四种锅炉经济性对比

合集下载

工业用汽采用燃气锅炉、燃煤锅炉、电厂供热的经济性及成本分析方案

工业用汽采用燃气锅炉、燃煤锅炉、电厂供热的经济性及成本分析方案

庆华集团高新技术科技孵化园的热源动力系统方案一、方案的编制依据和说明此方案的编制只考虑高新技术科技孵化园项目内的工艺用汽和厂房、办公楼、实验楼的供热。

供热面积统计表:2、动力热源的特点分析按蒸发量20t/h,额定蒸汽压力2.5MPa,额定蒸汽温度230℃锅炉分析:3、结论:1、通过以上对比,结果表明燃气锅炉的运行成本高于燃煤锅炉运行成本,但燃气锅炉可以大大改善工作降低劳动强度,提高企业品位。

2、从运行费用来看,与乌斯太电厂购买蒸汽也具有很好的优势,与电厂购买蒸汽,系统稳定安全可靠,没有噪音与排放物的污染,且运行维护费用极低,使用方便快捷。

3、随着国家环境保护政策、能源政策的发展趋势,燃煤锅炉运行维护费用后期很高,SOx和NOx的产生对环境污染大,治理费用高,且需要设置储煤场和灰渣堆场,占地面大,严重污染周边环境。

4、燃气锅炉启动时间短,调节负荷快,长期连续运行费用还有可下降空间。

经从建设投资费用,经济运行成本,安全稳定运行、环境保护、后期运行维护等多方面综合考虑,最终结论首选与乌斯太电厂购买蒸汽,备选自建3台燃气锅炉较为合适,具体看推荐方案。

四、推荐方案方案一:此项目动力系统可考虑采用与乌斯太电厂购买蒸汽,建设供汽管网,此方案经济性好,电厂供汽系统稳定安全可靠,没有环境污染,运行维护费用极少。

方案二:此项目动力系统可考虑采用:蒸发量为10T/H,压力为1.25MPa(g),温度为194℃的锅炉一台,蒸发量为20T/H,压力为2.5MPa(g),温度为230℃的锅炉一台,蒸发量为具体锅炉投资明细:单位:万元35T/H,压力为3.83MPa(g),温度为450℃的锅炉一台,三台锅炉配置两台双减装置,可以根据负荷情况和工艺用汽压力情况调节使用,见下图(示意图)该方案按燃气锅炉考虑,概算投资需要1200万元,按燃煤锅炉考虑需要1700万元。

5、锅炉低负荷运行下的经济性分析锅炉设计是按照满负荷设计的,热效率是随着负荷的降低而逐步减少的,负荷越低,热效率降低的速度越大。

锅炉效率与经济运行

锅炉效率与经济运行

氧量对锅炉效率的影响
计算排烟损失的氧量应是空气预热器烟气出 口处(空气预热器空气入口后)的氧量,锅炉出 口氧量变化1%(百分点),约影响锅炉效率变 化0.46%(百分点),影响发电煤耗变化 1.6g/kW•h左右。
最佳氧量
炉膛出口的氧量是表征锅炉的配风、燃烧状况 的重要因素,加强锅炉燃烧配风的调整,改善 锅炉的燃烧状况,提高锅炉运行效率。因炉膛 出口处烟气温度较高,锅炉运行中监测的氧量 测点一般在高温过热器后。计算排烟损失的氧 量应是空气预热器烟气出口处的氧量,尾部烟 道特别是空气预热器的漏风,将引起的烟气量 和排烟损失的增加,需要定期监测空气预热器 的漏风,并加强对空气预热器的维护。
燃料的物理显热的计算公式: i r=cr tr 上式中比热另有计算公式。对于燃煤锅炉只有燃料水分很大
的时候才计算。 雾化燃料油热量的公式,只有锅炉低负荷运行,必须要煤油
混烧的情况才计算。 用外来蒸汽加热空气指的是在使用暖风器等前置式空气预热
器的锅炉机组。
机械不完全燃烧损失q4
Q4lz —灰渣中未燃烧或未燃尽的碳粒引起 的损失;
损失小 过量空气系数小,则可能不完全燃烧损失增大。
排烟温度与过量空气系数是一个经济技术 综合考虑的参数
存在一个最佳过量空气系数
q,%
∑q q2
q3+q4
最佳
" l
八、散热损失
锅炉的外表面温度高于环境的温度而向外界 通过大空间自然对流和辐射换热。
散热损失与锅炉的容量成反比
散热损失与锅炉的负荷成反比
漏损失、余速损失等 乏汽在凝汽器的放热损失 电厂辅机等自用电量 管道散热损失 发电机损失 工质泄漏、工况变化和燃料运输储存损失等
锅炉的主要参数对机组热经济性的影响

