2017-2018上海静安区数学一模试卷与答案

合集下载

2017年上海市静安区高考数学一模试卷

2017年上海市静安区高考数学一模试卷

2017年上海市静安区高考数学一模试卷一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)“x<0”是“x<a”的充分非必要条件,则a的取值范围是.2.(5分)函数的最小正周期为.3.(5分)若复数z为纯虚数,且满足(2﹣i)z=a+i(i为虚数单位),则实数a 的值为.4.(5分)二项式展开式中x的系数为.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.(5分)已知α为锐角,且,则sinα=.7.(5分)根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x个小时,酒精含量降为p毫克/100毫升,且满足关系式(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过小时方可驾车.(精确到小时)8.(5分)已知奇函数f(x)是定义在R上的增函数,数列{x n}是一个公差为2的等差数列,满足f(x7)+f(x8)=0,则x2017的值为.9.(5分)直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,则的最大值为.10.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)若空间三条直线a、b、c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能12.(5分)在无穷等比数列{a n}中,,则a1的取值范围是()A .B . C.(0,1) D.13.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.215.(5分)已知y=g(x)与y=h(x)都是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),若y=g(x)﹣h(x)恰有4个零点,则正实数k的取值范围是()A. B. C.D.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(11分)已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F分别是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.18.(14分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时间为多久?19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.20.(18分)由n(n≥2)个不同的数构成的数列a1,a2,…a n中,若1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),则称a i与a j构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;,…a1的逆序数.(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣12017年上海市静安区高考数学一模试卷参考答案与试题解析一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)“x<0”是“x<a”的充分非必要条件,则a的取值范围是(0,+∞).【分析】根据充分必要条件的定义求出a的范围即可.【解答】解:若“x<0”是“x<a”的充分非必要条件,则a的取值范围是(0,+∞),故答案为:(0,+∞).【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.2.(5分)函数的最小正周期为π.【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得f(x)的最小正周期.【解答】解:函数=1﹣3•=1﹣•(1+sin2x)=﹣﹣sin2x的最小正周期为=π,故答案为:π.【点评】本题主要考查三角恒等变换,正弦函数的周期性,属于基础题.3.(5分)若复数z为纯虚数,且满足(2﹣i)z=a+i(i为虚数单位),则实数a的值为.【分析】由(2﹣i)z=a+i,得,然后利用复数代数形式的乘除运算化简复数z,由复数z为纯虚数,列出方程组,求解即可得答案.【解答】解:由(2﹣i)z=a+i,得==,∵复数z为纯虚数,∴,解得a=.则实数a的值为:.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.(5分)二项式展开式中x的系数为10.【分析】利用二项式展开式的通项公式即可求得答案.,【解答】解:设二项式展开式的通项为T r+1=x2(5﹣r)•x﹣r=•x10﹣3r,则T r+1令10﹣3r=1得r=3,∴二项式展开式中x的系数为=10.故答案为:10.【点评】本题考查二项式定理,着重考查二项展开式的通项公式的应用,属于中档题.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【分析】由已知求出圆锥的底面半径,进一步求得高,代入圆锥体积公式得答案.【解答】解:半径为1米的半圆的周长为=π,则制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,则2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.【点评】本题考查柱、锥、台体体积的求法,关键是明确圆锥剪展前后的量的关系,是中档题.6.(5分)已知α为锐角,且,则sinα=.【分析】由α为锐角求出α+的范围,利用同角三角函数间的基本关系求出sin (α+)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,则sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:【点评】此题考查了两角和与差的余弦函数公式,熟练掌握公式是解本题的关键.7.(5分)根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x个小时,酒精含量降为p毫克/100毫升,且满足关系式(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过8小时方可驾车.(精确到小时)【分析】先求出e r=,再利用89•e xr≤20,即可得出结论.【解答】解:由题意,61=89•e2r,∴e r=,∵89•e xr≤20,∴x≥8,故答案为8.【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.8.(5分)已知奇函数f(x)是定义在R上的增函数,数列{x n}是一个公差为2的等差数列,满足f(x7)+f(x8)=0,则x2017的值为4019.【分析】设设x7=x,则x8=x+2,则f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,f(x+1)=0=f(0),x7=﹣1.设数列{x n}通项x n=x7+2(n﹣7).得到通项x n=2n﹣15.由此能求出x2011的值.【解答】解:设x7=x,则x8=x+2,∵f(x7)+f(x8)=0,∴f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,∴f(x+1)=0=f(0),即x+1=0.∴x=﹣1,设数列{x n}通项x n=x7+2(n﹣7)=2n﹣15∴x2017=2×2017﹣15=4019.故答案为:4019【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意递推公式的合理运用.9.(5分)直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,则的最大值为12.【分析】建立坐标系,设M (),则=(),,【解答】解:如图建立平面直角坐标系,A(0,0),B(3,0),C(0.4),三角形ABC外接圆(x﹣)2+(y﹣2)2=,设M (),则=(),,,故答案为:12.【点评】本题考查了圆的参数方程、三角函数的单调性、数量积坐标运算,考查了推理能力与计算能力,属于中档题10.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为4.【分析】根据对任意实数x均有f(x)•g(x)≤0,求出a,b的关系,可求的最小值.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当a=,b=2时取等号.故的最小值为4.故答案为:4.【点评】本题考查了恒成立的问题的转化以及基本不等式的性质的运用,属于基础题.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)若空间三条直线a、b、c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能【分析】利用正方体的棱与棱的位置关系及异面直线所成的角的定义即可得出,若直线a、b、c满足a⊥b、b⊥c,则a∥c,或a与c相交,或a与c异面.【解答】解:如图所示:a⊥b,b⊥c,a与c可以相交,异面直线,也可能平行.从而若直线a、b、c满足a⊥b、b⊥c,则a∥c,或a与c相交,或a与c异面.故选:D.【点评】本题考查空间中直线与直线之间的位置关系,解题时要认真审题,注意全面考虑.熟练掌握正方体的棱与棱的位置关系及异面直线所成的角的定义是解题的关键.12.(5分)在无穷等比数列{a n}中,,则a1的取值范围是()A. B. C.(0,1) D.【分析】利用无穷等比数列和的极限,列出方程,推出a1的取值范围.【解答】解:在无穷等比数列{a n}中,,可知|q|<1,则=,a1=∈(0,)∪(,1).故选:D.【点评】本题考查数列的极限的求法,等比数列的应用,考查计算能力.13.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【分析】根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C43•A44=192种情况;若甲乙两人都参加,有C22•C42•A44=144种情况,则不同的发言顺序种数192+144=336种,故选:A.【点评】本题考查排列、组合的实际应用,正确分类是关键.14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.2【分析】由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px(p>0),则有=2p(x≠0),将(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,即可求得抛物线方程,求得准线方程,设椭圆C1:(a>b>0),把点(﹣2,0),(,),即可求得椭圆方程,求得焦点坐标,即可求得C1的左焦点到C2的准线之间的距离.【解答】解:由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px (p>0),则有=2p(x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,∴抛物线C2的标准方程为y2=4x.则焦点坐标为(1,0),准线方程为:x=﹣1,设椭圆C1:(a>b>0),把点(﹣2,0),(,)代入得,,解得:,∴C1的标准方程为+y2=1;由c==,左焦点(,0),C1的左焦点到C2的准线之间的距离﹣1,故选:B.【点评】本题考查椭圆与抛物线的标准方程及简单几何性质,考查待定系数法的应用,考查计算能力,属于中档题.15.(5分)已知y=g(x)与y=h(x)都是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),若y=g(x)﹣h(x)恰有4个零点,则正实数k的取值范围是()A. B. C.D.【分析】问题转化为g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,结合图象得到关于k的不等式组,解出即可.【解答】解:若y=g(x)﹣h(x)恰有4个零点,即g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,如图示:,结合图象得:,解得:<k<log32,故选:C.【点评】本题考查了函数的零点问题,考查数形结合思想以及二次函数、对数函数的性质,是一道中档题.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(11分)已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F分别是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.【分析】(1)连接A1C1,由E,F分别是棱AD,CD的中点,可得EF∥AC,进一步得到EF∥A1C1,可知∠A1C1B为异面直线BC1与EF所成角.然后求解直角三角形得答案;(2)直接利用等体积法把四面体CA1EF的体积转化为三棱锥A1﹣EFC的体积求解.【解答】解:(1)连接A1C1,∵E,F分别是棱AD,CD的中点,∴EF∥AC,则EF∥A1C1,∴∠A1C1B为异面直线BC1与EF所成角.在△A 1C1B中,由AB=a,AA1=2a,得,,∴cos∠A1C1B=,∴异面直线BC1与EF所成角的大小为;(2).【点评】本题考查异面直线所成的角,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【分析】(1)设M(x,y),,左焦点,通过利用二次函数的性质求出对称轴,求出的取值范围.(2)写出P点轨迹为椭圆,利用,|PF 1|+|PF2|=2a,结合余弦定理,以及基本不等式求解椭圆方程即可.【解答】解:(1)设M(x,y),,左焦点,=…(4分)=()对称轴,…(3分)(2)由椭圆定义得:P点轨迹为椭圆,,|PF 1|+|PF2|=2a=…(4分)由基本不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…(3分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆方程的求法,考查计算能力.18.(14分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时间为多久?【分析】(1)建立直角坐标系,…(1分),则城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),由题意建立方程组,能求出10小时后,该台风还没有开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【解答】解:(1)如图建立直角坐标系,…(1分)则城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),则,此时台风的半径为60+10t,10小时后,|PA|≈184.4km,台风的半径为r=160km,∵r<|PA|,…(5分)∴10小时后,该台风还没有开始侵袭城市A.…(1分)(2)由(1)知t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,若城市A受到台风侵袭,则,∴300t2﹣10800t+86400≤0,即t2﹣36t+288≤0,…(5分)解得12≤t≤24…(1分)∴该城市受台风侵袭的持续时间为12小时.…(1分)【点评】本题考查圆的性质在生产生活中的实际应用,是中档题,解题时要认真审题,注意挖掘题意中的隐含条件,合理地建立方程.19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.【分析】(1)利用f(1)=f(0)=1,判断f(x)∉M1.(2)f(x+a)﹣f(x)>0,化简,通过判别式小于0,求出a的范围即可.(3)由f(x+a)﹣f(x)>0,推出,得到对任意x∈[1,+∞)都成立,然后分离变量,通过当﹣1<k≤0时,当0<k<1时,分别求解最小值即可.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(4分)(2)由…(2分)∴,…(3分)故a>1.…(1分)(3)由,…(1分)即:∴对任意x∈[1,+∞)都成立∴…(3分)当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…(1分)当0<k<1时,h(x)min=h(1)=log3(1+k);…(1分)当1≤k<3时,.…(1分)综上:…(1分)【点评】本题考查分段函数的应用,函数的综合应用,函数的最值的求法,考查转化思想以及计算能力.20.(18分)由n(n≥2)个不同的数构成的数列a1,a2,…a n中,若1≤i<j≤n 时,a j<a i(即后面的项a j小于前面项a i),则称a i与a j构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;,…a1的逆序数.(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1【分析】(1)由{a n}为单调递减数列,可得逆序数为99+98+ (1)>0.当n为偶数时:0>a2>a4>…>a2n.可(2)当n为奇数时,a1>a3>…>a2n﹣1得逆序数.(3)在数列a1,a2,…a n中,若a1与后面n﹣1个数构成p1个逆序对,则有(n,…a1中,逆序数为(n﹣1)﹣p1+﹣1)﹣p1不构成逆序对,可得在数列a n,a n﹣1(n﹣2)﹣p2+…+(n﹣n)﹣p n.【解答】解:(1)∵{a n}为单调递减数列,∴逆序数为.>0.(2)当n为奇数时,a1>a3>…>a2n﹣1当n为偶数时:∴0>a2>a4>…>a2n.当k为奇数时,逆序数为;当k为偶数时,逆序数为.(3)在数列a1,a2,…a n中,若a1与后面n﹣1个数构成p1个逆序对,,…a1中,则有(n﹣1)﹣p1不构成逆序对,所以在数列a n,a n﹣1逆序数为.【点评】本题考查了等差数列的通项公式与求和公式、新定义逆序数,考查了分类讨论方法、推理能力与计算能力,属于中档题.。

