上海中考宝山区数学一模试卷附答案

合集下载

中考强化训练2022年上海宝山区中考数学一模试题(含答案详解)

中考强化训练2022年上海宝山区中考数学一模试题(含答案详解)

2022年上海宝山区中考数学一模试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、10.2%+等于()A.1.2%B.1.02%C.1.002%D.100.2%2、在Rt△ABC中,各边都扩大5倍,则锐角A的正切函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定3、一个边长为10厘米的正方形铁丝线圈,若在保持周长不变的情况下把它拉成一个圆,则它的半径为()厘米.A.2πB.20πC.10πD.10π4、关于数字91,下列说法错误的是()A.存在最大的因数B.存在最大的倍数C.存在最小的倍数D.它是一个合数5、下列分数中,最简分数是()A.69B.24C.46D.29·线○封○密○外6、在数6、15、37、46、374中,能被2整除的数共有()A.1个B.2个C.3个D.4个7、下列四条线段为成比例线段的是()A.a=10,b=5,c=4,d=7 B.a=1,b c,dC.a=8,b=5,c=4,d=3 D.a=9,b c=3,d8、下列说法正确的是()A.任何数都有倒数B.一个数的倒数一定不等于它本身C.如果两个数互为倒数,那么它们的乘积是1D.a的倒数是1a9、正整数中,最小的偶数乘最小的合数,积为()A.4 B.6 C.8 D.1010、下列方程中,其解为﹣1的方程是()A.2y=﹣1+y B.3﹣y=2 C.x﹣4=3 D.﹣2x﹣2=4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、求比值:125克:0.5千克=_______________2、人体中水的重量约占人体重量的23如果小明的体重是45千克,那么他体内水的重量约为___________千克.3、已知某校共有男教师16名,占该校女教师人数的25,那么该校共有教师_______________名.4、如果一个分数的分子是27,且与38相等,那么这个分数的分母是_______________5、一个扇形面积等于这个扇形所在圆面积的25,则这个扇形的圆心角是______. 三、解答题(5小题,每小题10分,共计50分) 1、如图,抛物线y =﹣x 2+bx+c 与一条直线相交于A (﹣1,0),C (2,3)两点. (1)求抛物线和直线的解析式; (2)若动点P 在抛物线上位于直线AC 上方运动,求△APC 的面积最大值.2、已知::2:3a b =,(5):()2:3a b x ++=,求x 的值3、如图:在等腰ABC 中2AB AC ==厘米; 3.4BC =厘米;底边BC 上的高1AD =厘米;ABC ∠为30,现分别以A 点为圆心AB 长为半径画圆,以C 为圆心BC 长为半径画圆,求图中阴影部分的面积.4、某汽车厂一个车间有39名工人.车间接到加工两种汽车零件的生产任务,每个工人每天能加工甲种零件8个,或加工乙种零件15个.每一辆汽车只需甲零件6个和乙零件5个,为了能配套生产,每天应如何安排工人生产?·线○封○密○外5、化简求值:[(x+2y)2-(x+y)(3x-y)-5y2]÷(2x),其中x=-2,y=1.2-参考答案-一、单选题1、D【分析】由题意把1可以看作100%,根据加法的意义,把两个数合并成一个数即可.【详解】解:1+0.2%=100.2%.故选:D.【点睛】本题主要考查有理数的加法中百分数加法的计算方法,注意掌握把1看作100%,直接进行计算即可.2、A【分析】根据锐角三角函数的定义解答即可.【详解】因为三角函数值与对应边的比值有关,所以各边的长度都扩大5倍后,锐有A的各三角函数值没有变化,故选:A.【点睛】本题考查的是锐角三角函数的定义,掌握三角函数值的大小只与角的大小是解题的关键.3、B【分析】由题意可知圆的周长为10440cm ⨯=,利用圆的周长公式求解即可.【详解】 104d π=⨯, 40d π=, 202d r π==. 故选:B . 【点睛】 本题考查圆的周长, 圆的周长公式是解题的关键. 4、B 【分析】 由题意把91分解质因数,可以得到最小的因数是1,最大的因数是91;把91乘1、2、3……得到91的最小的倍数是91,倍数乘一个整数,有无穷无尽的倍数,所以存在最大的倍数的说法是错误的;据此得解. 【详解】 解:对于数字91,存在最大的因数91,存在最小的倍数91,存在最小的因数1;只有存在最大的倍数是错误的; 故选:B . 【点睛】 本题考查因数和倍数的意义,熟练掌握分解质因数方法是解题的关键. 5、D 【分析】 根据最简分数是分子,分母只有公因数1的分数即可得出答案.·线○封○密·○外【详解】∵622142=== 934263,,,∴29是最简分数,故选:D.【点睛】本题主要考查最简分数,掌握最简分数的定义是解题的关键.6、C【分析】根据能被2整除的数的特点选择即可求解.【详解】解:末位数字是0、2、4、6、8的整数能被2整除,所以在数6、15、37、46、374中有6、46、374三个数可以被2整除.故选:C【点睛】本题考查了能被2整除的整数的特点,掌握被2、3、5整除的整数的特点是解题关键.7、B【详解】A.从小到大排列,由于5×7≠4×10,所以不成比例,不符合题意;B1=,所以成比例,符合题意;C.从小到大排列,由于4×5≠3×8,所以不成比例,不符合题意;D故选B .【点睛】本题考查线段成比例的知识.解决本类问题只要计算最大最小数的积以及中间两个数的积,判断是否相等即可,相等即成比例,不相等不成比例. 8、C 【分析】 根据题意,对各题进行依次分析、进而得出结论. 【详解】 解:A 、0没有倒数,故选项错误; B 、1的倒数是1,故选项错误; C 、如果两个数互为倒数,那么他们的乘积一定是1,故选项正确; D 、a=0时,a 没有倒数,故选项错误. 故选:C . 【点睛】 本题考查了倒数的知识,属于基础题,比较简单,注意平时基础知识的积累. 9、C 【分析】 根据偶数和合数的意义,可以得到正整数中最小的偶数和最小的合数分别 是多少,然后可以求得它们的积. 【详解】 解:由偶数和合数的意义可以得到:正整数中最小的偶数是2,正整数中最小的合数是4,所以它们的积为8. 故选C . ·线○封○密○外【点睛】本题考查偶数和合数的意义,找出正整数中最小的偶数值和最小的合数值是解题关键.10、A【分析】分别求出各项中方程的解,即可作出判断.【详解】解:A、方程2y=-1+y,移项合并得:y=-1,符合题意;B、方程3-y=2,解得:y=1,不合题意;C、方程x-4=3,移项合并得:x=7,不合题意;D、方程-2x-2=4,移项合并得:-2x=6,解得:x=-3,不合题意,故选A.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题1、1 4【分析】先统一单位,再用比的前项除以比的后项,据此解答.【详解】解:125克:0.5千克=125克:500克=125÷500 =14故答案为:14. 【点睛】 本题主要考查了求比值方法的掌握情况,注意要先统一单位. 2、30 【分析】 直接根据题意进行列式求解即可. 【详解】 解:由题意得: 245=303 (千克); 故答案为30. 【点睛】 本题主要考查分数的乘法应用,熟练掌握分数的乘法是解题的关键. 3、56 【分析】 根据教师人数=男教师人数+女教师人数列式,计算即可. 【详解】 ·线○封○密○外解:21616=1640=565+÷+(人).故答案为:56【点睛】本题考查了分数应用题,根据题意求出女教师的人数是解题关键.4、72【分析】根据题意可知,38的分子乘以9得到27,同时研究分数的基本性质分母也乘以9,则得到72,即是分母.【详解】解:33927== 88972⨯⨯,∴这个分数的分母是72,故答案为:72.【点睛】本题考查了分数的基本性质,比较简单.5、144°【分析】由题意可知:扇形面积占圆面积的25,则其圆心角也占圆的度数的25,而整圆是360°,所以就能求出圆心角是多少度.【详解】解:360°×25=144°故答案为:144°.【点睛】此题主要考查圆的面积的计算方法以及在同圆或等圆中,扇形面积与圆面积的比等于扇形圆心角与圆周角度数的比. 三、解答题 1、(1)y =﹣x 2+2x+3;y =x+1;(2)△APC 的面积最大值为278. 【分析】 (1)利用待定系数法求抛物线和直线解析式; (2)设P 点坐标,过点P 作PQ⊥x 轴于点H ,交AC 于点Q ,用水平宽乘以铅垂高除以2表示APC △的面积,然后求最值.【详解】解:(1)由抛物线y =﹣x 2+bx+c 过点A (﹣1,0),C (2,3), 得:10423b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴抛物线的函数解析式为y =﹣x 2+2x+3, 设直线AC 的函数解析式为y =mx+n , 把A (﹣1,0),C (2,3)代入, 得023m n m n -+=⎧⎨+=⎩,解得11m n =⎧⎨=⎩, ∴直线AC 的函数解析式为y =x+1; (2)如图,过点P 作PQ⊥x 轴于点H ,交AC 于点Q , 设P (x ,﹣x 2+2x+3),则Q (x ,x+1), ∴PQ=﹣x 2+2x+3﹣(x+1)=﹣x 2+x+2, ∴S △APC =S △APQ +S △CPQ ·线○封○密○外=12PQ×3 =32(﹣x 2+x+2) =﹣32(x ﹣12)2+278, ∵﹣32<0, ∴当x =12时,△APC 的面积最大,最大值为278.【点睛】本题考查二次函数综合题,涉及解析式的求解,三角形面积的表示方法,解题的关键是掌握这些特定的解题方法进行求解.2、152【分析】根据:2:3a b =可用a 表示b 并代入(5):()2:3a b x ++=中化简即可抵消a ,解出x .【详解】解:因为:2:3a b =, 所以32b a =, 所以3(5):()2:32a a x ++=,即33(5)2()2a a x +=⋅+31532a a x +=+ 解得152x =. 【点睛】本题考查比的性质.化简过程中注意内项之积等于外项之积.3、26.36平方厘米【分析】 首先计算出空白部分的面积,再用两个圆的面积减去空白部分面积的2倍即可得到阴影部分的面积. 【详解】 空白部分面积: 221121π 3.4 3.413π2 3.416232⨯⨯-⨯⨯⨯+⨯⨯+⨯⨯ 14π 3.43=- 所以阴影部分面积:2214ππ 3.4π22( 3.4)26.363⨯+⨯-⨯-=(平方厘米) 【点睛】 解答此题的关键是求得圆的半径,掌握三角形和圆的面积公式. 4、应安排27人生产甲种零件,12人生产乙种零件 【分析】 设应分配x 人生产甲种零件,y 人生产乙种零件,根据每个工人每天能加工甲种零件8个或加工乙种零件15个,而一辆轿车只需要甲零件6个和乙零件5个,列方程组求解. 【详解】 设应分配x 人生产甲种零件,y 人生产乙种零件,·线○封○密○外由题意得3958615x y x y+=⎧⎨⨯=⨯⎩, 解得:2712x y =⎧⎨=⎩. 答:应安排27人生产甲种零件,12人生产乙种零件.【点睛】本题考查了二元一次方程组的应用,关键是设出生产甲和乙两种零件的人数,以配套的比例列方程求解.5、-+x y ,52【分析】原式中括号中利用完全平方公式,多项式乘多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式= 22222(44325)2x xy y x xy y y x ++--+-÷ =2(22)2x xy x -+÷=-+x y , 当12,2x y =-=时,原式=52 【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则及公式是解本题的关键.。