LNG与管道气、蒸汽等能源的对比

LNG与管道气、蒸汽等能源的对比

LNG与管道天然气、管道蒸汽等能源的对比分析一、物性对比气化后的LNG与管道天然气、煤炭和生物质颗粒相比,存在以下差异:管道天然气和LNG的实际应用特点:①LNG不受冬季用气高峰的限制,一年四季均可保持正常供液,而管道天然气在冬季用气高峰会限制工业用气以保障民用。

②LNG 气化站供气无需承担高额的开口费及其他相关设备、设计费用。

生物质颗粒和天然的实际应用特点:①生物质颗粒相比天然气其技术应用成熟度较低,目前仅能应用于低功率设备使用;②生物质颗粒燃点低,较易点燃,因此火灾危险几率大,安全性低;③生物质颗粒热值低,同等负荷下生物质颗粒的使用量是天然气的4倍,因此需要更大的燃料堆放场地;④生物质颗粒直接燃烧利用率低,为提高利用率一般都将生物质气化后使用,气化后的燃气主要成分为CO和H2,其中CO的毒性很大,而且无色无味,不易扩散。

达到一定浓度后,人一旦吸入,轻者发生头痛、反应迟钝、昏厥,重者有发生窒息的危险。

并且其平均密度和空气很相近,极易发生聚集达到爆炸极限而发生爆炸。

二、经济分析1、燃气锅炉与燃煤锅炉、燃油锅炉、电锅炉的经济技术分析锅炉可以燃用各种能源,包括天然气、煤、柴油、电,为了有利于对比,我们将对10吨的蒸汽锅炉在燃用天然气、煤、柴油、电的各个方面作出比较,以供参考。

1)四种类型锅炉初始固定投入比较从上表可以看出:①总体上燃气锅炉、燃油锅炉的初始固定投资少于燃煤和电锅炉;②在锅炉的使用寿命中,燃气锅炉和电锅炉一般为20年,是各种类型锅炉中寿命最长的;③在锅炉的折旧率中,燃气锅炉均远远低于同等规格的其它类型的锅炉,无形之中减少了固定资产的流失。

④因此,在各种类型锅炉固定资产的投资方面,投资燃气锅炉无疑是一种更好的选择。

2、几种锅炉年运行费用比较下面以10蒸吨锅炉为例,每天全负荷使用12小时,年生产300天计算,比较4种锅炉的年运行费用,环保排污费用按照国家最低标准每当量1.2元计算。

经过测算,折算到每吨蒸汽的燃料费用为235.9元,综合每吨蒸汽的使用成本为240~245元。

锅炉级别划分标准

锅炉级别划分标准

锅炉级别划分标准
锅炉级别划分标准指的是根据锅炉的额定蒸发量、额定压力、燃料种类和工作条件等因素,将锅炉分为不同的级别,并对每个级别的锅炉进行相应的设计、制造和安装。

目的是确保锅炉的安全性、经济性和环保性。

按照国际标准,通常将锅炉分为以下几个级别:
1.小型锅炉:额定蒸发量小于等于4吨/小时,额定压力小于等于1.6MPa,适用于小型加热或供暖系统。

2.中型锅炉:额定蒸发量小于等于20吨/小时,额定压力小于等于2.5MPa,适用于中型加热或供暖系统。

3.大型锅炉:额定蒸发量小于等于220吨/小时,额定压力小于等于3.82MPa,适用于大型加热或供暖系统。

4.超大型锅炉:额定蒸发量大于220吨/小时,额定压力大于3.82MPa,适用于大型工业生产或发电系统。

除了以上常规的级别划分,还有一些特殊的锅炉级别,例如高温高压锅炉、循环流化床锅炉、低温余热锅炉等。

这些锅炉在设计和制造时需要满足相应的技术标准和安全要求。

总之,锅炉级别划分标准是保障锅炉运行安全、稳定和经济的重要依据,也是锅炉设计和制造的基础。

- 1 -。

生物质电厂130t锅炉配抽凝机组或纯凝机组经济性对比

生物质电厂130t锅炉配抽凝机组或纯凝机组经济性对比

抽凝机组与纯凝机组经济性对比2016/8/19抽凝机组与纯凝机组经济性对比根据目前乌拉特前旗供汽情况调查,潜在供热流量在50t/h左右,考虑机组以后供汽的要求,假设供汽量50t/h,供汽参数0.98MPa,280℃,工业供汽价格暂定126元,每小时供汽收益为:50×126=6300元。

