电涡流传感器基本原理

合集下载

电涡流传感器测转速的工作原理

电涡流传感器测转速的工作原理

电涡流传感器测转速的工作原理
电涡流传感器是一种常用于测量转速的传感器,它通过测量电涡流的变化来实现对转速的检测。

电涡流是指当导体在磁场中运动时,由于磁感应强度的变化而产生的涡流。

电涡流传感器利用这种涡流现象来测量转速,其工作原理如下。

电涡流传感器由一对线圈和一个铁芯组成。

其中,一个线圈被称为激励线圈,另一个线圈被称为接收线圈。

当被测物体上的铁芯经过传感器时,激励线圈中通入一个交变电流,产生一个交变磁场。

这个交变磁场会引起被测物体上的涡流产生,涡流的大小与被测物体的运动速度有关。

当涡流通过接收线圈时,它会在线圈中产生一个感应电动势。

这个感应电动势与涡流的大小成正比,涡流越大,感应电动势就越大。

接收线圈中的感应电动势会被传感器解读并转换为转速信号,从而实现对转速的测量。

电涡流传感器测量转速的原理是基于涡流的阻尼效应。

当被测物体的运动速度较小时,涡流的阻尼效应较小,感应电动势较大;而当被测物体的运动速度较快时,涡流的阻尼效应较大,感应电动势较小。

因此,通过测量感应电动势的大小,可以得到被测物体的转速信息。

除了转速测量,电涡流传感器还可以用于测量其他物理量,比如位
移、压力等。

其原理相似,只是激励线圈和接收线圈的设计参数有所不同。

通过改变线圈的参数,可以使传感器适应不同的测量需求。

电涡流传感器是一种常用于测量转速的传感器,它利用涡流的阻尼效应来测量被测物体的转速。

通过测量涡流产生的感应电动势的大小,可以得到被测物体的转速信息。

电涡流传感器不仅测量精度高,而且响应速度快,因此在工业领域得到广泛应用。

电涡流传感器的工作原理

电涡流传感器的工作原理

电涡流传感器的工作原理
电涡流传感器是一种非接触式的测量传感器,它利用电涡流效应来检测目标物体的位置、形状和材料特性。

其工作原理如下:
1. 电涡流效应:当一个导体材料处于磁场中,通过导体的磁感应线圈,会形成一个环流在导体中流动。

这种环流被称为电涡流。

电涡流会在导体内部产生电阻,导致能量损失和热量产生。

2. 磁场感应:电涡流传感器通过磁感应线圈产生一个交变磁场。

当材料靠近传感器时,磁场感应到目标物体,并且导致目标物体内部也产生电涡流。

3. 电涡流的影响:目标物体产生的电涡流会改变传感器线圈的电感值和电阻值,从而影响传感器的输出信号。

这种改变与目标物体的特性(如电导率、导电材料的尺寸和形状等)相关。

4. 信号检测:传感器将输出信号传递给信号处理器,通过测量电感和电阻的变化来确定目标物体的位置、形状和材料特性。

总的来说,电涡流传感器通过感应目标物体内部的电涡流来检测目标物体的特性。

通过分析和处理传感器输出的信号,可以实现对目标物体的测量。

涡流效应及电涡流式传感器工作原理

涡流效应及电涡流式传感器工作原理

涡流效应及电涡流式传感器工作原理
涡流效应是指当导电材料经过磁场作用而产生涡流,从而引起物体的热或电磁性质的改变。

电涡流式传感器是利用涡流效应来测量和检测物体的性质和参数的传感器。

其工作原理如下:
1. 传感器在感应线圈中通入交流电,产生高频磁场。

2. 当被测物体(通常为导电材料)靠近感应线圈时,磁场穿透被测物体。

3. 被测物体中的涡流由于受到磁场作用而产生,涡流的强度和分布与被测物体的电导率、形状、尺寸等有关。

4. 涡流的存在会改变感应线圈中的电感,从而改变感应线圈的阻抗。

5. 通过测量感应线圈的阻抗变化,可以获得被测物体的一些特性,如电导率、质量、温度等。

电涡流式传感器具有响应速度快、非接触测量、高灵敏度、高精度、可靠性高等优点,可应用于多种领域,如非接触温度测量、金属缺陷检测、材料电导率测量等。

简述电涡流传感器的工作原理

简述电涡流传感器的工作原理

简述电涡流传感器的工作原理一、引言电涡流传感器是一种常用的非接触式测量仪器,具有高精度、高灵敏度、快速响应等优点,广泛应用于机械加工、汽车制造、航空航天等领域。

本文将从电涡流传感器的基本原理、结构组成和工作特点三个方面进行详细介绍。