宝山区一模初中数学试卷

宝山区一模初中数学试卷

一、选择题(每题3分,共30分)1. 下列数中,既是正整数又是完全平方数的是()A. 16B. 25C. 36D. 492. 若a、b、c为等差数列,且a+b+c=15,则a^2+b^2+c^2的值为()A. 45B. 60C. 75D. 903. 在平面直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)4. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是()A. 24cm^3B. 30cm^3C. 36cm^3D. 48cm^35. 若等比数列的前三项分别为2,6,18,则第四项为()A. 54B. 72C. 108D. 2166. 下列函数中,有最小值的是()A. y=2x+1B. y=x^2+1C. y=-x^2+1D. y=x^37. 在△ABC中,∠A=30°,∠B=60°,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°8. 已知一元二次方程x^2-5x+6=0,下列说法正确的是()A. 该方程有两个不同的实数根B. 该方程有两个相同的实数根C. 该方程无实数根D. 无法确定9. 下列数中,有最小整数解的是()A. 2x-3B. 3x+2C. 4x-1D. 5x+310. 在等差数列{an}中,若a1=3,公差d=2,则第10项an的值为()A. 19B. 21C. 23D. 25二、填空题(每题5分,共25分)11. 若a,b,c成等差数列,且a+b+c=15,则ab+bc+ca的值为______。

12. 在△ABC中,∠A=45°,∠B=60°,则△ABC的外接圆半径R为______。

13. 已知一元二次方程x^2-4x+3=0,其两个根的乘积为______。

14. 在等差数列{an}中,若a1=5,公差d=-2,则第n项an的通项公式为______。

2020年上海市宝山区中考数学一模试卷(完美解析版)

2020年上海市宝山区中考数学一模试卷(完美解析版)

2020年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1. 符号sinA表示()A. ∠A的正弦B. ∠A的余弦C. ∠A的正切D. ∠A的余切【答案]A【分析】直接利用锐角三角函数的定义分析得出答案.【详解】符号sinA表示∠A的正弦.故选:A【点睛】考查了锐角三角函数的定义.在RtABC中,∠C=90°.(1) 正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2) 余弦:锐角A的邻边忙亏斜边c的比叫做∠A的余弦,记作cosA.(3) 正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.(4) 三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2. 如果2a =-3b ,那么ab=()2 3B. -32C. 5D. —1A. -【答案]B【详解】此题应该有一个前提条件是A、 B均不为0,即使有这个条件,当2a =-3b 时,所以此题选B3. 二次函数y = 1- 2x2的图像的开口方向()A. 向左B. 向右C. 向上D. 向下【答案]D【分析】分析题目,本题可以根据二次函数的性质来解答;由抛物线解析式可知,二次项系数a=-2<0, 可知抛物线开口向下4. 直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A处看高处C处,那么点C在点A的()A. 俯角 67°方向B. 俯角 23°方向C. 仰角 67°方向D. 仰角 23°方向【答案】D.【解析】∠B == 90°,∠BCA == 67°,得∠BAG==23°从低处A处看高处C处,点C在点A的仰角23°方向故选:D.【点睛]此题考查了仰角以及俯角的定义,仰角是向上春的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角5. 已知 a⃗,b⃗⃗为非零向量,如 b⃗⃗=-5a⃗,那么向量 a⃗与b⃗⃗的方向关系是()A. a⃗ // b⃗⃗,并且a⃗和b⃗⃗方向一致B. a⃗// b⃗⃗,并且a⃗和b⃗⃗方向相反C. a⃗和b⃗⃗方向互相垂直D. a⃗和b⃗⃗之间夹角的正切值为 5【答案】B【解析】由 b⃗⃗=-5a⃗,-5<0,得 b⃗⃗//-5a⃗且方向相反,所以a⃗// b⃗⃗,并且a⃗和b⃗⃗方向相反故选:B6. 如图,分别以等边三角形ABC的三个顶点为圆心,以其边长为半径画弧,得到的封闭图形是莱洛三角形,如果AB=2,那么此莱洛三角形(即阴影部分)的面积()A. π + √3B. π -√3C. 2π -2√D. 2π-√【答案】D【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,。