2018年上海市静安区中考一模数学试卷(解析版)

2018年上海市静安区中考一模数学试卷(解析版)

18. (4 分)如图,矩形纸片 ABCD,AD=4,AB=3,如果点 E 在边 BC 上,将 纸片沿 AE 折叠,使点 B 落在点 F 处,联结 FC,当△EFC 是直角三角形时, 那么 BE 的长为 .
三、解答题(本大题共 7 题,满分 78 分) 19. (10 分)计算: 20. (10 分)解方程组: ﹣tan60°×sin60°. .
第 3 页(共 22 页)
(2)在 B 点又测得∠NBA=53°,求 MN 的长. (结果精确到 1 米) (参考数据: ≈0.75) ≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°
23. (12 分)已知:如图,梯形 ABCD 中,DC∥AB,AD=BD,AD⊥DB,点 E 是腰 AD 上一点,作∠EBC=45°,联结 CE,交 DB 于点 F. (1)求证:△ABE∽△DBC; (2)如果 ,求 的值.
6. (4 分)将抛物线 y1=x2﹣2x﹣3 先向左平移 1 个单位,再向上平移 4 个单位 后, 与抛物线 y2=ax2+bx+c 重合, 现有一直线 y3=2x+3 与抛物线 y2=ax2+bx+c 相交,当 y2≤y3 时,利用图象写出此时 x 的取值范围是(
第 1 页(共 22 页)