二、基本原理电涡流传感器的测量原理是利用交变磁场作用在导体中产生涡流,根据涡流的大小和相位差来判断被测物体的状态。

当导体与磁场相对运动时,磁通量会发生变化,导致导体中产生涡流,并且涡流会产生反向磁场,从而抵消外部磁场。

因此,当被测物体移动或发生形变时,导体与磁场之间的距离或相对位置发生变化,进而影响到反向磁场的大小和相位差,最终通过电路输出信号。

三、结构组成电涡流传感器主要由控制系统、激励线圈、检测线圈和信号处理单元四个部分组成。

其中控制系统包括供电和控制电路,激励线圈用来产生交变磁场,检测线圈用来检测涡流信号,信号处理单元用来对检测到的信号进行放大、滤波、调理和输出等处理。

四、工作特点电涡流传感器具有以下几个特点:1. 非接触式测量:涡流传感器不需要与被测物体接触,避免了机械磨损和污染等问题。

2. 高精度:涡流传感器的分辨率可以达到亚微米级别,适合于高精度测量。

3. 快速响应:涡流传感器的响应时间可以达到毫秒级别,适合于高速运动物体的实时监测。

4. 范围广泛:涡流传感器可以对金属、非金属等各种材料进行测量,适用范围广泛。

五、总结综上所述,电涡流传感器是一种基于电磁原理的非接触式测量仪器,具有高精度、快速响应等优点,在机械加工、汽车制造、航空航天等领域得到广泛应用。

了解其基本原理、结构组成和工作特点,有助于我们更好地理解和应用电涡流传感器。

电涡流式传感器工作原理

电涡流式传感器工作原理

电涡流式传感器工作原理
电涡流式传感器是一种非接触式传感器,主要利用了电涡流效应来测量物体的位置、形状、速度等参数。

其工作原理如下:
1. 传感器的工作基于电磁感应原理,其中包括了物体的相对运动、时变磁场和感应电动势之间的相互作用。

2. 传感器中的探测线圈通常由薄线圈绕组构成,通过电流激励线圈产生交变磁场。

3. 当目标物体靠近传感器时,它会产生电涡流,即由于交变磁场的存在而在目标物体表面产生感应电流。

4. 感应电流的大小和方向取决于目标物体的导电性和形状,并且具有弱化交变磁场的作用。

5. 接收线圈位于激励线圈旁边,用于感应目标物体产生的电涡流。

6. 接收线圈在感应电流的作用下产生感应电动势,该电动势的大小和方向与感应电流成正比。

7. 通过测量接收线圈的感应电动势,可以推断出目标物体的位置、形状、速度等参数。

电涡流式传感器的优点是具有快速响应、高精度、非接触式测
量、无需额外装置等特点。

它可以用于工业自动化、机械加工、材料检测等领域。

04第四章 电涡流传感器

04第四章 电涡流传感器

第四节 电涡流传感器的应用
一、位移测量
电涡流位移传感器是一种输出为 模拟电压 的电子器 件。接通电源后,在电涡流探头的有效面(感应工作面) 将产生一个 交变磁场 。当金属物体 接近此感应面时,金 属表面将 吸取 电涡流探头中的高频振荡能量,使振荡器 的输出幅度线性地 衰减,根据衰减量的变化,可地计算 出与被检物体的距离、振动等参数。这种位移传感器属 于非接触测量 ,工作时不受灰尘等非金属因素的影响, 寿命较长,可在各种恶劣条件下使用。
当电涡流线圈与 金属板的距离 x 减小 时,电涡流线圈的等 效电感L 减小,等效 电阻R 增大。感抗XL 的变化比 R 的变化大 得多,流过电涡流线 圈的 电流 i1增大 。
电涡流式传感器原理图
上图为电涡流式传感器的原理图,该图由传感器线
圈和被测导体组成线圈 —导体系统。当传感器线圈通以
交变电流
1、位移测量仪
位移测量:偏心、间隙、位置、倾斜、弯曲、变形、移动、圆度、 冲击、偏心率、冲程、宽度等。来自不同应用领域的许多量都可 归结为位移或间隙变化。
电流 型电 涡流 位移 传感 器
V系列齐 平式传感 器安装时 可以不高 出安装面, 不易被损 害。
V系列电涡流位移传感器性能一览表
V系列电涡流位移传感器机械图
并联谐振回路的谐振频率:
设电涡流线圈的电感量 L=0.8mH ,微调电容 C0=200pF,求振荡器的频率 f 。
鉴频器特性
使用鉴频器可以将 ? f 转换为电压 ? Uo
鉴输出电压与输入频率成正比
设电路参数如上图,计算电涡流线圈未接近金属时的 鉴频器输出电压 Uo;若电涡流线圈靠近金属后,电涡流 探头的输出频率 f上升为500kHz ,? f为多少?输出电压 Uo又为多少?