上海市宝山区2020-2021学年九年级上学期期末(中考一模)数学试卷带讲解

上海市宝山区2020-2021学年九年级上学期期末(中考一模)数学试卷带讲解

上海市宝山区2021届初三一模数学试卷一、选择题1. 如果C 是线段AB 延长线上一点,且:3:1AC BC =,那么:AB BC 等于( ).A. 2:1B. 1:2C. 4:1D. 1:4 【答案】A【分析】先画出图形,设BC 为k ,然后用k 表示出AB ,最后求出:AB BC 即可.【详解】解:根据题意可画出下图:∵:3:1AC BC =,设BC 为k ,∴AC=3k ,∴AB=AC-BC=2k ,∴:AB BC =2k∴k=2∶1.故答案为A .【点睛】本题主要考查了线段的和差,根据题意画出图形成为解答本题的关键.2. 在Rt ABC △中,90C ∠=︒,5AB =,3BC =,那么sin A 的值为( ). A. 35 B. 34 C. 45 D. 43【答案】A【分析】根据正弦的定义解答即可.【详解】解:在Rt △ABC 中,∠C=90°,AB=5,BC=3,则sinA=35BC AB =, 故选:A .【点睛】本题考查了锐角三角函数的定义,掌握锐角A 的对边a 与斜边c 的比叫做∠A 的正弦是解题的关键.3. 如图,//AB DE ,//BC DF ,已知::AF FB m n =,BC a =,那么CE 等于( ).A. am nB. an mC. am m n +D. an m n+【答案】D【分析】先证明:四边形DEBF 是平行四边形,可得DF BE =,利用::AF FB m n =,再求解AF m AB m n=+,再证明ADF ACB ∽,利用相似三角形的性质求解BE ,再利用线段的和差可得答案. 【详解】解: //AB DE ,//BC DF ,∴ 四边形DEBF 是平行四边形, DF BE ∴=,::AF FB m n =,AF m AB m n∴=+, //DF BC ,ADF ACB ∴∽AF DF AD AB BC AC∴==, //AB DE ,BE AD m BC AC m n∴==+, BC a =,ma BE m n∴=+, .ma na CE a m n m n ∴=-=++ 故选:.D4. 已知点M 是线段AB 的中点,那么下列结论中,正确的是( ). A. AM BM = B. 12AM AB = C. 12BM AB = D. 0AM BM +=【答案】B【分析】根据题意画出图形,因为点M 是线段AB 的中点,所以根据线段中点的定义解答.【详解】解:A 、AM MB =,故本选项错误;B 、12AM AB =,故本选项正确;C 、12BM BA =,故本选项错误; D 、0AM BM +=,,故本选项错误.5. 若将抛物线2y x 先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( ) A. 2(1)2y x =-+B. 2(1)2y x =--C. 2(1)2y x =++D. 2(1)2y x =+- 【答案】A【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:将抛物线2y x 先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线:()212y x =-+ 故答案为:A .【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键.6. 如图所示是二次函数()20y ax bx c a =++≠图像的一部分,那么下列说法中不正确的是( ).A. 0ac <B. 抛物线的对称轴为直线1x =C. 0a b c -+=D. 点()12,y -和()22,y 在拋物线上,则12y y >【答案】B 【分析】根据图象分别求出a 、c 的符号,即可判断A ;根据抛物线与x 轴的两个交点可判断出该抛物线的对称轴不是x =1,即可判断B ;把x =-1代入二次函数的解析式,再根据图象即可判断C ;将x =-2与x =2带入二次函数,可得出y 1与y 2的值,即可判断D .【详解】解:∴二次函数图象开口向上,∴a >0,∴二次函数的图象交y 轴的负半轴于一点,∴c <0,∴ac <0 选项A 正确;∴由图像可看出,抛物线与x 轴的交点一个为x=-1,另一个在x=2和x=3中间,不关于x=1对称,∴抛物线的对称轴不是x=1 选项B 错误;把x=-1代入y=ax 2+bx+c 得:y=a-b+c ,由图像可知,x=-1时y=0,∴a-b+c=0 选项C 正确;把x=-2和x=2代入y=ax 2+bx+c 中,由图像可知,y 1>0,y 2<0,∴y 1>y 2 选项D 正确;故选:B .【点睛】本题考查二次函数的性质,解题的关键时熟练运用抛物线的图像判断系数a 、b 、c 之间的关系,同时注意特殊点与对称轴之间的关系,属于中等题型.二、填空题7. 如果2x =3y ,那么x y y+=___. 【答案】52【分析】直接利用已知得出x =32y ,进而代入得出答案. 【详解】解:∵2x =3y ,∴x =32y , ∴3522y y x y y y ++==. 故答案为:52. 【点睛】本题主要考查了比例的性质,正确将已知变形是解题关键.8. 已知线段2a =厘米,8c =厘米,那么线段a 和c 的比例中项b 的长度为______厘米.【答案】4【分析】根据线段的比例中项可直接进行列式求解.【详解】解:由题意可得:22816b ac ==⨯=,∴4b =cm ;故答案为4.【点睛】本题主要考查比例中项,熟练掌握比例中项是解题的关键.9. 如果线段AB 的长为2,点P 是线段AB 的黄金分割点,那么较短的线段AP =______.【答案】3【分析】设较短的线段AP x =,则BP AB AP =-,根据黄金分割点的性质列方程并求解,即可得到答案.【详解】设较短的线段AP x =∵AB 的长为2∴2BP AB AP x =-=- ∴BP AP AB BP= ∴222x x x-=- ∴()222x x -=∴3x =+3(经检验均为方程的根)32+>,故舍去∵(22310x -=-=≠∴3x =-∴较短的线段3AP =故答案为:3【点睛】本题考查了黄金分割点、分式方程、一元二次方程、二次根式的知识;解题的关键是熟练掌握黄金分割点、分式方程、一元二次方程、二次根式的性质,从而完成求解.10. 计算:32a ba b ______. 【答案】54a b -【分析】根据向量的表示方法可直接进行解答.【详解】解:326354a ba b a b a b a b , 故答案为:54a b -.【点睛】本题考查的是平面向量的知识,熟悉相关性质是解题的关键.11. 已知等腰梯形上底为5,高为4,底角的余弦值为35,那么其周长为______. 【答案】26【分析】作DF ⊥BC 于F ,AE ⊥BC 于E ,根据等腰梯形的性质就可以得出△AEB ≌△DFC 就可以求出FC=BE ,然后根据底角的余弦值为35,求得BE ,AB ,从而求出周长. 【详解】解:如图示,作DF⊥BC 于F ,AE⊥BC 于E ,∵四边形ABCD 是等腰梯形,∴∠B=∠C ,AB=CD ,AD ∥BC ,∴∠ADF=∠DFC=90°,∴∠AEF=∠DFE=∠ADF=90°,∴四边形AEFD 是矩形,5EF AD ,△AEB 和△DFC 中BC AEBDFC AE DF , ∴△AEB ≌△DFC (AAS ),∴BE=CF ; ∵35cos E ABB B , 设3BE x =,则5AB x =, 根据勾股定理,有:2222534AE AB BE x x ,解之得:1x =(取正值),∴3BE =,5AB =,∴3FCBE ,5DC AB ==, ⊥周长AB BE EF FC CD AD 53535526,故答案是:26.【点睛】本题考查了等腰梯形的性质的运用,三角函数,矩形的判定及性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,能熟练应用相关性质是解题的关键.12. 某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______.【答案】()21001y x =+;【分析】根据:现有量=原有量×(1+增长率)n ,即可列方程求解.详解】依题意得:()21001y x =+故答案为:()21001y x =+【点睛】考查了一元二次方程的应用,可直接套公式:原有量×(1+增长率)n =现有量,n 表示增长的次数. 13. 如果抛物线()21y m x m =++(m 是常数)的顶点坐标在第二象限,那么它的开口方向______. 【答案】向上【分析】根据解析式写出顶点,根据顶点坐标在第二象限求出m 的取值故可求解.【详解】∵抛物线()21y m x m =++的得到为(-1,m )又顶点坐标在第二象限∴m >0∴开口向上故答案为:向上.【点睛】此题主要考查二次函数的性质,解题的关键是熟知顶点式的特点.14. 已知一条抛物线具有以下特征:(1)经过原点;(2)在y 轴左侧的部分,图像上升,在y 轴右侧的部分,图像下降;试写出一个符合要求的抛物线的表达式:______.【答案】2y x =-(答案不唯一)【分析】设出符合条件的函数解析式,再根据二次函数的图象在y 轴左侧部分是上升的,在y 轴右侧部分是下降的可知该函数图象的开口向下,对称轴为y 轴,即0a <,0b =,再把()0,0A 代入,得出符合条件的函数解析式即可.【详解】解:设出符合条件的函数解析式为:()20y ax bx c a =++≠, ∵二次函数的图象在y 轴左侧部分是上升的,在y 轴右侧部分是下降的,∴该函数图象的开口向下,对称轴为y 轴,即0a <,0b =,∵函数图象经过()0,0A ,∴0c ,∴符合条件的二次函数解析式可以为:2y x =-(答案不唯一).故答案为:2y x =-(答案不唯一).【点睛】本题考查的是二次函数的性质,先根据题意设出函数解析式,再根据二次函数的性质判断出a 的符号及对称轴是解答此题的关键,此题属开放性题目,答案不唯一.15. 如图,已知ABC 中,//EF AB ,12AF FC =,如果四边形ABEF 的面积为25,那么ABC 的面积为______.【答案】45【分析】根据//EF AB ,易得∴CFE ∽△CAB ,再依据相似三角形的面积比等于相似比的平方,即可求出三角形ABC 的面积.【详解】解:∵//EF AB∴△CFE ∽△CAB 又∵12AF FC = ∴32ACFC=, ∴94ABC FEC S S =△△ 设∴ABC 的面积为x 则9254x x =-, 解得,x=45,经检验x=45是原方程的根故答案为:45【点睛】本题考查了相似三角形的判定与性质,依据相似三角形面积比是相似比的平方,构建方程,是解决问题关键.16. 在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt ABC △,90C ∠=︒,要截得的正方形EFGD 的边FG 在AB 上,顶点E 、D 分别在边CA 、CB 上,如果4AF =,9GB =,那么正方形铁皮的边长为______.【答案】6【分析】设正方形铁皮的边长为x ,证明△AEF ∽△DBG ,得到EF AF BG DG =,49x x=,求解即可. 【详解】设正方形铁皮的边长为x ,∵90C ∠=︒,∴∠A+∠B=90︒,在正方形EFGD 中,EF=DG=FG=x ,∠EFG=∠DGF=90︒,∴∠AFE=∠BGD=90︒,∴∠A+∠AEF=90︒,∴∠AEF=∠B ,∴△AEF ∽△DBG , ∴EF AF BG DG=, ∴49x x =, 解得x=6(负值舍去),故答案为:6.【点睛】此题考查正方形的性质,相似三角形的判定及性质,根据已知条件证明△AEF ∽△DBG 是解题的关键.17. 如图,某堤坝的坝高为12米,如果迎水坡的坡度为1:0.75,那么该大坝迎水坡AB 的长度为______米.【答案】15【分析】过点B 作BC ⊥AC 于C ,由迎水坡的坡度为1:0.75,得到tan ∠BAC=43=BC AC ,求出AC=9米,再利用勾股定理求出答案.【详解】过点B 作BC ⊥AC 于C ,∵迎水坡的坡度为1:0.75,∴tan ∠BAC=43=BC AC , ∵BC=12米,∴AC=9米,∴米),故答案为:15..【点睛】此题考查坡度的定义,解直角三角形的实际应用,勾股定理,正确理解迎水坡的坡度为1:0.75得到tan ∠BAC=43=BC AC 是解题的关键. 18. 在Rt ABC △中,90ACB ∠=︒,AC BC =,点E 、F 分别是边CA 、CB 的中点,已知点P 在线段EF 上,联结AP ,将线段AP 绕点P 逆时针旋转90°得到线段DP ,如果点P 、D 、C 在同一直线上,那么tan CAP ∠=______.1.【分析】分两种情形:⊥当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD =DC 即可解决问题.【详解】解:⊥如图2中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .⊥CE =EA ,CF =FB ,∴EF ∥AB ,∵AC =AB ,∠ACB =90°⊥⊥CEF =⊥CAB =45°,∵PD =P A ,∠APD =90°⊥⊥PAD =⊥PDA =45°,⊥⊥HDC =⊥PDA =45°,∵点E 是边CA 的中点,⊥EA =EP =EC⊥⊥EPC =⊥CEP ,∵∠HDC =∠DCA+∠DAC =45°,∠CEF =∠DCA+∠EPC =45°,⊥⊥DAC =⊥EPC =⊥ECP ,∴DA =DC ,设AP =a ,则DA DC =,∴)1PC a =∴)1tan 1a PC CAP PAa∠===②如图3中,当点P 在线段CD 上时,由①可知,EF ∥AB ,∠CAB =∠PDA =45°, ∴∠CAD =180°-∠ACD-45°, ∠COA =180°-∠ACO-45° ∴∠CAD =∠COA , ∵EF ∥AB , ∴∠CPE =∠COA , ∴∠CPE =∠CAD , ∵点E 是边CA 的中点, ⊥EA =EP =EC ∴∠ECP =∠CPE , ∴∠ECP =∠CAD ,∴DA =DC ,设AP =a ,则PD =a ,DA DC ==,∴)1PC a =∴)1tan 1a PC CAP PAa∠===:点P 在线段EF 上,情况⊥不满足条件,情况⊥满足条件,综上所述,tan CAP ∠1.