A.x≤﹣1
25. (14 分)已知:如图,四边形 ABCD 中,0°<∠BAD≤90°,AD=DC, AB=BC,AC 平分∠BAD.
第 4 页(共 22 页)
(1)求证:四边形 ABCD 是菱形; (2)如果点 E 在对角线 AC 上,联结 BE 并延长,交边 DC 于点 G,交线段 AD 的延长线于点 F(点 F 可与点 D 重合) ,∠AFB=∠ACB,设 AB 长度是 a(a 是常数,且 a>0) ,AC=x,AF=y,求 y 关于 x 的函数关系式,并写出定义 域; (3)在第(2)小题的条件下,当△CGE 是等腰三角形时,求 AC 的长(计算结 果用含 a 的代数式表示)

2018年上海市静安区中考数学一模试卷(有答案)

2018年上海市静安区中考数学一模试卷(有答案)

2018年上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7 C.a10D.﹣a102.(4分)下列方程中,有实数根的是()A.B.C.2x4+3=0 D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C.D.36.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为厘米.9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a0.(填“<”或“>”)12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是米.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=.16.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M 落在边BC上的点D处,那么BD=.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.20.(10分)解方程组:.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC 的面积.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x 轴于G,联结HG,求HG的长.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)2018年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7 C.a10D.﹣a10【解答】解:(﹣a2)•a5=﹣a7,故选B2.(4分)下列方程中,有实数根的是()A.B.C.2x4+3=0 D.【解答】解:A、由题意=﹣1<0,方程没有实数根;B、去分母得到:x2﹣x+1=0,△<0,没有实数根;C、由题意x4=﹣<0,没有实数根,D、去分母得到:x=﹣1,有实数根,故选D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选B.4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,【解答】解:A、如果k=0或,那么,正确;B、设m为实数,则,正确;C、如果,那么或,错误;D、在平行四边形ABCD中,,正确;故选C5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C.D.3【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选:A.6.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0【解答】解:y1=x2﹣2x﹣3=(x﹣1)2﹣4,则它的顶点坐标为(1,﹣4),所以抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组得或,所以当﹣1≤x≤3.故选C.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.【解答】解:由等比性质,得==,故答案为:.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为(﹣1)厘米.【解答】解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.【解答】解:设第三边为x,∵:=1:,∵与1是对应边,与是对应边,∵△ABC与△DEF相似,∴==,解得x=,即△DEF的第三边应该是.故答案为:.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是y=.【解答】解:将x=1代入y=2x,得y=2,∴点A(1,2),设反比例函数解析式为y=,∵一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,2),∴2=.解得,k=2,即反比例函数解析式为y=,故答案为:y=.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a<0.(填“<”或“>”)【解答】解:∵抛物线y=ax2+bx+c在对称轴左侧的部分是上升的,∴抛物线开口向下,∴a<0.故答案为:<.12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是2.【解答】解:将抛物线y=(x+m)2向右平移2个单位后,得到抛物线解析式为y=(x+m﹣2)2.其对称轴为:x=2﹣m=0,解得m=2.故答案是:2.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是6米.【解答】解:∵斜坡AB 的坡度i=1:4,∴=,∵从点B 测得离地面的铅垂线高度BC 是6米,∴=,解得:AC=24,则斜坡AB 的长为: ==6(米).故答案为6.14.(4分)在等腰△ABC 中,已知AB=AC=5,BC=8,点G 是重心,联结BG ,那么∠CBG 的余切值是. 【解答】解::∵AB=AC=5,BC=8,点G 为重心,∴AD ⊥BC ,CD=BC=×8=4,∴AD===3,∴GA=2, ∴DG=1,∴BG=,∴∠CBG 的余切值=,故答案为:15.(4分)如图,△ABC 中,点D 在边AC 上,∠ABD=∠C ,AD=9,DC=7,那么AB= 12 .【解答】解:∵∠ABD=∠C 、∠BAD=∠CAB , ∴△ABD ∽△ACB ,∴,即AB 2=AC•AD ,∵AD=9,DC=7 ∴AC=16, ∴AB=12, 故答案为:1216.(4分)已知梯形ABCD ,AD ∥BC ,点E 和点F 分别在两腰AB 和DC 上,且EF 是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)【解答】解:∵EF 是梯形的中位线,∴EF=(A D +BC ),∵AD :BC=3:4, =,∴BC=AD ,∴=(+)=(+)=.故答案为17.(4分)如图,△ABC 中,AB=AC ,∠A=90°,BC=6,直线MN ∥BC ,且分别交边AB ,AC 于点M 、N ,已知直线MN 将△ABC 分为面积相等的两部分.如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD= 3 .【解答】解:∵△ABC 中,AB=AC ,∠A=90°,BC=6,∴AB=cos45°×BC=3,∵直线MN ∥BC , ∴△AMN ∽△ABC ,∵直线MN 将△ABC 分为面积相等的两部分, ∴S △AMN :S △ABC =1:2,∴==,即=,解得AM=3,如图,过A作AD⊥BC于D,则AD=BC=3,∴将线段AM绕着点A逆时针旋转45°,可以使点M落在边BC上的点D处,此时,BD=BC=3.故答案为:3.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为 1.5或3.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.【解答】解:原式=+﹣×=2+﹣=1.20.(10分)解方程组:.【解答】解:由②得:(x﹣y﹣3)(x﹣y+1)=0∴x﹣y=3或x﹣y=﹣1∴或∴或.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)2+5,将A(1,3)代入上式得3=a(1﹣3)2+5,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+5,(2)∵A(1,3)抛物线对称轴为:直线x=3∴B(5,3),令x=0,y=﹣(x﹣3)2+5=,则C(0,),△ABC的面积=×(5﹣1)×(3﹣)=5.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)【解答】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴,∵AB=600m,∴AD+BD=600m,∴,∴,∴,∴点M到AB的距离.(2)过点N作NE⊥AB于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN为平行四边形,∴,MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴,∴.23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.【解答】证:(1)∵∠ADB=90°,AD=BD,∴∠A=∠DBA=45°,又∵DC∥AB,∴∠CDB=∠DBA=45°=∠A,又∵∠CBE=∠DBA=45°,∴∠EBA=∠CBD,∴△CBD∽△EBA;(2)∵△CBD∽△EBA,∴,∵∠CBE=∠DBA,,∴.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x 轴于G,联结HG,求HG的长.【解答】解:(1)把A(﹣1,0)、B(5,0)代入抛物线解析式,得:,解得:,∴抛物线的解析式为:,∴顶点C(2,﹣3)(2)方法一:设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(﹣1,0)和C(2,﹣3)代入得:解得:则直线AC:y=﹣x﹣1,∴D(0,﹣1),同理可得直线BD:y=x﹣1,∴∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴∴△HPG∽△CPB,∴,∴,∴;方法二:如图2,过点H作HM⊥CG于M,∵,,,∴BD2=CD2+BC2,∴∠BCD=90°,=BD•CH=BC•CD,∵S△BCD∴,∵∠ABD=∠HCG,∴△OBD∽△MCH,∴,∴,,∴,由勾股定理得:GH=∴,方法三:直线AC:y=﹣x﹣1,∴D(0,﹣1),直线BD:y=x﹣1,∵CH⊥BD,∴k BD•k CH=﹣1,∴直线CH:y=﹣5x+7,联立解析式:,解得:,∴∴.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)【解答】(1)证明:∵AD=DC,AB=BC∴∠DAC=∠DCA,∠BAC=∠BCA又AC平分∠BAD∴∠DAC=∠BAC∴∠DCA=∠BAC,∠DAC=∠BCA,∴AB∥DC,AD∥BC∴四边形ABCD为平行四边形又AD=DC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,∴AF∥BC,AB=BC∴∠AFB=∠CBF,∠FAC=∠ACB,∠ACB=∠BAC∴∠EBC=∠BAC=∠AFB=∠FAC=∠ACB∴△AEF∽△ABC,△ABC∽△BEC∴∴BC2=EC•AC∴a2=EC•x∴,∴AE=AC﹣EC=x﹣,∵△AEF∽△ABC∴,即∴();(3)解:∵△CEG是等腰三角形,①当CG=EG时,∴∠CGE=∠ECG,∵∠ECG=∠CBF,∴∠CGE=∠CBF,∵∠CGB=∠ABF,∴∠ABF=∠CBF,此时,点F,G和点D重合,∴AF=AB,∴y=a,即∴,②当CG=CE时,∴∠CEG=∠CGB,∵∠CEG=∠AC B+∠CBF=2∠ACB=∠BCD,∴∠CGB=∠BCD,∵∠FDG=∠BAD=∠BCD,∴∠FDG=∠FGD,∴FG=FD,∴AF=BF,∵∠EBCC=∠ECB,∴BE=CE,∵∠EAF=∠EFA,∴AE=EF,∴FB=AC∴y=x即∴(负值已舍),③当EG=CE时,∴∠CEG=∠ACD,∵∠ACD=∠CBF,∴∠CEG=∠CBF,∵∠CEG=∠CBF+∠ACB,∴此种情况不存在.综上所述:或时,△CEG为等腰三角形.。

