。这些反应没有明显的阶 段性,许多反应是交叉进行的。
7.1热解的基本原理和方式
7.1.1 概述
热解(pyrolysis)在工业上也称为干馏。
固体废物热解是利用有机物的热不稳定性,在无氧或缺氧 条件下受热分解的过程。热解过程有机物发生化学分解得 到气态、液态或固态可燃物质。
最 经 典 定 义 : 斯 坦 福 研 究 所 的 J . Jones ( Stanford Research Institute,SRI) 提出的: “在不向反应 器内通入氧、水蒸气或加热的一氧化碳的条件下,通过 间接加热使含碳有机物发生热化学分解,生成燃料(气 体、液体和炭黑)的过程”。
相关文档
最新文档