【点睛】本题考查了旋转变换,等腰直角三角形的性质,中位线的性质,外角的性质,三角形内角和,勾股定理和三角函数等知识,熟悉相关性质是解题的关键.三、解答题19. 计算:21cos 45cot 30sin 60tan 30-︒︒+︒⋅︒.【分析】根据特殊角的三角函数值进行计算求解.【详解】解:原式21112121112⎛- -=====. 【点睛】本题考查特殊角的三角函数值,解题的关键是掌握特殊角的三角函数值.20. 如图,已知ABC 中,//DE BC ,且DE 经过ABC 的重心点G ,BD a =,BC b =.(1)试用向量a 、b 表示向量BE ; (2)求作向量()233a b -(不要求写作法,但要指出图中表示结论的向量). 【答案】(1)23BE a b =+;(2)见解析 【分析】(1)根据重心到顶点距离是它到对边中点距离的2倍,分析得到DE=23BC ,再根据向量的加法法则,首尾顺次相连,由三角形法则即可求解;(2)取AD 的中点J ,延长CB 到I ,使BI=DE ,以BJ 、BI 为邻边作平行四边形BJKI ,边接BK ,则BK 即是所求作的向量.【详解】解:(1)如图,连接AG 并延长交BC 于点F ,则GF=12AG ,AG 2=AF 3∴,DE//BC ,BC b = ADE ABC ∴△△∽, DE AG 2==BC AF 3∴, 23b DE BC ==, 2a 3BE BD DE b ∴=+=+(2)BD a =,3BA a ∴=,作AD 的中点J ,2J=3a 23B a ∴⨯=,延长CB 到I ,使得BI=DE ,23BI b ∴=-,以BJ 、BI 为邻边作平行四边形BJKI ,则()2223a 33BK BJ BI a b b =+=-=-, ∴BK 即是所求的求作的向量【点睛】本题考查了向量的知识,掌握法则向量的平行四边形法则,向量的三角形法则是解题的关键.21. 已知二次函数()20y ax ax a =-≠的图像经过点()1,2-.(1)求该二次函数的解析式和顶点坐标;(2)能否通过所求得的抛物线的平移得到抛物线2132y x x =++?如果能,请说明怎样平移,如果不能,请说明理由. 【答案】(1)2yx x ,顶点为11,24⎛⎫- ⎪⎝⎭;(2)可以,先向左平移2个单位,再向下平移32个单位【分析】(1)把点()1,2-代入函数解析式,求出a 的值即可得到解析式,再把一般式写成顶点式得到顶点坐标; (2)把所给的函数解析式化为顶点式,根据函数图象的平移法则进行求解. 【详解】解:(1)把点()1,2-代入函数解析式,得2a a +=,解得1a =, ∴2yx x ,写成顶点式:21124y x ⎛⎫=-- ⎪⎝⎭,∴顶点坐标是11,24⎛⎫-⎪⎝⎭; (2)将2132y x x =++也写成顶点式,得23724y x ⎛⎫=+- ⎪⎝⎭,31222⎛⎫--= ⎪⎝⎭,713442-=, ∴把原抛物线先向左平移2个单位,再向下平移32个单位. 【点睛】本题考查二次函数解析式的求解和图象的平移,解题的关键是掌握解析式的求解方法和函数图象的平移方法.22. 如图,点O 是菱形ABCD 的对角线BD 上一点,联结AO 并延长,交CD 于点E ,交BC 的延长线于点F .(1)求证:2AB DE BF =⋅; (2)如果1OE =,2EF =,求CFBF的长.【答案】(1)见解析;(2)33CF BF -=【分析】(1)根据菱形的性质证明ABO EDO ,BFO DAO ,得到AB BFED DA=,再由AB DA =,即可证明结论;(2)连接OC ,先证明()ADO CDO SAS ≅得到DAO DCO ∠=∠,就可以证明OEC OCF ,根据对应边成比例求出OC 的长,再根据ADE FCE ~,利用对应边成比例求出结果. 【详解】解:(1)∵四边形ABCD 是菱形, ∴//AB CD ,//AD BC ,AB DA =, ∴ABO EDO ,BFO DAO ,∴AB BO ED DO =,BF BODA DO =, ∴AB BFED DA=, ∵AB DA =, ∴2AB DE BF =⋅; (2)如图,连接OC ,∵四边形ABCD 是菱形, ∴AD=DC ,ADO CDO ∠=∠, 在ADO △和CDO 中,AD CD ADO CDO DO DO =⎧⎪∠=∠⎨⎪=⎩, ∴()ADO CDO SAS ≅, ∴DAO DCO ∠=∠, ∵//AD BF , ∴DAO OFC ∠=∠, ∴DCO OFC ∠=∠,∵COE FOC ∠=∠, ∴OEC OCF ,∴OE OCOC OF=,即2OC OE OF =⋅, ∵1OE =,2EF =, ∴123OF =+=,∴OC =∴AO OC == ∵//AD CF , ∴ADE FCE ~,∴12AD AE FC FE ==,∴12BC AD FC +==,1322BF BC CF FC FC FC =+=+=,∴(236CF BF===. 【点睛】本题考查相似三角形,解题的关键是掌握相似三角形的性质和判定.23. 某校数学活动课上,开展测量学校教学大楼()AB 高度的实践活动,三个小组设计了不同方案,测量数据如下表:(2)请选择其中一个可行方案及其测量数据,求出教学大楼的高度. 【参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈】 【答案】(1)二;(2)36米【分析】(1)根据第二组只测了角度,未给出距离相关信息即可判断; (2)由锐角三角函数可求tan ABBC C =,tan AB BD ADB=∠,由BC BD CD -=,列出方程可求解. 【详解】(1)∴第二组中没有线段长度的数据,所以无法测出AB 的高度, ∴填第二组, 故答案为:二.(2)可选第一组的方案, 设AB xm =,在Rt ABC 中,90B ∠=︒,tan =ABC BC, ∴4=tan tan 373AB x BC x C ==︒,在Rt ABD △中,90B ∠=︒,tan =ABADB BD∠, ∴tan tan 45AB xBD x ADB ===∠︒,∴BC BD CD -=, ∴4123x x -=, ∴36x =.答:教学大楼高36米.【点睛】本题考查了解直角三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.24. 已知抛物线()20y ax bx a =+≠经过 ()4,0A ,()1,3B -两点,抛物线的对称轴与x 轴交于点C ,点 D 与点B 关于抛物线的对称轴对称,联结BC 、BD .(1)求该抛物线的表达式以及对称轴;(2)点E 在线段BC 上,当CED OBD =∠∠时,求点 E 的坐标;(3)点M 在对称轴上,点N 在抛物线上,当以点O 、A 、M 、N 为顶点的四边形是平行四边形时,求这个平行四边形的面积. 【答案】(1)231255y x x =-,对称轴为2x =;(2)1,1E ;(3)当OA 为边时,1445S =;当OA 为对角线时,485S =. 【分析】(1)将()4,0A ,()1,3B -代入抛物线2y ax bx =+,求解即可;(2)过B 点作BF x ⊥轴叫x 轴与点F ,过E 点作EH x ⊥轴叫x 轴与点H ,根据B 点坐标是()1,3-,对称轴为2x =,易得BCF △是等腰直角三角形,ECH 也是等腰直角三角形,求出BC =CED OBD =∠∠,点D 与点B 关于抛物线的对称轴对称,可证得OBCEDB ,DBE BCO ,则DBEBCO ,有DBEBBCOC,可得EB =EC =(3)分两种情况讨论:当OA 对角线时,当OA 为边时,分别求出N 点坐标,然后求解即可.【详解】解:(1)将()4,0A ,()1,3B -代入抛物线 2y ax bx =+,得:16403a b a b +=⎧⎨-=⎩,解之得: 35125a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴该抛物线的表达式是231255y x x =-, ∴22231233124255555y x x x xx , ∴对称轴为2x =;(2)如图示:过B 点作BF x ⊥轴叫x 轴与点F ,过E 点作 EH x ⊥轴叫x 轴与点H ,∴B 点坐标是()1,3-,对称轴为2x =, ∴3BF CF ==,∴BCF △是等腰直角三角形,则ECH 也是等腰直角三角形, ∴22223332BCBF CF ,∴CED OBD =∠∠,CED EBD EDB ∠=∠+∠,OBDEBD OBC∴OBCEDB ,∴点D 与点B 关于抛物线的对称轴对称,则D 点坐标是()5,3, ∴//BD FA∴DBE BCO ∴DBE BCO ∴DB EBBCOC, ∴6BD =,2OC =,2EB,即有EB =∴32222ECBCEB,∴ECH 是等腰直角三角形, ∴1EHHC∴1OH =即点E 的坐标是()1,1; (3)∴4OA =∴当OA 是平行四边形的边长时,如图2所示,则MN 必定在y 轴的上方,并有4MN OA ,∴点M 在对称轴上, ∴点N 的横坐标是6或-2, 又∴点N 在抛物线上, ∴当6x =时,23123666555y, ∴平行四边形OANM 的面积36144455;当2x =-时,23123622555y , 同理可得平行四边形OANM 的面积36144455; ∴当OA 是平行四边形的对角线时,如图3所示,∵点M 在对称轴上,并MONA ∴点N 也在对称轴2x =上,∴当2x =时,23121222555y, ∴112244255OAN S ∴平行四边形OANM 的面积24482255OAN S . 综上所述,平行四边形的面积为1445或485. 【点睛】本题考查了用待定系数法求函数解析式,二次函数坐标轴上的点,三角形的相似的判定与性质,平行四边形的判定与性质,熟悉相关性质是解题的关键.25. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,点D 、E 在边AB 上,∠DCE =45°,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当AC =3,AD =2BD 时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC =,tan ∠FMD =y ,求y 关于x 的函数关系式,并写出定义域.【答案】(1)见解析; (2)4DE =; (3)1(02y x =<<. 【分析】(1)证明两个角相等证明△CDE ∽△BCE ,列比例式可得结论;(2)如图2,过D 作DN ⊥AC 于N ,根据△ADN 是等腰直角三角形,得AN =DN ,由平行线分线段成比例定理得23AD AN AB AC ==,计算DN 和CN 的长,利用勾股定理计算CD 和BD 的长,根据(1)中的相似三角形,列比例式得:DE CE DC CE BE BC ===,设DE ,CE =3x ,代入比例式可得结论; (3)如图3,作辅助线构建全等三角形,证明△AMC ≌△BPC (ASA ),得CM =CP ,证明△MCD ≌△PCD(SAS ),得∠MDC =∠PDC =∠BDC ,证明△BCD ∽△CMD ,列比例式得BD CD BC CM=,根据三角函数的定义和等量代换可得比例式,并根据D ,E 是AB 上一点,∠DCE =45°,可知当点E 与A 重合时,BD 最大为12AB ,可得x 的取值范围.【小问1详解】证明:如图1,∵∠ACB =90°,AC =BC ,∴∠B =∠CAB =45°,∵∠DCE =45°,∴∠B =∠DCE ,∵∠CED =∠CEB ,∴△CDE ∽△BCE , ∴CE DE BE CE=, ∴2CE BE DE =⋅;【小问2详解】解:如图2,过D 作DN ⊥AC 于N ,∴∠AND =90°,∵∠DAN =45°,∴△ADN 是等腰直角三角形,∵DN ∥BC ,AD =2BD , ∴23AD AN AB AC ==, ∵AC =3,∴AB AN =DN =2,CN =1,∵AD =2BD ,∴BD由勾股定理得:DC =由(1)知:△CDE ∽△BCE ,∴3DE CE DC CE BE BC ===,设DE ,CE =3x ,3=,∴x ,∴DE ; 【小问3详解】解:如图3,过点C 作CP ⊥CM ,交AB 的延长线于点P ,∵∠DCE =45°,∠ACB =90°,∴∠ACM +∠BCD =45°=∠BCD +∠BCP ,∴∠BCP =∠ACM ,∵∠CBP =180°-45°=135°=∠CAM ,AC =BC ,∴△AMC ≌△BPC (ASA ),∴CM =CP ,∵∠DCM =∠DCP =45°,CD =CD ,∴△MCD ≌△PCD (SAS ),∴∠MDC =∠PDC =∠BDC ,∵∠ABC =45°=∠MCD ,∴△BCD ∽△CMD , ∴BD BC CD CM =,即BD CD BC CM=, ∵FM ⊥FC ,∠DCE =45°,∴△CFM 是等腰直角三角形,∴CM FM ,∴y =tan ∠FMDDF MF CM==)CF CD CM-=CM -=1BD BC=x ;Rt △ABC 中,AC =BC ,∴AB BC ,∵D ,E 是AB 上一点,∠DCE =45°,∴当点E与A重合时,BD最大为12 AB,∵BDBC=x,∴0<x∴y(0<x<2).【点睛】本题是相似形的综合题,考查了全等和相似三角形的判定和性质,等腰直角三角形的性质,三角函数的定义等知识,添加恰当辅助线构造全等三角形是本题的关键.。