2018年上海市静安区中考数学一模试卷

2018年上海市静安区中考数学一模试卷
第 5页(共 25页)
2018 年上海市静安区中考数学一模试卷
参考答案与试题解析
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)【下列各题的四个选项中, 有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.(4 分)化简(﹣a2)•a5 所得的结果是( ) A.a7 B.﹣a7 C.a10 D.﹣a10 【分析】根据同底数幂的乘法计算即可. 【解答】解:(﹣a2)•a5=﹣a7, 故选:B.
3.(4 分)如图,比例规是一种画图工具,它由长度相等的两脚 AC 和 BD 交叉构 成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使 螺丝钉固定在刻度 3 的地方(即同时使 OA=3OC,OB=3OD),然后张开两脚,使 A,B 两个尖端分别在线段 a 的两个端点上,当 CD=1.8cm 时,则 AB 的长为( )
么∠CBG 的余切值是

15.(4 分)如图,△ABC 中,点 D 在边 AC 上,∠ABD=∠C,AD=9,DC=7,那么
AB=

16.(4 分)已知梯形 ABCD,AD∥BC,点 E 和点 F 分别在两腰 AB 和 DC 上,且
EF 是梯形的中位线,AD=3,BC=4.设 h ,那么向量 t= 表示)
第 3页(共 25页)
(2)在 B 点又测得∠NBA=53°,求 MN 的长.(结果精确到 1 米) (参考数据: ≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
23.(12 分)已知:如图,梯形 ABCD 中,DC∥AB,AD=BD,AD⊥DB,点 E 是腰
B、设 m 为实数,则 t
h
,正确;

2017-2018上海静安区数学一模试卷与答案

2017-2018上海静安区数学一模试卷与答案

O
x
第 24 题图
25.(本题满分 14 分,其中第(1)小题 4 分,第(2)小题 6 分,第(3)小题 4 分)
已知:如图,四边形 ABCD 中,0°<∠BAD ≤90°,AD=DC,AB=BC,AC 平分∠BAD. (1)求证:四边形 ABCD 是菱形; (2)如果点 E 在对角线 AC 上,联结 BE 并延长,交边 DC 于点 G,交线段 AD 的延长线 于点 F(点 F 可与点 D 重合),∠AFB =∠ACB,设 AB 长度是 a ( a 是常数,且 a 0 ), AC= x ,AF= y ,求 y 关于 x 的函数解析式,并写出定义域; (3)在第(2)小题的条件下,当△ CGE 是等腰三角形时, F 求 AC 的长.(计算结果用含 a 的代数式表示)
(A) 2 2 ; (B) 2 2 ; (C) 2 ;
3
4
(D) 3 .
大力数学工作室 | 李老师
1
6.将抛物线 y1 x2 2x 3 先向左平移 1 个单位,再向上平移 4 个单位后,与抛物线
y2 ax2 bx c 重合,现有一直线 y3 2x 3与抛物线 y2 ax2 bx c 相交,当 y2
bd3
bd
8.已知线段 AB 长是 2 厘米,P 是线段 AB 上的一点,且满足 AP 2 =AB ·BP,那么 AP 长
为 ▲ 厘米.
9.已知△ ABC 的三边长分别是 2 、 6 、2 ,△ DEF 的两边长分别是1和 3 ,如果△ ABC
与△ DEF 相似,那么△ DEF 的第三边长应该是 ▲ .
(D) a10 .
2.下列方程中,有实数根的是
(A) x 1 1 0 ; (B) x 1 1; (C) 2x4 3 0 ;(D) 2 1.