假设不供汽,50t/h蒸汽产生的发电效益为:50t/h×(3007kj/kg-2400 kj/kg)/3.6×0.75元=6322.9元,由此可知工业供汽价格最低不能低于126元,低于126元则经济效益下降极为明显。

一、以下对两种方案经济性进行核算:第一种方案:假设考虑机组长期供汽需求,设计供汽流量50t/h,机组选型为抽汽凝汽式机组,配置如下:1台130t/h高温高压锅炉+1台30MW高温高压抽凝汽轮机。

主要运行参数:主蒸汽流量130t/h主蒸汽压力/温度:8.83MPa/535℃额定发电功率:25MW额定抽汽量:50t/h纯凝工况发电功率:31MW工况一:抽凝机组经济性核算:假设工业供汽价格140元,上网电价0.75元,全年可用发电7200小时,供汽7200小时(10个月),年综合厂用电率9%计算如下:发电量收益=25MW×1000×0.75元×7200小时×91%=1.2285亿元供汽收益=50×140元×7200=50400000=0.504亿元总收益=1.2285亿元+0.504亿元=1.7325亿元工况二:抽凝机组经济性核算:假设工业供汽价格140元,上网电价0.75元,全年可用发电7200小时,供汽4320小时(6个月),年综合厂用电率9%计算如下:发电量收益=(25MW×1000×0.75元×4320小时+31MW×1000×0.75元×2880小时)×91%=1.34643亿元供汽收益=50×140元×4320=50400000=0.3024亿元总收益=1.3643亿元+0.3024亿元=1.6667亿元小结:由工况一和工况二经济性对比,工况一运行情况下最经济。

135机组各负荷段经济性对比

135机组各负荷段经济性对比
xx 电厂#1、#2 机组各负荷段经济性对比
负荷(MW)厂用电率(%) 供电标煤耗 (g/kw.h) 备注说明
˂80
>10.5
390
负荷越低,固体未完全燃烧 q4 高,汽温低,厂用电率偏高,机组效率低,造成发、供电标煤耗高。
80、90
9.4~10.5
382~385
负荷低,固体未完全燃烧 q4 偏高,汽温偏低,厂用电率偏高,机组效率低,造成发、供电标煤耗 高。如煤质太差时,90MW 时被迫增启一台磨机,会使厂用电率升高。 在 100MW 负荷段时,因需要启动三台磨机运行,厂用电率相对升高,发、供电标煤耗也相应升高。 机组负荷接近 115MW 后,机组各运行参数就逐渐转为良好。
100~115
8.8~9.4
376~382
115~125
8.0~8.8
375~380 是机组的经济负荷,各运行参数达~385
机组本达到额定负荷。负荷升高后,因引风机出力不足,锅炉缺氧燃烧,排烟温度升高,排烟损 失 q2 相应升高,固体未完全燃烧损失升高。灰量增加,高细磨运行小时数增加,厂用电率上升。
以上表格数据是根据运行统计分析得出,由于没有对各负荷段进行过经济性实验,所以数据存在一定偏差。

深度调峰灵活性改造相关方案及经济性分析

深度调峰灵活性改造相关方案及经济性分析

深度调峰灵便性改造相关方案经济性分析我公司为了在满足冬季正常向县城供暖的基础上,积极参预新疆区域电力辅助服务市场,现结合我公司生产经营实际情况与前期调研情况对我公司深度调峰灵便性改造方案进行经济性分析。

我公司为热电联产机组,新疆电网公用火电1891万中80%为热电联产机组,30万及以上机组仅190万是纯凝机组,电网公司预测进入供暖期为保证供热与新能源发电,电网调峰存在艰难,供热机组在供热期深度调峰存在较大艰难。

因此根据以上情况就我公司在供热期和非供热期深度调峰灵便性改造方面进行分别分析。

一、供暖期(一)维持现状不实施热电解耦灵便性改造有关情况1、2023-2023年供热期供热面积617万平方米,通过对供热期相关数据进行统计分析,得知我公司供热初期、末期、中期平均供热量及机组运行方式如表1所示。

其中2023-2023年供热中期1月1日至4日单机运行,期间最低负荷200MW;2月20日以后机组最低负荷由190MW降至175MW, 2月27日1号机跳闸,2号机最低负荷175MW。