2012-2013学年上海市宝山区中考一模数学试卷及参考答案

2012-2013学年上海市宝山区中考一模数学试卷及参考答案

2012-2013学年上海市宝山区中考一模数学试卷及答案一. 选择题(本大题共6题,每题4分,满分24分) 1.下列各式中,正确的是 ( )A .sin 20sin 30sin 50︒+︒=︒B .sin 602sin 30︒=︒C .tan 30tan 601︒⋅︒=D .cos30cos60︒<︒2.下列分式方程去分母后所得结果正确的是( )A .11211-++=-x x x 去分母得,()()1121x x x +=-+- B .125552=-+-x x x 去分母得,525-=+x x C .242222-=-+-+-x x x x x x 去分母得,()()2222x x x x --+=+ D .1132-=+x x 去分母得,()213x x -=+ 3.已知关于x 的方程022=+-k x x 没有实数根,则k 的取值范围是( )A .1>kB .1≤kC .1<kD .1≥k4.下列命题正确是( )A .长度相等的两个非零向量相等B .平行向量一定在同一直线上C .与零向量相等的向量必定是零向量D .任意两个相等的非零向量的始点与终点是一平行四边形的四顶点 5.如图所示,在△ABC 中,////DE AB FG ,且FG 到DE ,AB 的距离之比为1:2,若△ABC 的面积为32,△CDE 的面积为2,则△CFG 的面积等于 ( )A .6B .8C .10D .126.一次函数b ax y +=与二次函数c bx ax y ++=2在同一坐标系中的图像可能是( )A B C D二.填空题(本大题共12题,每题4分,满分48分) 7.使3-x 有意义的x 的取值范围是_____________.8.不等式组⎩⎨⎧≥+<-01032x x 的解集是_________________.9.分解因式b a ab a 332+--=________________.10.关于x 的一元二次方程()22240k x x k -++-=的一个根为0,则k 的值是__________. 11.在平面直角坐标系中。

上海市宝山区2024届中考一模考试数学试卷(附答案)

上海市宝山区2024届中考一模考试数学试卷(附答案)