2017年上海市静安区中考数学一模试卷含答案解析

2017年上海市静安区中考数学一模试卷含答案解析

2017年上海市静安区中考数学一模试卷一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣43.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)二.填空题(每个小题4分,共48分)7.16的平方根是.8.如果代数式有意义,那么x的取值范围为.9.方程+=1的根为.10.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为.11.二次函数y=x2﹣8x+10的图象的顶点坐标是.12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为.15.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=(用,的式子表示)16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为.三、解答题(共78分)19.计算:.20.解方程组:.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.2017年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣【考点】分数指数幂;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,分数指数幂,可得答案.【解答】解:a===,故选:C.2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【考点】实数范围内分解因式.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A3.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可【解答】解:只有选项D正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、C的条件都不能推出DE∥BC,故选D.4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα【考点】锐角三角函数的定义.【分析】根据余角函数是邻边比斜边,可得答案.【解答】解:由题意,得cosA=,AC=AB•cosA=m•cosα,故选:B.5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°【考点】锐角三角函数的增减性.【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α<45°,故选:C.6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)【考点】二次函数图象与几何变换.【分析】根据两个抛物线的平移规律得到点A的平移规律,易得点A′的坐标.【解答】解:∵抛物线y=ax2﹣1的顶点坐标是(0,﹣1),抛物线y=a(x﹣1)2的顶点坐标是(1,0),∴将抛物线y=ax2﹣1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x﹣1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4),故选:A.二.填空题(每个小题4分,共48分)7.16的平方根是±4.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.8.如果代数式有意义,那么x的取值范围为x>﹣2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.9.方程+=1的根为x=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+2x+2=x2﹣1,整理得:x2﹣3x+2=0,即(x﹣2)(x﹣1)=0,解得:x=1或x=2,经检验x=1是增根,分式方程的解为x=2,故答案为:x=210.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为m<2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质,一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么图象一定与y轴的负半轴有交点,即可解答.【解答】解:∵一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,∴图象一定与y轴的负半轴有交点,∴m﹣2<0,∴m<2,故答案为:m<2.11.二次函数y=x2﹣8x+10的图象的顶点坐标是(4,﹣6).【考点】二次函数的性质.【分析】将二次函数化为顶点式后即可确定其顶点坐标.【解答】解:∵y=2x2﹣8x+10=2(x﹣4)2﹣6,∴顶点坐标为(4,﹣6),故答案为:(4,﹣6).12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为3.【考点】二次函数图象上点的坐标特征.【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为1:16.【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=()2=1:16.故答案为:1:16.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为2.【考点】三角形的重心;等腰三角形的性质;解直角三角形.【分析】根据等腰三角形的三线合一,知三角形的重心在BC边的高上.根据勾股定理求得该高,再根据三角形的重心到顶点的距离是它到对边中点的距离的2倍,求得G到BC的距离.【解答】解:∵AB=AC=10,∴△ABC是等腰三角形∴三角形的重心G在BC边的高∵cosB=,∴在BC边的高=6,根据三角形的重心性质∴G到BC的距离是2.故答案为:215.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=﹣(用,的式子表示)【考点】*平面向量;平行四边形的性质.【分析】根据平行四边形的性质及中点的定义得BC∥AD、BC=AD=2EC,再证△ADF∽△CEF得=,根据==﹣=﹣()可得答案.【解答】解:∵四边形ABCD是平行四边形,点E是边BC的中点,∴BC∥AD,BC=AD=2EC,∴△ADF∽△CEF,,∴==2,则=,∴==﹣=﹣()=﹣(+)=﹣,故答案为:﹣.16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.【考点】相似三角形的性质.【分析】根据题意画出图形,根据相似三角形的性质求出DE及AE的长,进而可得出结论.【解答】解:如图,∵△ADE∽△ABC,∴==,即==,解得DE=,AE=,∴△ADE的周长=AD+AE+DE=3++=;故答案为:.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于3:2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,推出∠EDC=∠BCD,=,由△BDC∽△CED,推出===,由此即可解决问题.【解答】解:∵DE∥BC,∴∠EDC=∠BCD,=∵∠BDC=∠DEC,∴△BDC∽△CED,∴===,∴=.故答案为3:2.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为13.【考点】翻折变换(折叠问题).【分析】根据直角三角形的性质求出CD,得到∠DCB=∠B,根据垂直的定义、等量代换得到∠OEC=∠B,根据正切的定义、勾股定理计算即可.【解答】解:∵CD是斜边AB上的中线,∴DC=DB=AB=12,∴∠DCB=∠B,由题意得,EF是CD的垂直平分线,∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,∴∠OEC=∠B,设CF=2x,则CE=3x,由勾股定理得,EF=x,×2x×3x=×x×6,解得,x=,∴EF=×=13,故答案为:13.三、解答题(共78分)19.计算:.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式===.20.解方程组:.【考点】高次方程.【分析】由②得出x﹣3y=±2,由①得出x(x﹣y+2)=0,组成四个方程组,求出方程组的解即可.【解答】解:由②得:(x﹣3y)2=4,x﹣3y=±2,由①得:x(x﹣y+2)=0,x=0,x﹣y+2=0,原方程组可以化为:,,,,解得,原方程组的解为:,,,.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.【考点】待定系数法求反比例函数解析式;解直角三角形.【分析】(1)待定系数法求解可得;(2)作AE⊥x轴于点E,AE与BC交于点F,则CF=2,根据cot∠ACB==得AF=3,即可知EF,从而得出答案;(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.【解答】解:(1)设反比例函数解析式为y=,将点A(2,4)代入,得:k=8,∴反比例函数的解析式y=;(2)过点A作AE⊥x轴于点E,AE与BC交于点F,则CF=2,∵cot∠ACB==,∴AF=3,∴EF=1,∴点C的坐标为(0,1);(3)当y=1时,由1=可得x=8,∴点B的坐标为(1,8),∴BF=BC﹣CF=6,∴AB==3,∴cos∠ABC===.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)【考点】解直角三角形的应用.【分析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD⊥AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O′作EF∥OB交AC于E,根据平行线的性质得到∠FEA=∠BOA=115°,于是得到结论.【解答】解:(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D,∵∠AOB=115°,∴∠BOD=65°,∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.【考点】相似三角形的判定与性质.【分析】(1)由BA•BD=BC•BE得,结合∠B=∠B,证△ABC∽△EBD得,即可得证;(2)先根据AC2=AD•AB证△ADC∽△ACB得∠ACD=∠B,再由证△BAE∽△BCD得∠BAE=∠BCD,根据∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD可得∠AEC=∠ACE,即可得证.【解答】证明:(1)∵BA•BD=BC•BE,∴,又∵∠B=∠B,∴△ABC∽△EBD,∴,∴DE•AB=AC•BE;(2)∵AC2=AD•AB,∴,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴∠ACD=∠B,∵,∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠AEC=∠ACE,∴AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.【考点】二次函数综合题.【分析】(1)根据相似三角形的判定定理得到△BEC∽△DEA,根据相似三角形的性质定理得到=,根据相似三角形的判定定理证明即可;(2)设AC=m,根据正切的定义得到DC=3m,根据相似三角形的性质得到∠DBA=∠DCA=90°,根据勾股定理列出算式,求出m的值,利用待定系数法求出抛物线的解析式.【解答】(1)证明:∵∠DCB=∠DAB,∠BEC=∠DEA,∴△BEC∽△DEA,∴=,又∠BED=∠CEA,∴△BDE∽△CAE;(2)解:∵抛物线y=ax2+bx+4与y轴相交于点B,∴点B的坐标为(0,4),即OB=4,∵tan∠DAC=3,∴=3,设AC=m,则DC=3m,OA=m+2,则点A的坐标为(m+2,0),点D的坐标为(2,3m),∵△BDE∽△CAE,∴∠DBA=∠DCA=90°,∴BD2+BC2=AD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,解得,m=2,则点A的坐标为(4,0),点D的坐标为(2,6),∴,解得,,∴抛物线的表达式为y=﹣x2+3x+4.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.【考点】相似形综合题.【分析】(1)只要证明△DAC∽△CEB,得到=,再根据题意AC=BC,即可证明.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.由△CEB∽△DAC,得=,由此即可解决问题.(3)首先证明四边形ABCD是等腰梯形,再证明△ABG≌△DCH,推出CH=BG=2,推出x=GH=BC ﹣BG﹣CH=9﹣2﹣2=5,再利用(2)中即可即可解决问题.【解答】解:(1)∵∠DCB=∠ACD+∠ACB,∠DCB=∠EBC+∠BEC,∠ACB=∠BEC,∴∠ACD=∠EBC,∵AD∥BC,∴∠DAC=∠ACB=∠CEB,∴△DAC∽△CEB,∴=,∴BC•AC=CD•BE,∵AC=BC,∴BC2=CD•BF.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.在Rt△CBF中,BF=BC•cos∠ABC=9×=3,∴AB=6,在Rt△ABG中,BG=AB•cos∠ABC=6×=2,∵AD∥BC,DH=AG,∴DH2=AG2=AB2﹣BG2=62﹣22=32,∵AG∥DH,∴GH=AD=x,∴CH=BC﹣BG﹣GH=7﹣x,∴CD===,∵△CEB∽△DAC,∴=,∴=,∴y=,∴y=(x>0且x≠9).(3)∵△DBC∽△DEB,∠CDB=∠BDE,∠CBD<∠DBC,∴∠DBC=∠DEB=∠ACB,∴OB=OC,∵AD∥BC,∴=,∴AC=BD,∴四边形ABCD是等腰梯形,∴AB=CD,∠ABC=∠DCB,∵∠AGB=∠DHC=90°,∴△ABG≌△DCH,∴CH=BG=2,∴x=GH=BC﹣BG﹣CH=9﹣2﹣2=5.∴CE=y=.2017年2月12日21。