电涡流传感器的原理

电涡流传感器的原理

电涡流传感器的原理
电涡流传感器是一种常用于测量金属表面缺陷和非磁性金属材料厚度的传感器。

其原理基于电涡流的产生和检测。

电涡流是一种由导体中感应电流产生的涡流,当导体表面处于变化的磁场中时,就会产生电涡流。

利用这种现象,可以通过测量电涡流的强度和频率来获得有关被测物体的信息。

电涡流传感器通常由一个线圈和一个交流电源组成。

当电流通过线圈时,会产生一个变化的磁场。

如果将这个线圈放置在一个金属表面附近,金属表面就会感应出电涡流。

这些电涡流会改变线圈的电流,从而可以通过测量线圈的电流变化来获取金属表面的信息。

通过改变线圈的频率和幅度,可以实现对不同金属材料和不同表面缺陷的检测。

电涡流传感器可以检测金属表面的裂纹、腐蚀、氧化等缺陷,还可以测量金属材料的厚度、导电性等参数。

由于电涡流传感器无需直接接触被测物体,所以可以实现非接触式的测量,避免了对被测物体的损坏。

电涡流传感器广泛应用于航空航天、汽车制造、金属加工等领域。

在航空航天领域,电涡流传感器可以用于检测飞机表面的裂纹和腐蚀,确保飞机的安全飞行。

在汽车制造领域,电涡流传感器可以用于检测汽车发动机的缸体和活塞的表面缺陷,提高汽车的质量和性能。

在金属加工领域,电涡流传感器可以用于测量金属材料的厚度
和导电性,保证产品质量。

总的来说,电涡流传感器利用电涡流的产生和检测原理,实现了对金属表面缺陷和非磁性金属材料厚度的高精度测量。

它具有非接触式测量、高灵敏度、高精度等优点,被广泛应用于各个领域,发挥着重要作用。

第5章 电涡流传感器

第5章  电涡流传感器
上一页 下一页 返回
5. 4 电涡流传感器的应用
• 3.偏心测量 • 偏心是在低转速的情况下,电涡流传感器系统可对轴弯曲的程度进行
测量,这些弯曲可由下列情况引起: • 偏心的测量,对于评价旋转机械全面的机械状态,是非常重要的。特
别是对于装有透平监测仪表系统(TSI )的汽轮机,在启动或停机过程 电,偏心测量已成为不可少的测量项目。它使你能看到由于受热或重 力所引起的轴弯曲的幅度。转子的偏心位置,也叫轴的径向位置,它 经常用来指示轴承的磨损,以及加载荷的大小。如由不对电导致的偏 心,它同时也用来决定轴的方位角,方位角可以说明转子是否稳定。
• 定频调幅电路虽然有很多优点,并获得广泛应用,但线路较复杂,装 调较困难,线性范围也不够宽。因此,人们又研究了一种变频调幅电 路,这种电路的基本原理与上面介绍的调频电路相似。当导体接近传 感器线圈时,由于涡流效应的作用,振荡器输出电压的幅度和频率都 发生变化,变频调幅电路利用振荡的变化来检测线圈与导体间的位移 变化,而对频率变化不予理会。
下一页 返回
5. 3 电涡流传感器的测量转换电路
• 二、调频法
• 当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压Uo相 应变小。这样,在一定范围内,输出电压幅值与位移成近似线性关系。 由于输出电压的频率.fo始终恒定,因此称为定频调幅式。
• 调频式测量转换电路的原理框图如图5 - 4 ( a}所示,鉴频器特性如图 5 - 4 ( b)所示。
• 电涡流传感器由电涡流线圈和被测金属组成,如图5一1所示,对电涡 流线圈施加一个高频电压信号,高频振荡电流it在探头头部的线圈电 产生交变的磁场H1。当被测金属体靠近这一磁场,则在此金属表面产 生感应电涡流电流i2,电涡流i2也将产生一个与原磁场方向相反的新 的交变磁场H2。这两个磁场相互作用将使通电线圈L1的等效阻抗Z发 生变化。电涡流传感器就是利用电涡流效应将被测量转换为传感器线 圈阻抗Z变化的一种装置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电涡流传感器
原理图
1、什么是电涡流效应?
电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。

注意:电涡流传感器要求被测体必须是导体。

传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。

这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。

2、电涡流传感器的工作原理与结构。

传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。

从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。

能量损耗使传感器的Q值和等效阻抗Z 降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。

这便是电涡流传感器的基本原理
3、电涡流传感器的实际应用
电涡流传感器测量齿轮转速的应用
4、使用电涡流传感器时的注意事项
对被测体的要求
为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

相关文档
最新文档