上海市宝山区2024届中考一模考试数学试卷考生注意:1.本试卷共25题.2.试卷满分150分.考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列各组中的四条线段成比例的是( ▲ )(A )2cm ,3cm ,4cm ,5cm ;(B )2cm ,3cm ,4cm ,6cm ;(C )1cm ,2cm ,3cm ,2cm ;(D )3cm ,2cm ,6cm ,3cm .2.已知线段AB =2,点P 是线段AB 的黄金分割点,且AP >BP ,则AP 的长是( ▲ )(A )253−; (B )53−; (C )215−; (D )15−.3.许多大型商场购物中心为了引导人流前往目标楼层,会考虑使用“飞梯”(可以跨楼层抵达的超高超长的自动扶梯).上海大悦城的“飞梯”从3层直达7层,“飞梯”的截面如图1,AB 的长为50米,AB 与AC 的夹角为24°,则高BC 是( ▲ )(A ) 2450sin 米;(B ) 2450cos 米; (C )︒2450sin 米; (D )︒2450cos 米. 4.在四边形ABCD 中,如果BC AD 32=,|AB DA +|=|DA DC −|,那么四边形ABCD 是( ▲ )(A )矩形;(B )菱形; (C )正方形; (D )等腰梯形.5.二次函数y =ax 2+bx 的图像如图2所示,则一次函数y =ax +b 的图像不.经过( ▲ )(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.图2图3图16. 如图3,在正方形网格中,A 、B 、C 、D 、M 、N 都是格点,从A 、B 、C 、D 四个格点中选取三个构成一个与△AMN 相似的三角形,某同学得到两个三角形:①△ABC ;②△ABD .关于这两个三角形,下列判断正确..的是( ) (A )只有①是; (B )只有②是; (C )①和②都是;(D )①和②都不是.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7. 已知线段a =2,b =4,如果线段c 是a 和b 的比例中项,那么c = ▲ .8. 比例尺为1:100000的地图上,A 、B 两地的距离为2cm ,那么A 、B 两地的实际距离为 ▲ km . 9. 计算:sin 30°-sin 45°.cos 45°= ▲ .10. 二次函数()20y ax bx c a =++≠图像上部分点的坐标(x ,y )对应值如表1所示,那么该函数图像的对称轴是直线 ▲ .11. 直径是2的圆,当半径增加x 时,面积的增加值s 与x 之间的函数关系式是 ▲ . 12. 在△ABC 中,∠BAC =90°,点G 为重心,联结AG 并延长,交BC 于点F ,如果BC =6,那么GF 的长是 ▲ .13. 如图4,斜坡AB ,坡顶B 离地面的高度BC 为30m ,如果坡比i =1:3,那么这个斜坡的长度AB = ▲ m .14. 在△ABC 中,如果2BC =,7AB =,3AC =,那么cos A = ▲ . 15. 如果二次函数)0()2(<−=a x a y 2的图像上有两点),(149y 和),(237y , 那么y 1 ▲ y 2.(填“>”、“=”或“<”)16. 如图5,已知正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,如果BC = 6,△ABC 的面积为12,那么EF 的长为 ▲ .17. 平面直角坐标系中,在x 轴上,且到一条抛物线的顶点及该抛物线与y 轴的交点的距离..之和..最小的点,称为这条抛物线与x 轴的“亲密点”.那么抛物线2245y x x =++与x 轴的“亲密点”的坐标是 ▲ .18. 已知AC 和BD 是矩形ABCD 的两条对角线,将△ADC 沿直线AC 翻折后,点D 落在点E 处,三角形AEC 与矩形的重叠部分是三角形ACF ,联结DE .如果AB =6,BF =2,那么∠BDE 的正切值是 ▲ .图5表1图4三、解答题:(本大题共7题,满分78分)19. (本题满分10分)如图6,在△ABC 中,∠C = 90︒,sinB = 54,AB =10,点D 是AB 边上一点, 且BC = BD . (1)求BD 的长; (2)求∠ACD 的余切值.20. (本题满分10分)如图7,在△ABC 中,AB =5,BC =4,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E .(1)求DE 的长;(2)联结CE 交BD 于点F ,设a AB =,b AD =,用a 、b 的线性组合表示向量BD = ▲ ,BF = ▲ .21. (本题满分10分)在平面直角坐标系xOy 中,已知二次函数c bx x y ++=2的图像经过点A (1,0)和B (0,3).(1)求该二次函数的表达式;(2)如果点E (4,m )在该函数图像上,求△ABE 的面积.图6图722. (本题满分10分)综合实践活动中,某小组利用木板和铅锤自制了一个简易测高仪测量塔高.测高仪ABCD 为矩形,CD =30cm ,顶点D 处挂了一个铅锤H .图8是测量塔高的示意图,测高仪上的点C 、D 与塔顶G 在一条直线上,铅垂线DH 交BC 于点M .经测量,点D 距地面1.9m ,到塔EG 的距离DF =13m ,CM =20cm .求塔EG 的高度(结果精确到1m ).23. (本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图9,在正方形ABCD 中,点E 、F 分别在边CD 、BC 上,且CE =BF ,DF 分别交 AE 、AC 于点P 、Q . (1)求证:AE ⊥DF ;(2)求证:DFPQ BF AQ ⋅=⋅2.图8图924.(本题满分12分,每小题满分各4分)如图10,在平面直角坐标系xOy 中,将抛物线221x y =平移,使平移后的抛物线仍经过原点O ,新抛物线的顶点为M (点M 在第四象限),对称轴与抛物线221x y =交于点N ,且MN =4.(1)求平移后抛物线的表达式;(2)如果点N 平移后的对应点是点P ,判断以点O 、M 、N 、P 为顶点的四边形的形状,并 说明理由;(3)抛物线221x y =上的点A 平移后的对应点是点B ,BC ⊥MN ,垂足为点C ,如果△ABC是等腰三角形,求点A 的坐标.图1025.(本题满分14分,第(1)小题满分4分,第(2)(3)小题满分各5分)如图11,已知△ABC中,AB=AC=1,D是边AC上一点,且BD=AD,过点C作CE∥AB,并截取CE=AD,射线AE与BD的延长线交于点F.(1)求证:BFAF⋅DF=(2)设AD=x,DF=y,求y与x的函数关系式;(3)如果△ADF是直角三角形,求DF的长.图11评分参考一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.A ;4.D ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.22;8.2;9.0;10.x =2 ;11.S =πx 2+2πx ; 12. 1;13.1030; 14.37; 15.>; 16.2.417. ),085(−; 18. 31或33. 三、解答题:(本大题共7题,满分78分)19. 解:(1)∵在Rt △ABC 中,sinB = ABAC ,又∵sinB =54,AB =10, ∴AC =8,…………………………………………………………………………2分 ∵∠C = 90︒, ∴,222AB BC AC =+∴BC =6,…………………………………………………………………………2分 ∵BC = BD ,∴BD =6.………………………………………………………………………… 1分(2)过点D 作DE ⊥AC ,垂足为点E .………………………………………………………1分又由∠C = 90︒,可得DE ∥BC , ∴,ABAD BC DE =∵BC =6,A D =4,AB =10,∴DE =2.4, ………………………………………………………………………1分 同理可得EC =4.8,………………………………………………………………1分 ∵在Rt △DEC 中,cot ∠ACD = DE EC , …………………………………………1分∴cot ∠ACD = 2. …………………………………………………………………1分20. 解:(1)∵BD 平分∠ABC ,∴∠1=∠2,∵DE ∥BC ,∴∠2=∠3,∴∠1=∠3, ………………………………………………………………………1分 ∴DE =BE , ………………………………………………………………………1分 设DE =BE =x ,则AE =5-x , ……………………………………………………1分 ∵DE ∥BC ,∴AB AE BC DE =, ……………………………………………………1分∴,554x x −= ………………………………………………………………………1分 解得920=x ,所以,.920=DE …………………………………………………1分(2)BD =a b −, ……………………………………………………………………2分BF =.149149a b −…………………………………………………………………2分21. 解:(1)由图像经过点B (0,3),可知c =3, ………………………………………2分再由图像经过点A (1,0),可得0312=++b ,解得b =-4, ……………………2分所以,该二次函数的表达式为.342+−=x x y …………………………………1分 (2)把x =4代入342+−=x x y ,得y =3,……………………………………1分由B (0,3)、E (4,3)可知BE ∥x 轴,……………………………………………1分 于是BE =4,BE 边上的高为3,…………………………………………………2分 ∴.63)04(21=⋅−⋅=∆ABE S…………………………………………………1分22. 解:在Rt △CDM 中,cot ∠CDM = CMCD , ……………………………………………1分又∵CD =30cm ,CM =20cm , ………………………………………………………1分 ∴cot ∠CDM = 23, ……………………………………………………………………1分∵DF ⊥EG ,∴∠DGF +∠GDF =90°,……………………………………………………………1分 又由题意可得∠CDM +∠GDF =90°,∴ ∠CDM =∠DGF , …………………………………………………………………1分在Rt △DGF 中,cot ∠DGF = DF GF ,…………………………………………………1分又∵DF =13m ,∴GF =m 239, ………………………………………………………………………1分∴EG =GF+EF =m 219.1239≈+, ……………………………………………………2分答:塔EG 的高度约为21m . …………………………………………………………1分23. 证明:(1)∵在正方形ABCD 中,∴CD =BC ,AD =CD ,∠ADE =∠DCF =90°, …………………………………1分 又∵CE =BF ,∴CD -CE =BC -BF ,即DE =CF , …………………………………………………………………………1分 ∴△ADE ≌△CDF ,∴∠1=∠2, …………………………………………………………………………1分 ∵∠ADE =90°∴∠1+∠3=90°,∴∠2+∠3=90°, ……………………………………………………………………1分 ∵∠APQ =∠2+∠3,∴∠APQ =90°,………………………………………………………………………1分 ∴AE ⊥DF.(2)过点E 作EG ⊥AC ,垂足为点G . ………………………………………………1分 ∵∠APQ =90°, ∴∠APQ =∠AGE , 又∵∠PAQ =∠EAG ,∴△APQ ∽△AEG ,……………………………………………………………………1分∴EGAEPQ AQ =,…………………………………………………………………………1分 ∵在正方形ABCD 中,∴ 45214=∠=∠DCF ,在Rt △CDM 中,cot ∠4= 22=CE EG ,∴CE EG 22=, ………………………………………………………………………1分∵CE =BF ,∴BF EG 22=,………………………………………………………………………1分∵△ADE ≌△CDF ,∴AE =DF , …………………………………………………………………………1分 ∴BF DF PQAQ 22=, ∴DF PQ BF AQ ⋅=⋅2.……………………………………………………………1分24. 解:(1),,设)0)(21(2>t t t N )421(2−t t M ,则,……………………………………………………1分于是平移后抛物线的表达式是421)(2122−+−=t t x y , ………………………………1分 由平移后抛物线经过原点O (0,0),可得t =2(负值不合题意舍去),………………1分 所以,平移后抛物线的表达式是2)2(212−−=x y . ……………………………………1分 (2)四边形OMPN 是正方形.根据题意可得O (0,0),M (2,-2),N (2,2),P (4,0), …………………………1分 记MN 与OP 交于点G ,则G (2,0),∴OG =GP =2,MG =NP =2,MN =OP =4,22==NP NO ,∴四边形OMPN 是平行四边形, ……………………………………………………1分 ∵MN =OP =4,∴四边形OMPN 是矩形, ……………………………………………………………1分 ∵22==NP NO ,∴四边形OMPN 是正方形. ……………………………………………………………1分 (3),,设)21(2a a A ,,则)2212(2−+a a B )2212(2−a C ,,222,2)2(22a BC a AC AB =+−==,可得,……………………………………1分;,(舍去①)84(),0,4,04,2)2(22,11222A a a a a a AC AB ===−+−== …………1分 ;,或,②)422()422(,22,22,22,112−−====A A a a a BC AB ………………1分;,,,③)22(2,2)2(222A a a a BC AC ==+−=……………………………………1分 所以,点A 的坐标是)2,2()422()422()8,4(、,、,、−.25.(1)证明:∵CE ∥AB ,∴∠1=∠2,………………………………………………………………………………1分 又∵AB =AC ,CE =AD ,∴△ABD ≌△AEC ,………………………………………………………………………1分 ∴∠3=∠4,又∵∠AFB =∠AFD ,∴△ABF ∽△ADF ,………………………………………………………………………1分 ∴AFBF DF AF =, ∴BF DF AF ⋅=2.…………………………………………………………………………1分 解:(2)过点D 作DG ∥AB ,交AE 于点G. ………………………………………………1分又∵CE ∥AB ,∴DG ∥CE , ∴AC AD CE DG =,……………………………………………………………………………1分 由AD =x ,则CE =x ,CD =1-x ,∴2x DG =,………………………………………………………………………………1分 ∵DG ∥AB , ∴BF DF AB DG =,……………………………………………………………………………1分 ∴y x y x +=12, ∴231x x y −=. ……………………………………………………………………………1分(3)①∠DAF =ABD ≠90°,………………………………………………………………1分 ②如果∠AFD =90°,由∠1=∠3=∠4,∠1+∠3+∠4=90°,可得∠3=∠4=30°,……………………1分 设DF =m ,则AD =BD =2m ,在Rt △ABF 中,cos ∠3=ABBF , ∴2312=+m m ,63=m .………………………………………………………………1分③如果∠ADF =90°,由∠1=∠3=∠4,∠1+∠3=90°,可得∠3=∠4=45°,……………………………1分 设DF =m ,AD =BD =m ,在Rt △ABF 中,cos ∠3=BFAB , ∴221=+m m ,22=m . ………………………………………………………………1分 所以,当△ADF 是直角三角形时,DF 的长为63或22.。

2020-2021学年上海市宝山区九年级中考一模数学试卷(含解析)

2020-2021学年上海市宝山区九年级中考一模数学试卷(含解析)