2017届静安区高三一模数学(附答案)

2017届静安区高三一模数学(附答案)

上海市静安区2017届高三一模数学试卷2016.12一. 填空题(本大题共10题,共50分)1. “0x <”是“x a <”的充分非必要条件,则a 的取值范围是2. 函数2()13sin ()4f x x π=-+的最小正周期为3. 若复数z 为纯虚数,且满足(2)i z a i -=+(i 为虚数单位),则实数a 的值为4. 二项式251()x x+的展开式中,x 的系数为 5. 用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为 立方米 6. 已知α为锐角,且3cos()45πα+=,则sin α= 7. 根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫克的行为属 于饮酒驾驶,假设饮酒后,血液中的酒精含量为0p 毫克/100毫克,经过x 个小时,酒精含 量降为p 毫克/100毫克,且满足关系式0rx p p e =⋅(r 为常数)若某人饮酒后血液中的酒精含量为89毫克/100毫克,2小时后,测得其血液中酒精含 量降为61毫克/100毫克,则此人饮酒后需经过 小时方可驾车8. 已知奇函数()f x 是定义在R 上的增函数,数列{}n x 是一个公差为2的等差数列,满足78()()0f x f x +=,则2017x 的值为9. 直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为10. 已知()xf x a b =-(0a >且1a ≠,b R ∈),()1g x x =+,若对任意实数x 均有()()0f x g x ⋅≤,则14a b+的最小值为二. 选择题(本大题共5题,每题5分,共25分)11. 若空间三条直线a 、b 、c 满足a b ⊥,b c ⊥,则直线a 与c ( ) A. 一定平行 B. 一定相交C. 一定是异面直线D. 平行、相交、是异面直线都有可能 12. 在无穷等比数列{}n a 中,121lim()2n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是( )A. 1(0,)2B. 1(,1)2C. (0,1)D. 11(0,)(,1)2213. 某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加, 那么不同的发言顺序有( )A. 336种B. 320种C. 192种D. 144种14. 已知椭圆1C ,抛物线2C 焦点均在x 轴上,1C 的中心和2C 顶点均为原点O ,从每条曲 线上各取两个点,将其坐标记录于表中,则1C 的左焦点到2C 的准线之间的距离为( )A.1 B. 1 C. 1 D. 215. 已知()y g x =与()y h x =都是定义在(,0)(0,)-∞+∞上的奇函数,且当0x >时,2,01()(1),1x x g x g x x ⎧<≤=⎨->⎩,2()log h x k x =(0x >),若()()y g x h x =-恰有4个零点, 则正实数k 的取值范围是( )A. 1[,1]2B. 1(,1]2C. 31(,log 2]2D. 31[,log 2]2三. 解答题(本大题共5题,共11+14+14+18+18=75分)16. 已知正四棱柱1111ABCD A BC D -,AB a =,12AA a =,E 、F 分别是棱AD 、CD 的中点;(1)求异面直线1BC 与EF 所成角的大小; (2)求四面体1CA EF 的体积;17. 设双曲线22:123x y C -=,1F 、2F 为其左右两个焦点; (1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求1OM F M ⋅的取值范围; (2)若动点P 与双曲线C 的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值 为19-,求动点P 的轨迹方程;18. 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东 偏南θ角方向(cos θ=),300km 的海面P 处,并以20/km h 的速度向西偏北45︒方 向移动,台风侵袭的范围为圆形区域,当前半 径为60km ,并以10/km h 的速度不断增大; (1)问10小时后,该台风是否开始侵袭城市A ,并说明理由;(2)城市A 受到该台风侵袭的持续时间为多久?19. 设集合{()|a M f x =存在正实数a ,使得对定义域内任意x 都有()()}f x a f x +>; (1)若2()2x f x x =-,试判断()f x 是否为1M 中的元素,并说明理由;(2)若31()34g x x x =-+,且()a g x M ∈,求a 的取值范围; (3)若3()log ()kh x x x=+,[1,)x ∈+∞,k R ∈,且2()h x M ∈,求()h x 的最小值;20. 由m (2)m ≥个不同的数构成的数列12,,,n a a a ⋅⋅⋅中,若1i j n ≤<≤时,j i a a <(即 后面的项j a 小于前面项i a ),则称i a 与j a 构成一个逆序,一个有穷数列的全部逆序的总数 称为该数列的逆序数;如对于数列3、2、1,由于在第一项3后面比3小的项有2个,在第 二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3、2、1的逆序数为2103++=,同理,等比数列1111,,,248--的逆序数为4; (1)计算数列219n a n =-+*(1100,)n n N ≤≤∈的逆序数;(2)计算数列1(),3,1nn n a n n n ⎧⎪⎪=⎨⎪-⎪+⎩为奇数为偶数*(1,)n k n N ≤≤∈的逆序数;(3)已知数列12,,,n a a a ⋅⋅⋅的逆序数为a ,求11,,,n n a a a -⋅⋅⋅的逆序数;参考答案一. 填空题1. 0a >2.π 3.12 4. 10 5. 6. 107. 8 8. 4019 9. 12 10. 4二. 选择题11. D 12. D 13. A 14. B 15. C三. 解答题16.(1);(2)312a ;17.(1)[2)+∞;(2)22194x y +=;18.(1)160d =>,否;(2)1224t ≤≤,12小时; 19.(1)否;(2)1a >;(3)当1k ≤,min 3()(1)log (1)h x h k ==+;当13k <<,min 3()log h x = 20.(1)4950;(2)当k 为偶数,(32)8k k -;当k 为奇数,(1)(31)8k k --; (3)2n C a -;友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。