在此期间,供热毫无压力,彻底满足县供热要求。

2、2023年5月份收到供热公司函,提出2023-2023年采暖期供热面积由2023-2023年的617万平方米增加至849万平方米,列出了新增供热面积地点。

我公司安排人员前往文中所提到的新增供热面积地点查看,新增供热面积累在水分,预测2023-2023年供热面积可能在750万平方米左右,通过表1数据,取平均抽汽压力0.2MPa、抽汽温度255℃(2981kj∕kg)>热网疏水压力0.05MPa>疏水温度60°C(251kj∕kg)计算,通过查阅采暖抽汽工况图及调取历史曲线,可以测算出供热初期、末期、中期需要的平均供热量、抽汽量、机组最低负荷如表2所示:2023年供热面积在750万平方米,我公司在不进行热电解耦灵便性改造的情况下,在满足供热要求的同时在供热中期还可以参预深度调峰获得津贴,参照深度调峰有偿辅助服务最高报价计算:供热中期每小时调峰津贴二(第i档有偿调峰电量X第i档实际出清电价)i=1=2台机组义(17.5T6)万kWh×0.22元/kWh=0.66万元若参预深度调峰将减少上网电量,势必减少上网电量收益,上网电量目前平均上网电价0.225元∕kW・h、发电成本0.1元∕kW∙h,因此上网电量平均利润按照0.125元∕kW∙h计算:供热中期每小时上网电量利润损失=2台机组X(17.5-16)万kWh×0.125元/kWh=0.375万元若将深度调峰幅度由50%降至45%势必造成主要经济指标恶化,参照2023年05月11日以后1、2号机组最低负荷由175MW(50%负荷)降至157MW(44.8%负荷)主要经济指标下降趋势可以看出供电煤耗至少增加20g/kW∙h,若标煤单价按目前平均值128元/吨核算:供热中期每小时燃煤成本增加=320000万kWh(两台机组负荷)X20g∕kW∙h×128元/吨X0.000001=819.2元综合以上因素可以看出,若将深度调峰幅度由50%降至45%,在不考虑其它运行成本的影响下,参照深度调峰有偿辅助服务最高报价计算,每小时收益6600-3750-819.2=2030.8元。

锅炉运行经济性分析

锅炉运行经济性分析

毕业设计(论文)题目:锅炉运行经济性分析学生姓名:陈国宇学号:班级: 热动1033专业:电厂热能动力装置指导教师:黄锋2013年04月锅炉运行经济性分析学生姓名:陈国宇学班级:热动1033所在院(系): 动力工程系指导教师:黄锋完成日期: 2013-04-20超临界电站锅炉运行热经济性优化研究摘要随着我国改革开放的不断深入,经济的持续、快速的发展,同时也带动了电力工业进入了快速发展时期,燃煤的消耗也日益增加。

电站锅炉热力系统作为火电机组的一个重要的组成部分,它的经济性在很大程度上影响了整个火力发电厂运行的经济性,负荷变化时,电站锅炉热力系统的经济性要发生很大的变化。

因此,对锅炉可控因素进行优化是火电厂经济运行的重要目标。

本文基于电厂锅炉燃烧系统优化问题,针对锅炉燃烧系统网络建模方法进行分析与研究。

本文通过正、反平衡计算原理,分析出影响锅炉运行经济性的重要因素;针对某电厂600MW四角切圆燃煤锅炉的飞灰含碳量特性,应用人工神经网络的非线性动力学特征及自学习功能,建立了大型四角切圆燃烧锅炉飞灰含碳量特性的神经网络模型,并进行验证;同时采用遗传算法对锅炉热效率进行优化,获得最佳锅炉运行参数,初步实现了锅炉运行热经济性的最优,为机组的优化运行提供了依据。