2020-2021学年上海市宝山区九年级中考一模数学试卷一、选择题(共6小题).1.如果C是线段AB延长线上一点,且AC:BC=3:1,那么AB:BC等于()A.2:1B.1:2C.4:1D.1:42.在Rt△ABC中,∠C=90°,AB=5,BC=3,那么sin A的值为()A.B.C.D.3.如图,AB∥DE,BC∥DF,已知AF:FB=m:n,BC=a,那么CE等于()A.B.C.D.4.已知点M是线段AB的中点,那么下列结论中,正确的是()A.B.C.D.=0 5.将抛物线y=x2先向右平移1个单位长度,再向上平移2个单位长度,再次平移后得到的抛物线的表达式为()A.y=(x﹣1)2﹣2B.y=(x+1)2﹣2C.y=(x﹣1)2+2D.y=(x+1)2+26.如图所示是二次函数y=ax2+bx+c(a≠0)图象的一部分,那么下列说法中不正确的是()A.ac<0B.抛物线的对称轴为直线x=1C.a﹣b+c=0D.点(﹣2,y1)和(2,y2)在抛物线上,则y1>y2二、填空题(共12小题).7.如果2x=3y,那么=.8.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是厘米.9.如果线段AB的长为2,点P是线段AB的黄金分割点,那么较短的线段AP=.10.计算:3=.11.已知等腰梯形上底为5,高为4,底角的余弦值为,那么其周长为.12.某厂七月份的产值是10万元,设第三季度每个月产值的增长率相同,都为x(x>0),九月份的产值为y万元,那么y关于x的函数解析式为.(不要求写定义域)13.如果抛物线y=m(x+1)2+m(m是常数)的顶点坐标在第二象限,那么它的开口方向.14.已知一条抛物线具有以下特征:(1)经过原点;(2)在y轴左侧的部分,图象上升,在y轴右侧的部分,图象下降.试写出一个符合要求的抛物线的表达式:.15.如图,已知△ABC中,EF∥AB,=,如果四边形ABEF的面积为25,那么△ABC 的面积为.16.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为.17.如图,某堤坝的坝高为12米,如果迎水坡的坡度为1:0.75,那么该大坝迎水坡AB的长度为米.18.在Rt△ABC中,∠ACB=90°,AC=AB,点E、F分别是边CA、CB的中点,已知点P在线段EF上,联结AP,将线段AP绕点P逆时针旋转90°得到线段DP,如果点P、D、C在同一直线上,那么tan∠CAP=.三、解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:.20.如图,已知△ABC中,DE∥BC,且DE经过△ABC的重心点G,,.(1)试用向量、表示向量;(2)求作向量(3﹣)(不要求写作法,但要指出图中表示结论的向量).21.已知二次函数y=ax2﹣ax(a≠0)的图象经过点(﹣1,2).(1)求该二次函数的解析式和顶点坐标;(2)能否通过所求得的抛物线的平移得到抛物线y=x2+3x+?如果能,请说明怎样平移,如果不能,请说明理由.22.如图,点O是菱形ABCD的对角线BD上一点,联结AO并延长,交CD于点E,交BC的延长线于点F.(1)求证:AB2=DE•BF;(2)如果OE=1,EF=2,求的长.23.某校数学活动课上,开展测量学校教学大楼(AB)高度的实践活动,三个小组设计了不同方案,测量数据如表:课题测量教学大楼(AB)的高度测量工具测量角度的仪器,皮尺等测量小组第一组第二组第三组测量方案示意图说明点C、D在点B的正东方向GH是教学大楼旁的居民住宅楼EF是教学大楼正南方向的“校训石”,借助EF进行测量,使P、E、A三点在一条直线上,点P、F在点B的正南方向.测从点C处测得A点的仰角为从点G处测得A点的仰角EF=9米,从点P处测得A量数据37°,从点D处测得A点的仰角为45°,CD=12米为37°,测得B点的俯角为45°点的仰角为37°,从点F处测得A点的仰角为45°(1)根据测量方案和所得数据,第小组的数据无法算出大楼高度?(2)请选择其中一个可行方案及其测量数据,求出教学大楼的高度.[参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75]24.已知抛物线y=ax2+bx(a≠0)经过A(4,0),B(﹣1,3)两点,抛物线的对称轴与x轴交于点C,点D与点B关于抛物线的对称轴对称,联结BC、BD.(1)求该抛物线的表达式以及对称轴;(2)点E在线段BC上,当∠CED=∠OBD时,求点E的坐标;(3)点M在对称轴上,点N在抛物线上,当以点O、A、M、N为顶点的四边形是平行四边形时,求这个平行四边形的面积.25.如图,已知△ABC中,∠ACB=90°,AC=BC,点D、E在边AB上,∠DCE=45°,过点A作AB的垂线交CE的延长线于点M,联结MD.(1)求证:CE2=BE•DE;(2)当AC=3,AD=2BD时,求DE的长;(3)过点M作射线CD的垂线,垂足为点F,设=x,tan∠FMD=y,求y关于x的函数关系式,并写出定义域.参考答案一、选择题(共6小题).1.如果C是线段AB延长线上一点,且AC:BC=3:1,那么AB:BC等于()A.2:1B.1:2C.4:1D.1:4解:∵AC:BC=3:1,∴设AC=3x,则BC=x,AB=2x,则AB:BC=2:1.故选:A.2.在Rt△ABC中,∠C=90°,AB=5,BC=3,那么sin A的值为()A.B.C.D.解:在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A==,故选:A.3.如图,AB∥DE,BC∥DF,已知AF:FB=m:n,BC=a,那么CE等于()A.B.C.D.解:∵DF∥BC,∴=,∴=,∵AB∥DE,∴△DEC∽△ABC,∴,∴,∴CE=,故选:D.4.已知点M是线段AB的中点,那么下列结论中,正确的是()A.B.C.D.=0解:如图所示,点M是线段AB的中点,A、,故本选项不符合题意.B、,故本选项符合题意.C、,故本选项不符合题意.D、=,故本选项不符合题意.故选:B.5.将抛物线y=x2先向右平移1个单位长度,再向上平移2个单位长度,再次平移后得到的抛物线的表达式为()A.y=(x﹣1)2﹣2B.y=(x+1)2﹣2C.y=(x﹣1)2+2D.y=(x+1)2+2解:抛物线y=x2的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移2个单位长度所得对应点的坐标为(1,2),所以新抛物线的解析式为y=(x﹣1)2+2,故选:C.6.如图所示是二次函数y=ax2+bx+c(a≠0)图象的一部分,那么下列说法中不正确的是()A.ac<0B.抛物线的对称轴为直线x=1C.a﹣b+c=0D.点(﹣2,y1)和(2,y2)在抛物线上,则y1>y2解:A、∵抛物线开口向上,交y轴的负半轴,∴a>0,c<0,∴ac<0,故A正确;B、∵抛物线经过点(﹣1,0)和点(2,0),∴抛物线的对称轴为直线x==,故B不正确;C、当x=1时,y=a﹣b+c=0,故C正确;D、点(﹣2,y1)和(2,y2)在抛物线上,∵y1>0,y2=0,∴y1>y2,故D正确;故选:B.二、填空题(本大题共12题,每题4分,共48分)7.如果2x=3y,那么=.解:∵2x=3y,∴x=y,∴==.故答案为:.8.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是4厘米.解:∵线段b是a、c的比例中项,∴b2=ac=16,解得b=±4,又∵线段是正数,∴b=4.故答案为4.9.如果线段AB的长为2,点P是线段AB的黄金分割点,那么较短的线段AP=3﹣.解:∵点P是线段AB的黄金分割点,AB=2,AP<BP,∴BP=AB=﹣1,∴AP=AB﹣BP=2﹣(﹣1)=3﹣,故答案为:3﹣.10.计算:3=5﹣4.解:原式=3×2﹣3﹣﹣=5﹣4.故答案是:5﹣4.11.已知等腰梯形上底为5,高为4,底角的余弦值为,那么其周长为26.解:过点A作AE⊥BC于点E,过点D作DF⊥BC于点F,由题意得,AE=DF=4,cos∠B=,AD=5,设BE=3x,则可得AB=5x,AE=4x,∴x=1,∴BE=3,AB=5,∵四边形ABCD是等腰梯形,∴AB=CD=5,BC=BE+EF+FC=3+3+5=11,∴梯形ABCD的周长=5+5+5+11=26,故答案为:26.12.某厂七月份的产值是10万元,设第三季度每个月产值的增长率相同,都为x(x>0),九月份的产值为y万元,那么y关于x的函数解析式为y=10(1+x)2.(不要求写定义域)解:∵该厂七月份的产值是10万元,且第三季度每个月产值的增长率相同,均为x,∴该厂八月份的产值是10(1+x)万元,九月份的产值是10(1+x)2万元,∴y=10(1+x)2.故答案为:y=10(1+x)2.13.如果抛物线y=m(x+1)2+m(m是常数)的顶点坐标在第二象限,那么它的开口方向向上.解:由抛物线y=m(x+1)2+m(m是常数)可知顶点为(﹣1,m),∵顶点坐标在第二象限,∴m>0,∴抛物线开口向上,故答案为:向上.14.已知一条抛物线具有以下特征:(1)经过原点;(2)在y轴左侧的部分,图象上升,在y轴右侧的部分,图象下降.试写出一个符合要求的抛物线的表达式:y=﹣x2(答案不唯一).解:设二次函数的解析式是y=ax2+bx+c,∵经过原点,∴c=0,∵在y轴左侧的部分,图象上升,在y轴右侧的部分,图象下降,∴a<0,﹣=0,即:b=0,只要满足a<0,b=0,c=0就行,如:a=﹣1,所以二次函数的解析式是y=﹣x2.故答案为:y=﹣x2.15.如图,已知△ABC中,EF∥AB,=,如果四边形ABEF的面积为25,那么△ABC 的面积为45.解:∵,∴,∵EF∥AB,∴△EFC∽△BAC,∴=()2=,∴设S△EFC=4x,S△ABC=9x,∴四边形ABEF的面积5x=25,∴x=5,∴△ABC的面积=45,故答案为:45.16.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为6.解:根据题意知,∠AFE=∠BDG=∠C=90°,∴∠A=BDG(同角的余角相等).∴△AEF∽△DBG,∴=.又∵EF=DG,AF=4,GB=9,∴=.∴EF=6.即正方形铁皮的边长为6.故答案是:6.17.如图,某堤坝的坝高为12米,如果迎水坡的坡度为1:0.75,那么该大坝迎水坡AB的长度为15米.解:如图,过点B作BC垂直于水平面于点C,∵BC:AC=1:0.75,∴12:AC=1:0.75,∴AC=9(米),∴AB===15(米),答:该大坝迎水坡AB的长度为15米.故答案为:15.18.在Rt△ABC中,∠ACB=90°,AC=AB,点E、F分别是边CA、CB的中点,已知点P在线段EF上,联结AP,将线段AP绕点P逆时针旋转90°得到线段DP,如果点P、D、C在同一直线上,那么tan∠CAP=﹣1.解:如图1,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,PD=a=AP,∴tan∠CAP===+1;如图2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD=a,∴PC=a﹣a,∴tan∠CAP===﹣1,∵点P在线段EF上,∴情形1,不满足条件,情形2满足条件,故答案为:﹣1.三、解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:.解:原式====.20.如图,已知△ABC中,DE∥BC,且DE经过△ABC的重心点G,,.(1)试用向量、表示向量;(2)求作向量(3﹣)(不要求写作法,但要指出图中表示结论的向量).解:(1)连接BE.∵G是△ABC的重心,DE∥BC,∴===,∵=,∴=,∴=+=a+.(2)∵=+,=3,∴=3﹣,∴==(3﹣),∴如图即为所求作.21.已知二次函数y=ax2﹣ax(a≠0)的图象经过点(﹣1,2).(1)求该二次函数的解析式和顶点坐标;(2)能否通过所求得的抛物线的平移得到抛物线y=x2+3x+?如果能,请说明怎样平移,如果不能,请说明理由.解:(1)把点(﹣1,2)代入y=ax2﹣ax(a≠0),得a+a=2.解得a=1.故该抛物线解析式是:y=x2﹣x.由y=x2﹣x=(x﹣)2﹣知,该抛物线的顶点坐标是(,﹣);(2)可以,理由如下:由y=x2+3x+,得y=(x+)2﹣.则平移后抛物线顶点坐标是(﹣,).而抛物线y=x2﹣x的顶点坐标是(﹣,﹣),所以将抛物线y=x2﹣x先向左平移2个单位长度,再向下平移个单位长度即可得到抛物线y=x2+3x+.22.如图,点O是菱形ABCD的对角线BD上一点,联结AO并延长,交CD于点E,交BC的延长线于点F.(1)求证:AB2=DE•BF;(2)如果OE=1,EF=2,求的长.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD=BC=CD,AB∥CD,AD∥BC,∴△CEF∽△BAF,△ADE∽△FCE,∴,,∴,∴AB2=DE•BF;(2)∵△CEF∽△BAF,△ADE∽△FCE,∴=,=,∴1﹣=1﹣,∴,∴,∴AO =,∴==.23.某校数学活动课上,开展测量学校教学大楼(AB)高度的实践活动,三个小组设计了不同方案,测量数据如表:课题测量教学大楼(AB)的高度测量工具测量角度的仪器,皮尺等测量小组第一组第二组第三组测量方案示意图说明点C、D在点B的正东方向GH是教学大楼旁的居民住宅楼EF是教学大楼正南方向的“校训石”,借助EF进行测量,使P、E、A三点在一条直线上,点P、F在点B的正南方向.测量数据从点C处测得A点的仰角为37°,从点D处测得A点的仰角为45°,CD=12米从点G处测得A点的仰角为37°,测得B点的俯角为45°EF=9米,从点P处测得A点的仰角为37°,从点F处测得A点的仰角为45°(1)根据测量方案和所得数据,第二小组的数据无法算出大楼高度?(2)请选择其中一个可行方案及其测量数据,求出教学大楼的高度.[参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75]解:(1)第二小组的数据无法算出大楼高度,理由如下:第二小组只测量了有关仰角和俯角的度数,没有测量有关的线段长度,所以第二小组的数据无法算出大楼高度,故答案为:二;(2)选择第一小组的数据测量,理由如下:由题意得:∠ABD=90°,∠ACB=37°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,设AB=x米,则AB=BD=x米,BC=BD+CD=(x+12)米,在Rt△ABC中,tan∠ACB==tan37°≈0.75,∴≈,解得:x≈36,即教学大楼AB的高度约为36米.24.已知抛物线y=ax2+bx(a≠0)经过A(4,0),B(﹣1,3)两点,抛物线的对称轴与x轴交于点C,点D与点B关于抛物线的对称轴对称,联结BC、BD.(1)求该抛物线的表达式以及对称轴;(2)点E在线段BC上,当∠CED=∠OBD时,求点E的坐标;(3)点M在对称轴上,点N在抛物线上,当以点O、A、M、N为顶点的四边形是平行四边形时,求这个平行四边形的面积.解:(1)∵抛物线y=ax2+bx(a≠0)经过A(4,0),B(﹣1,3)两点,∴,解得:,∴抛物线的解析式为y=x2﹣x,∴对称轴为直线x=2;(2)∵点D与点B关于抛物线的对称轴对称,∴点D(5,3),∴BD=6,∵点C(2,0),点B(﹣1,3),∴BC=3,直线BC解析式为y=﹣x+2,如图,连接BO,∵BD∥OC,∴∠DBE=∠BCO,∵∠CED=∠OBD,∠CED=∠EBD+∠BDE,∠OBD=∠OBC+∠DBE,∴∠OBC=∠BDE,∴△OBC∽△EDB,∴,∴=,∴BE=2,设点E(x,﹣x+2),∴2=,∴x=1或x=﹣2(舍去),∴点E(1,1);(3)当OA为边时,∵以点O、A、M、N为顶点的四边形是平行四边形,∴OA=MN=4,OA∥MN,∴点N横坐标为6或﹣2,∴点N的纵坐标为,∴平行四边形的面积=4×=,当OA为对角线,∵以点O、A、M、N为顶点的四边形是平行四边形,∴MN与OA互相平分,∴,∴N x=2,∴点N(2,﹣),∴平行四边形的面积=4×=,综上所述:平行四边形的面积为或.25.如图,已知△ABC中,∠ACB=90°,AC=BC,点D、E在边AB上,∠DCE=45°,过点A作AB的垂线交CE的延长线于点M,联结MD.(1)求证:CE2=BE•DE;(2)当AC=3,AD=2BD时,求DE的长;(3)过点M作射线CD的垂线,垂足为点F,设=x,tan∠FMD=y,求y关于x的函数关系式,并写出定义域.【解答】(1)证明:如图1,∵∠ACB=90°,AC=BC,∴∠B=∠CAB=45°,∵∠DCE=45°,∴∠B=∠DCE,∵∠CED=∠CEB,∴△CDE∽△BCE,∴,∴CE2=BE•DE;(2)解:如图2,过D作DN⊥AC于N,∴∠AND=90°,∵∠DAN=45°,∴△ADN是等腰直角三角形,∵DN∥BC,AD=2BD,∴,∵AC=3,∴AB=3,AN=DN=2,CN=1,∵AD=2BD,∴BD=,由勾股定理得:DC===,由(1)知:△CDE∽△BCE,∴,设DE=x,CE=3x,∴=,∴x=,∴DE=x=;(3)解:如图3,过点C作CP⊥CM,交AB的延长线于点P,∵∠DCE=45°,∠ACB=90°∴∠ACM+∠BCD=45°=∠BCD+∠BCP,∴∠BCP=∠ACM,∵∠CBP=180°﹣45°=135°=∠CAM,AC=BC,∴△AMC≌△BPC(ASA),∴CM=CP,∵∠DCM=∠DCP=45°,CD=CD,∴△MCD≌△PCD(SAS),∴∠MDC=∠PDC=∠BDC,∵∠ABC=45°=∠MCD,∴△BCD∽△CMD,∴,即,∵FM⊥FC,∠DCE=45°,∴△CFM是等腰直角三角形,∴CM=FM,∴y=tan∠FMD=====1﹣=1﹣x;Rt△ABC中,AC=BC,∴AB=BC,∵D,E是AB上一点,∠DCE=45°,∴当点E与A重合时,BD最大为AB,∵=x,∴0<x<,∴y=1﹣x(0<x<).。