2017年上海市静安区初三一模数学试卷

2017年上海市静安区初三一模数学试卷

2017年上海市静安区初三一模数学试卷一、选择题(共6小题;共30分)1. 等于A. B. C. D.2. 下列多项式中,在实数范围不能分解因式的是A. B.C. D.3. 在中,点,分别在边,上,,要使,还需满足下列条件中的A. B. C. D.4. 在中,,如果,,那么的长为A. B. C. D.5. 如果锐角的正弦值为,那么下列结论中正确的是A. B. C. D.6. 若点在函数的图象上,则下列各点在此函数图象上的是A. B. C. D.二、填空题(共12小题;共60分)7. 的平方根是 .8. 有意义,那么的取值范围为.9. 方程的根为.10. 如果一次函数的图象一定经过第三、第四象限,那么常数的取值范围为.11. 二次函数的图象的顶点坐标是.12. 如果点,在抛物线上,那么的值为.13. 如果,且与相似比为,那么与的面积比为.14. 在中,如果,,那么的重心到底边的距离为.15. 已知平行四边形中,点是边的中点,与相交于点,设,,那么(用,的式子表示).16. 在中,点,分别在边,上,,如果,,,,那么的周长为.17. 如图,在中,点,分别在边,上,,,如果,,那么等于.18. 一张直角三角形纸片,,,(如图),将它折叠使直角顶点与斜边的中点重合,那么折痕的长为.三、解答题(共7小题;共91分)19. 计算:.20. 解方程组:21. 已知:如图,第一象限内的点,在反比例函数的图象上,点在轴上,轴,点的坐标为,且求:(1)反比例函数的解析式;(2)点的坐标;(3)的余弦值.22. 将笔记本电脑放置在水平桌面上,显示屏与底板夹角为(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架后,电脑转到的位置(如图3),侧面示意图为图 4,已知,,垂足为.参考数据:(,,,)(1)求点的高度;(精确到)(2)显示屏的顶部比原来升高了多少?(精确到)(3)如图4,要使显示屏与原来的位置平行,显示屏应绕点按顺时针方向旋转多少度?23. 已知:如图,在中,点,分别在边,上,.(1)求证:;(2)如果,求证:.24. 如图,在平面直角坐标系中,抛物线与轴的正半轴相交于点,与轴相交于点,点在线段上,点在此抛物线上,轴,且,与相交于点.(1)求证:;(2)已知,,求此抛物线的表达式.25. 如图,在梯形中,,与相交于点,,点在的延长线上,,已知,.(1)求证:;(2)设,,求与之间的函数解析式,并写出定义域;(3)如果,求的长.答案第一部分1. C2. A3. D4. B5. C6. A第二部分7.8.9.10.11.12.13.14.15.16.17.18.第三部分原式19.20.由得:由得:原方程组可以化为:解得,原方程组的解为:21. (1)设反比例函数解析式为,将点代入,得:,反比例函数的解析式.(2)过点作轴于点,与交于点,则,,,,点的坐标为.(3)当时,由可得,点的坐标为,,,.22. (1),垂足为,,,,.(2)如图 2,过作交的延长线于,,,,,,显示屏的顶部比原来升高了.(3)如图 4,过作交于,,,显示屏应绕点按顺时针方向旋转度.23. (1),,又,,,.(2),,,,,,,,,,,,.24. (1),,,,又,;(2)抛物线与轴相交于点,点的坐标为,即,,,设,则,,则点的坐标为,点的坐标为,,,,即,解得,,则点的坐标为,点的坐标为,解得,抛物线的表达式为.25. (1),,,,,.(2)过点作于,过点作于,过点作于.在中,,,在中,,,,,,,,,,,,,(且).(3),,,,由(1)得,,,,,,,四边形是等腰梯形,,,,,,..,,,,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bd3
bd
8.已知线段 AB 长是 2 厘米,P 是线段 AB 上的一点,且满足 AP 2 =AB ·BP,那么 AP 长
为 ▲ 厘米.
9.已知△ ABC 的三边长分别是 2 、 6 、2 ,△ DEF 的两边长分别是1和 3 ,如果△ ABC
与△ DEF 相似,那么△ DEF 的第三边长应该是 ▲ .
已知:如图,梯形 ABCD 中,DC∥AB,AD=BD ,AD⊥DB,点 E 是腰 AD 上一点, 作∠EBC=45°,联结 CE,交 DB 于点 F.
(1)求证:△ABE∽△DBC;
(2)如果 BC 5 ,求 SBCE 的值.
BD 6
S BDA
大力数学工作室 | 李老师
第 23 题图
4
24.(本题满分 12 分,其中第(1)小题 4 分,第(2)小题 8 分)
(D) a10 .
2.下列方程中,有实数根的是
(A) x 1 1 0 ; (B) x 1 1; (C) 2x4 3 0 ;(D) 2 1.
x
x 1
3.如图,比例规是一种画图工具,它由长度相等的两脚 AC 和 BD 交叉构成, D C
利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,
…………………………………(2 分)
又∵抛物线经过点 A(1,3),代入解析式 3 a(1 3)2 5 解得: a 1 ……(1 分) 2
∴此二次函数的解析式为 y 1 (x 3)2 5 即 y 1 x2 3x 1
2