关键字:锅炉;热经济性;优化;神经网络;遗传算法SUPERCRITICAL POWER PLANT BOILER THERMAL ECONOMIC OFOPTIMIZED RESEARCHABSTRACTWith the deepening of China's reform and opening up, the sustained, rapid economic development, but also led to the electric power industry has entered a period of rapid development, the coal consumption is increasing. Power plant boiler heat system as an important component of thermal power units, its economy is largely affected the economy of the entire thermal power plants running, load change, the economy of the power station boiler heat system has greatly changed. Therefore, optimization is an important goal of the economic operation of thermal power plant boiler uncontrollable factors. Based on the boiler combustion system optimization,network modeling approach for the boiler combustion system analysis and research. Through the principle of positive and negative balance calculation to analyze the important factor to affect the economy of boiler operation; characteristics of fly ash carbon content of the circular coal-fired boilers for a power plant 600MW four corners cut, nonlinear dynamical characteristics of the application of artificial neural networks and self-learning function, the establishment of TANGENTIALLY fired boiler fly ash carbon content characteristics of neural network model, and validation; using genetic algorithms to optimize boiler thermal efficiency, the best boiler operating parameters, the initial realization of boiler operation the optimum thermal economy, provides a basis for the optimization of operation of the unit.Key words: boiler; optimization; neural networks; genetic algorithms; thermal economization目录第1章绪论 (1)1.1课题的背景和意义 (1)1.2国内外研究现状 (2)1.3本课题的主要内容 (3)第2章电站锅炉经济性能分析与模型的建立 (4)2.1常用的锅炉效率计算模型与各项热损失分析 (4)2.1.1锅炉输入、输出法(正平衡)效率计算模型 (4)2.1.2热损失法(反平衡)锅炉效率计算模型 (7)2.1.3 ASME PTC标准下热损失法(反平衡)锅炉效率计算简化模型 (12)2.2影响锅炉运行经济性的因素分析 (13)2.3本章小结 (16)第3章基于B P神经网络的锅炉运行参数预测 (17)3.1人工神经网络 (17)3.1.1B P神经网络简介 (17)3.1.2B P神经网络的实现工具——m a t l a b介绍 (17)3.2飞灰含碳量的B P神经网络模型的建立 (18)3.2.1飞灰含碳量测量辅助变量的选择 (18)3.2.2飞灰含碳量B P神经网络模型结构的确定 (18)3.2.3飞灰含碳量B P神经网络模型的建立 (19)3.3实际、仿真及结果对比分析 (24)3.4本章小结 (24)第4章锅炉运行热经济性参数的优化 (25)4.1遗传算法简介 (25)4.1.1遗传算法的起源 (25)4.2利用遗传算法对神经网络训练结果进行寻优 (26)4.3燃煤锅炉热效率的优化结果 (28)4.4本章小结 (31)第5章结论及展望 (32)5.1 本文的主要工作和特点 (32)5.2 后续工作的展望…………....…….....................…………....................... (32)参考文献 (34)致谢.........………………………………………………………………………....…3 6附录A MATLAB中锅炉飞灰含碳量的编码程序 (37)附录B建模训练仿真数据表 (39)第1章绪论1.1 课题的背景和意义能源是国民经济的重要物资基础之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、燃气锅炉与煤锅炉、燃油锅炉、电锅炉的经济技术分析比较锅炉可以燃用各种能源,包括天然气、煤、柴油、电,为了有利于应用,现将对四种规格(1吨、2吨、3吨、4吨)的小型锅炉在燃用天然气、煤、柴油、电的各个方面作出比较,以
从上表中所给数据可以看出:
1、在1T、2T、3T的锅炉中,燃气锅炉、燃油锅炉的初始固定投资是最少的;在4T的锅炉中,燃煤锅炉的初始固定投入是最少的;
2、在锅炉的使用寿命中,燃气锅炉一般为20年,是各种类型锅炉中寿命最长的;
3、在锅炉的折旧率中,1T、2T、3T、4T的燃气锅炉均远远低于同等规格的其它类型的锅炉,无形之中减少了固定资产的流失。

因此,在各种类型锅炉固定资产的投资方面,投资于燃气锅炉无疑是一种更好的选择。

在影响锅炉选择的其它因素比较中,我们可以发现:
1、从环保的角度来看,燃气锅炉、用电锅炉对环境是无污染的,是首选;
2、从配套设施的要求来看,燃气锅炉、用电锅炉节省了大量人力、物力和场地,是首选;
3、从政府政策方面来看,近些年来,政府对天然气的推广使用是大力提倡和支持,却因为节能减排、粉尘污染、矿渣处理等问题限制燃煤锅炉的应用;因为碳的高排放、二氧化硫等酸性气体排放,不提倡燃油锅炉的推广;出于节能减排的考虑,会适当的拉闸限电,限制了用电锅炉的发展,所以燃气锅炉无疑是首选。

因此在影响锅炉选择的其它因素比较中发现,燃气锅炉是首选。

1.4、四种类型锅炉的经济技术分析比较
在综合燃气锅炉、煤锅炉、燃油锅炉、用电锅炉的初始固定投入、年度运行费用和其它因素等三大方面的比较,我们不难发现:
在初始固定投入、折旧率、年度运行费用和政府政策支持等方面都占优势的燃气锅炉无疑是最佳选择。

相关文档
最新文档