2019-2020学年上海市宝山区初三数学第一学期中考一模试卷及解析

2019-2020学年上海市宝山区初三数学第一学期中考一模试卷及解析

2019-2020学年上海市宝山区初三数学第一学期中考一模试卷一、选择题1.符号sin A 表示( ) A .A ∠的正弦 B .A ∠的余弦 C .A ∠的正切 D .A ∠的余切2.如果23a b =-,那么(ab = ) A .23-B .32-C .5D .1-3.二次函数212y x =-的图象的开口方向( ) A .向左B .向右C .向上D .向下4.直角梯形ABCD 如图放置,AB 、CD 为水平线,BC AB ⊥,如果67BCA ∠=︒,从低处A 处看高处C 处,那么点C 在点A 的( )A .俯角67︒方向B .俯角23︒方向C .仰角67︒方向D .仰角23︒方向5.已知a ,b 为非零向量,如果5b a =-,那么向量a 与b 的方向关系是( ) A .//a b ,并且a 和b 方向一致 B .//a b ,并且a 和b 方向相反 C .a 和b 方向互相垂直D .a 和b 之间夹角的正切值为56.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-二、填空题7.已知1:23:x =,那么x = .8.如果两个相似三角形的周长比为1:2,那么它们某一对对应边上的高之比为 . 9.如图,ABC ∆中90C ∠=︒,如果CD AB ⊥于D ,那么AC 是AD 和 的比例中项.10.在ABC ∆中,AB BC CA ++= .11.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14︒方向,那么从B 观察A ,A 在B 的 方向.12.如图,在ABC 中,90C ∠=︒,30A ∠=︒,BD 是ABC ∠的平分线,如果AC x =,那么CD = (用x 表示).13.如图,ABC ∆中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE .若9BE =,12BC =,则cos C = .14.若抛物线2()(1)y x m m =-++的顶点在第二象限,则m 的取值范围为 . 15.二次函数223y x x =++的图象与y 轴的交点坐标是 .16.如图,已知正方形ABCD 的各个顶点A 、B 、C 、D 都在O 上,如果P 是AB 的中点,PD 与AB 交于E 点,那么PEDE= .17.如图,点C 是长度为8的线段AB 上一动点,如果AC BC <,分别以AC 、BC 为边在线段AB 的同侧作等边ACD ∆、BCE ∆,联结DE ,当CDE ∆的面积为33时,线段AC 的长度是 .18.如图,点A 在直线34y x =上,如果把抛物线2y x =沿OA 方向平移5个单位,那么平移后的抛物线的表达式为 .三、解答题19.计算:1262tan 602cos 45-︒-︒20.已知:抛物线22y x x m =-+与y 轴交于点(0,2)C -,点D 和点C 关于抛物线对称轴对称. (1)求此抛物线的解析式和点D 的坐标;(2)如果点M 是抛物线的对称轴与x 轴的交点,求MCD ∆的周长.21.某仓储中心有一个坡度为1:2i =的斜坡AB ,顶部A 处的高AC 为4米,B 、C 在同一水平地面上,其横截面如图.(1)求该斜坡的坡面AB 的长度;(2)现有一个侧面图为矩形DEFG 的长方体货柜,其中长 2.5DE =米,高2EF =米,该货柜沿斜坡向下时,点D 离BC 所在水平面的高度不断变化,求当 3.5BF =米时,点D 离BC 所在水平面的高度DH .22.如图,直线:3l y x =,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线l 于点1B ,以原点O 为圆心,1OB 为半径画弧交x 轴于点2A ;再过点2A 作x 的垂线交直线l 于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,⋯,按此做法进行下去. 求:(1)点1B 的坐标和11AOB ∠的度数; (2)弦43A B 的弦心距的长度.23.如图,ABC ∆中,AB AC =,AM 为BC 边的中线,点D 在边AC 上,联结BD 交AM 于点F ,延长BD 至点E ,使得BD ADDE DC=,联结CE .求证: (1)2ECD BAM ∠=∠;(2)BF 是DF 和EF 的比例中项.24.在平面直角坐标系内,反比例函数和二次函数2(1)y a x x =+-的图象交于点(1,)A a 和点(1,)B a --.(1)求直线AB 与y 轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y 随着x 的增大而增大,求a 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当Q 在以AB 为直径的圆上时,求a 的值.25.如图,OC 是ABC ∆中AB 边的中线,36ABC ∠=︒,点D 为OC 上一点,如果OD k OC =,过D 作//DE CA 交于BA 点E ,点M 是DE 的中点,将ODE ∆绕点O 顺时针旋转α度(其中0180)α︒<<︒后,射线OM 交直线BC 于点N .(1)如果ABC ∆的面积为26,求ODE ∆的面积(用k 的代数式表示);(2)当N 和B 不重合时,请探究ONB ∠的度数y 与旋转角α的度数之间的函数关系式; (3)写出当ONB ∆为等腰三角形时,旋转角α的度数.参考答案与试题解析一、选择题1.【解答】解:符号sin A 表示A ∠的正弦. 故选:A .2.【解答】解:23a b =-,∴32a b =-. 故选:B .3.【解答】解:二次函数212y x =-中20-<,∴图象开口向下,故选:D .4.【解答】解:BC AB ⊥,67BCA ∠=︒, 9023BAC BCA ∴∠=︒-∠=︒,从低处A 处看高处C 处,那么点C 在点A 的仰角23︒方向; 故选:D .5.【解答】解:知a ,b 为非零向量,如果5b a =-,∴//a b ,a 与b 的方向相反,故选:B .6.【解答】解:过A 作AD BC ⊥于D ,ABC ∆是等边三角形,2AB AC BC ∴===,60BAC ABC ACB ∠=∠=∠=︒, AD BC ⊥,1BD CD ∴==,33AD BD =ABC ∴∆的面积为1123322BC AD ⨯⨯=⨯,260223603BACS ππ⨯==扇形,∴莱洛三角形的面积23232233Sππ=⨯-⨯=-,故选:D.二、填空题7.【解答】解:1:23:x=,∴132x =,6x∴=.故答案为:6.8.【解答】解:两个相似三角形的周长比为1:2,∴两个相似三角形的相似比为1:2,∴它们某一对对应边上的高之比为1:2,故答案为:1:2.9.【解答】解:90C∠=︒,CD AB⊥,2AC AD AB∴=,AC∴是AD和AB的比例中项,故答案为:AB.10.【解答】解:0AB BC CA AC CA++=+=.故答案为:0.11.【解答】解:由题意可知,114∠=︒,//AC BD,1214∴∠=∠=︒,根据方向角的概念可知,由点B测点A的方向为南偏西14︒方向.故答案为:南偏西14︒.12.【解答】解:在Rt ABC∆中,90C∠=︒,30A∠=︒,60ABC ∴∠=︒,BD 平分ABC ∠,30ABD CBD ∴∠=∠=︒,A ABD ∴∠=∠,AD BD ∴=,2DB DC =,2AD DC ∴=,13CD AC ∴=, ∴13CD x =-,故答案为13x -.13.【解答】解:DE 是BC 的垂直平分线, CE BE ∴=, CD BD ∴=, 9BE =,12BC =, 6CD ∴=,9CE =,62cos 93CD C CE ∴===, 故答案为23. 14.【解答】解:2()(1)y x m m =-++,∴顶点为(,1)m m +,顶点在第二象限, 0m ∴<,10m +>, 10m ∴-<<,故答案为10m -<<.15.【解答】解:由图象与y 轴相交则0x =,代入得:y =,∴与y 轴交点坐标是;故答案为.16.【解答】解:连接OP ,交AB 于点F ,连接AC . 根据垂径定理的推论,得OP AB ⊥,AF BF =.根据90︒的圆周角所对的弦是直径,则AC 为直径. 设正方形的边长是1,则2AC =,圆的半径是22. 根据正方形的性质,得45OAF ∠=︒. 所以12OF =,212PF -=.//OP AD ,∴212PE PF DE AD -==. 故答案为212-.17.【解答】解:作DH EC ⊥于H .设AC x =,则8BC EC x ==-.ACD ∆,ECB ∆都是等边三角形, 60ACD ECB ∴∠=∠=︒, 60DCE ∴∠=︒,1sin 60332DCE S EC CD ∆∴=︒= ∴13(8)3322x x -= 解得2x =或6(舍弃), 2AC ∴=,故答案为2.18.【解答】解:如图,过点A 作AB x ⊥轴于B , 点A 在直线34y x =上,5OA =, 4OB ∴=,3AB =,∴点A 的坐标为(4,3),∴平移后的抛物线解析式是2(4)3y x =-+.故答案为2(4)3y x =-+.三、解答题19.【解答】解:原式622322-⨯6(32)2(32)(32)⨯+=--+32232= 2223=20.【解答】解:(1)抛物线22y x x m =-+与y 轴交于点(0,2)C -, 2m ∴=-,∴此抛物线的解析式为222y x x =--,抛物线的解析式为2222(1)3y x x x =--=--,∴抛物线的对称轴为直线1x =.点D 与C 关于抛物线的对称轴对称,∴点D 的坐标为(2,2)-.(2)抛物线的对称轴为直线1x =. (1,0)M ∴,22125MC MD ∴=+= 2CD =,MCD ∴∆的周长为:225+21.【解答】解:(1)坡度为1:2i =,4AC m =, 428BC m ∴=⨯=.AB ∴=);(2)DGM BHM ∠=∠,DMG BMH ∠=∠, GDM HBM ∴∠=∠, ∴12GM GD =, 2DG EF m ==,1GM m ∴=,DM ∴== 3.5(2.51)5BM BF FM m =+=+-=, 设MH xm =,则2BH xm =,222(2)5x x ∴+=,x ∴=,DH ∴=.22.【解答】解:(1)直线的解析式y =,11111tan A B AOB OA ∴∠= 1160AOB ∴∠=︒,11OA =,11A B ∴=212OA OB ==,1B ∴.(2)连接43A B ,作43OH A B ⊥于H .由题意11OA =,22OA =,34OA =,48OA =,43OA OB =,43OH A B ⊥,4431302A OH A OB ∴∠=∠=︒,4cos308OH OA ∴=︒==23.【解答】证明:(1)AB AC =,AM 为BC 边的中线, 2BAC BAM ∴∠=∠, BD ADDE DC =,ADB CDE ∠=∠,ADB CDE ∴∆∆∽,BAC ECD ∴∠=∠,2ECD BAM ∴∠=∠;(2)如图,连接CF ,AB AC =,AM 为BC 边的中线,AM ∴是BC 的垂直平分线,BF CF ∴=,且AB AC =,AF AF =,()ABF ACF SSS ∆≅∆ABF ACF ∴∠=∠,由(1)可知:ADB CDE ∆∆∽,ABF E ∴∠=∠,ACF E ∴∠=∠,且EFC DFC ∠=∠,DCF CEF ∴∆∆∽,∴DF CFCF EF =,且BF CF =,2BF DF EF ∴=,BF ∴是DF 和EF 的比例中项.24.【解答】解:(1)设直线AB 的解析式为:y kx b =+,由题意可得a k b a k b =+⎧⎨-=-+⎩0b ∴=,k a =,∴直线AB 的解析式为:y ax =,∴当0x =时,0y =,∴直线AB 与y 轴的交点坐标(0,0);(2)反比例函数过点(1,)A a ,∴反比例函数解析式为:a y x=, 要使反比例函数和二次函数都是y 随着x 的增大而增大, 0a ∴<. 二次函数2215(1)()24y a x x a x a =+-=+-, ∴对称轴为:直线12x =-. 要使二次函数2(1)y a x x =+-满足上述条件,在0a <的情况下,x 必须在对称轴的左边,即12x -时,才能使得y 随着x 的增大而增大.综上所述,0a <且12x -; (3)二次函数2215(1)()24y a x x a x a =+-=+-, ∴顶点1(2Q -,5)4a -, Q 在以AB 为直径的圆上,OA OQ ∴=,222215()()124a a ∴-+-=+,a ∴=25.【解答】解:(1)OC 是ABC ∆中AB 边的中线,ABC ∆的面积为26, 13OAC S ∆∴=, //DE AC ,ODE OCA ∴∆∆∽,OEM OAC ∠=∠,∴2()DEO OAC S OD S OC∆∆=,且OD k OC =, 213ODE S k ∆∴=,(2)ODE OCA ∆∆∽,∴OE OD DE k OA OC AC===, OC 是ABC ∆中AB 边的中线,点M 是DE 的中点, 2AB AO ∴=,12EM DE =, ∴2OE k EM AB AC==,且OEM OAC ∠=∠, OEM BAC ∴∆∆∽,36EOM ABC ∴∠=∠=︒,如图2,当0144α<<︒时,AON B ONB ∠=∠+∠,AOE EOM B ONB ∴∠+∠=∠+∠y α∴=如图3,当144180α︒<<︒时,36(180)BON EOM BOE α∠=∠-∠=︒-︒-144NOB α∴∠=-︒,36(144)180BNO ABC NOB αα∠=∠-∠=︒--︒=︒-;(3)当0144α<<︒时,若OB ON =,则36ABC BNO α∠=∠=︒=, 若OB BN =,则18036722ONB α︒-︒∠==︒=, 若ON BN =,则36ABC BON ∠=∠=︒,180236108ONB α∴∠=︒-⨯︒=︒=,当144180α︒<<︒时,若OB BN =,则18180N NOB α∠=∠=︒=︒-, 162α∴=︒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) _____________; _____________;
(2)对于 , 的正对值 的取值范围是_____________;
(3)试求 的值.
24.(本题满分6+4=10分)
如图 为正方形 边 延长线上一点, 交 于 , ∥ 交 于 .
(1)求证: ;
(2)若 , ,求 的值.
25、(4+3+2+3=12分)
14.如图已知△ 中, 为边 上一点, 为边 上一点, , , ,当 的长度为时△ 和△ 相似.
15.在△ 中, 、 都是锐角,若 , ,则△ 的形状为三角形.
16.某坡面的坡度为1∶ ,某车沿该坡面爬坡行进了米后,该车起始位置和终止位置两地所处的海拔高度上升了5米.
17.在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌(如图所示),已知立杆 的高度是6米,从侧面 测到路况警示牌顶端 点和低端 点的仰角分别是60°和45°,则路况警示牌宽 的值为.
. ; . ; . ; . .
4.如图,在平行四边形 中,如果 , ,那么 等于()
. ; . ;
. ; . .
5.已知 、 、 分别为等腰△ 边 、 、 上的点,如果 , , , , , ,那么 的长为()
.5.5; .4.5;
.4; .3.5.
6.如图,梯形 中, ∥ , ⊥ , ⊥ ,且 , ,动点 从点 出发,沿折线 - -Байду номын сангаас以每秒1个单位长的速度运动到点 停止.设运动时间为 秒,△ 的面积为 ,则 关于 的函数图像大致是()
如图,已知抛物线 与 轴相交于 、 两点,与 轴相交于点 ,若已知 点的坐
标为 (8,0).
(1)求抛物线的解析式及其对称轴方程;
(2)连接 、 ,试判断△ 与△ 是否相似?并说明理由;
(3) 为抛物线上 之间的一点, 为线段 上的一点,若 ∥ 轴,求 的最大值;
(4)在抛物线的对称轴上是否存在点 ,使△ 为等腰三角形?若存在,求出符合条件的 点坐标;
19.
解:原式 2分
.2分
将 代入,2分
原式 .2分
20.
解:(1)根据题意设抛物线解析式为 .2分
将 点坐标(2,3)代入得: .
∴该抛物线解析式为 .2分
(2)易得∶ .2分
∴ .2分
21.
解:(1)根据题意得∶ .2分
解得∶ , .
由点 比点 的横坐标大,得: , .2分
(2)过 作 ⊥ 轴于 .
2013学年宝山区第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)
一、选择题∶(本大题共6题 ,每题4分,满分24分)
1.下列各式中,正确的是()
. ; . ; . ; . .
2.已知 △ 中, ,那么 表示()的值.
. ; . ; . ; . .
3.二次函数 图像的顶点坐标是()
已知一个二次函数的顶点 的坐标为(1,0),且图像经过点 (2,3).
(1)求这个二次函数的解析式.
(2)设图像与 轴的交点为 ,记 ,试用 表示 (直接写出答案).
21.(本题4+4=8分)
已知抛物线 : 和抛物线 : 相交于 、 ,其中 点的横坐标比 点的横坐标大.
(1)求 、 两点的坐标.
(2)射线 与 轴正方向所相交成的角的正弦值.
∴ .2分
∵ ∥ ,
∴ .2分
∴ .1分
∵ ,
∴ .1分
(2)根据题意得∶ .2分
∴ .2分
解:(1)∵抛物线 经过点 (8,0),
∴ .
∴抛物线的解析式为 .
又∵ ,
∴对称轴方程为直线 .
(2)△ ∽△ .
易得 (0,4),
18.如图,在平面直角坐标系中, △ 的顶点 的坐标为(9,0), ,点 的坐标为(2,0),点 为斜边 上的一个动点,则 的最小值为.
三、解答题∶(共8题,第19—22题每题8分;第23、24题每题10分;第25题12分;第26题14分,共78分)
19.(本题满分8分)
化简并求值: ,其中 .
20.(本题4+4=8分)
易得 , .2分

射线 与 轴正方向所相交成的角的正弦值为 .2分
22.
证明:∵ ,
∴△ ∽△ .2分
∴ ,2分
∵ ,
∴ .
∵ ,
∴△ ∽△ .1分
∴ .1分
23.
解:(1)1,2 ;4分
(2) ;2分
(3)作 的平分线交边 于 .1分
利用角度证△ ∽△ 和 .2分
.1分
24.
证明:(1)∵ ∥ ,
二、填空题∶(共12题,每题4分,满分48分)
7.计算 的结果是.
8.不等式组 的解集是.
9.一元一次方程 的根的判别式是.
10.二次函数 的图像开口方向.
11.如图,二次函数 的图像开口向上,对称轴为直线 ,图像经过(3, 0),则 的值是.
12.抛物线 可以由抛物线 向(平移)得到.
13.若 与 的方向相反,且 ,则 的方向与 的方向.
若不存在,请说明理由.
2013学年宝山区第一学期期末考试九年级
数学试卷答案与评分标准
一、选择题∶
1. .
2. .
3. .
4. .
5. .
6. .
二、填空题∶
7. .
8. .
9. .
10.向上.
11.0.
12.左移两个单位.
13.相同.
14.4或9.
15.等边.
16.13.
17. .
18. .
三、解答题∶
22.(本题满分8分)
如图已知: ,求证: .
23.(本题满分4+2+4=10分)
通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯
一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对( ).如下图在△ 中, ,顶角 的正对记作 ,这时 .我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:
相关文档
最新文档