2
2
……(1 分)
(2)∵B 点是点 A 关于该抛物线对称轴的对称点,∴B(5,3),AB= 5-1= 4,……(2 分)
使螺丝钉固定在刻度 3 的地方(即同时使 OA=3OC,OB=3OD),然后张开
两脚,使 A,B 两个尖端分别在线段 a 的两个端点上,当 CD=1.8cm 时,
AB 的长是 (A)7.2 cm ;
(B)5.4 cm ;
a
(C)3.6 cm ; (D)0.6 cm . A
B
第 3 题图
4.下列判断错误的是

Rt△NBD
中,∠NBD=53°,cot∠NBD=
BD ND
静安区 2017-2018 学年第一学期期末教学质量调研(一模)
九年级数学试卷
2018.1
考生注意:
(完成时间:100 分钟 满分:150 分 )
1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作
答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明
求△ABC 的面积.
22.(本题满分 10 分,其中第(1)小题 5 分,第(2)小题 5 分)
如图,在一条河的北岸有两个目标 M、N,现在位于它的对岸设定两个观测点 A、B,
已知 AB∥MN,在 A 点测得∠MAB=60°,在 B 点测得∠MBA=45°,AB=600 米.
(1)求点 M 到 AB 的距离;(结果保留根号)
解得,原方程组的解为 x1 4,

y1

1;
x2 2

y2

3
…………………………………(4 分)
∴原方程组的解为 x1 4,

y1

1;
x2 2 .

y2

3
21.解:(1)∵二次函数图像的顶点坐标是(3,5),
∴设二次函数的解析式为 y a(x 3)2 5
3
x
13. 6 17 ; 14. 4; 15.12;
16.
7
a

17.3;
18.3 或 3.
6
2
14.
16.
18. (1) 根据翻折,知∠AFE=90° 又 根据题意,最后要达到∠CFE=90° ∴ F 在 AC 直线上。 设 BE=x ,则 EF= x , FC=AC–AF=5–3=2 ,EC=4–x x2+22=( 4–x)2 , x =1.5
大力数学工作室 | 李老师
7
答:点 M 到 AB 的距离是 900–300 米.
(2)过点 N 作 ND⊥AB,垂足是点 D,
………………………………………(1 分)
∴∠NDC=∠MCD=90°,∴MC∥ND,又∵AB∥MN,∴四边形 MDBE 是矩形.
∴MN=CD, ND=MC= CB=900–300 , …………………………………………(1 分)
(A) 2 2 ; (B) 2 2 ; (C) 2 ;
3
4
(D) 3 .
大力数学工作室 | 李老师
1
6.将抛物线 y1 x2 2x 3 先向左平移 1 个单位,再向上平移 4 个单位后,与抛物线
y2 ax2 bx c 重合,现有一直线 y3 2x 3与抛物线 y2 ax2 bx c 相交,当 y2
O
x
第 24 题图
25.(本题满分 14 分,其中第(1)小题 4 分,第(2)小题 6 分,第(3)小题 4 分)
已知:如图,四边形 ABCD 中,0°<∠BAD ≤90°,AD=DC,AB=BC,AC 平分∠BAD. (1)求证:四边形 ABCD 是菱形; (2)如果点 E 在对角线 AC 上,联结 BE 并延长,交边 DC 于点 G,交线段 AD 的延长线 于点 F(点 F 可与点 D 重合),∠AFB =∠ACB,设 AB 长度是 a ( a 是常数,且 a 0 ), AC= x ,AF= y ,求 y 关于 x 的函数解析式,并写出定义域; (3)在第(2)小题的条件下,当△ CGE 是等腰三角形时, F 求 AC 的长.(计算结果用含 a 的代数式表示)
10.如果一个反比例函数图像与正比例函数 y 2x 图像有一个公共点 A(1,a),那么这
个反比例函数的解析式是 ▲ .
11.如果抛物线 y ax2 bx c (其中 a、b、c 是常数,且 a≠0)在对称轴左侧的部分
是上升的,那么 a ▲ 0.(填“<”或“>”)
12.将抛物线 y (x m)2 向右平移 2 个单位后,对称轴是 y 轴,那么 m 的值是 ▲ .
(A)如果
k

0

a

0
,那么
ka

0
;(B)设
m
为实数,则
m(a

b)

ma

mb

(C)如果
a

e
,那么 a

a
e
;(D)在平行四边形 ABCD 中, AD AB BD

5.在 Rt△ ABC 中,∠C=90°,如果 sinA= 1 ,那么 sinB 的值是 3
3 cot 45 cos 30

1 2cos 60
1

tan 60
sin
60

20.(本题满分 10 分)解方程组:
x y 5 (x y)2 2(x y) 3 0
① ②

大力数学工作室 | 李老师
3
21.(本题满分 10 分, 其中第(1)小题 4 分,第(2)小题 6 分) 已知:二次函数图像的顶点坐标是(3,5),且抛物线经过点 A(1,3). (1)求此抛物线的表达式; (2)如果点 A 关于该抛物线对称轴的对称点是 B 点,且抛物线与 y 轴的交点是 C 点,
MN
(2)在 B 点又测得∠NBA=53°,求 MN 的长. (结果精确到 1 米)
A
第 22 题图
B
(参考数据: 3 1.732 ,sin53 o 0.8 ,cos53 o 0.6 ,tan53 o1.33 ,cot53 o 0.75 .)
23.(本题满分 12 分,其中第(1)小题 6 分,第(2)小题 6 分)
第 15 题图 16.已知梯形 ABCD,AD∥BC,点 E 和 F 分别在两腰 AB 和 DC 上,且 EF 是梯形的中
位线,AD=3,BC=4.设 AD a ,那么向量 EF ▲ .(用向量 a 表示)
17.如图,△ ABC 中,AB=AC,∠A=90°,BC=6,直线 MN∥BC, 且分别交边 AB、AC 于点 M、N,已知直线 MN 将△ ABC 分为 面积相等的两部分,如果将线段 AM 绕着点 A 旋转,使点 M 落在边 BC 上的点 D 处,那么 BD= ▲ .
第 17 题图
18. 如图,矩形纸片 ABCD,AD=4,AB=3.如果点 E 在边 BC 上, 将纸片沿 AE 折叠,使点 B 落在点 F 处,联结 FC,当△EFC 是 直角三角形时,那么 BE 的长为 ▲ .
第 18 题图
三、解答题:(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)计算:
(2) 当 B 点翻折,使 AB 边与 AD 边到与 AD 边重合, x=3
三、解答题:
19.解:原式=
3 1 3

2

1 1

1

3 3 2
2
2
…………………………………(5 分)
=2 1 3 22
=1
…………………………………………………(3 分) …………………………………………………(2 分)
大力数学工作室 | 李老师
6
20.解:由②得 (x y 3)(x y 1) 0 , ……………………………………(2 分) 得 x y 3 0 或 x y 1 0 , ………………………………(2 分) x y 5, x y 5,
相关文档
最新文档