傅里叶光学 信息光学课件
合集下载
《傅里叶光学基础》课件

《傅里叶光学基础》PPT 课件
傅里叶光学是光学领域的重要基础知识,本课程将介绍傅里叶光学的基本原 理和应用领域,包括光通信、计算机技术和医疗影像。
傅里叶光学基础知识
1 传输函数
了解传输函数的概念以及在傅里叶光学中的作用。
2 光学变换
学习傅里叶变换和反变换,以及它们在光学领域的应用。
3 频谱分析
掌握频谱分析的方法和技巧,以及如何应用于光学系统的研究。
总结与展望
本课程回顾了傅里叶光学的基础知识和应用,介绍了其在光通信、计算机技 术和医疗影像中的重要性。希望通过本课程的学习,您能深入了解傅里叶光 学的原理和应用,并在相关领域取得更好的成就。
数据压缩
了解傅里叶光学在数据压缩领域的应用,如JPEG图像压缩算法。
频谱分析
学习傅里叶光学在信号处理和频谱分析中的作用。
傅里叶光学在现代医疗影像中的应用
1
CT扫描
掌握傅里叶光学在CT扫描中的重建算法和图
磁共振成像
2
像重建技术。
了解傅里叶光学在磁共振成像中的采样技术
和图像重建方法。
3
超声成像
学习傅里叶光学在超声成像中的频域分析和
傅里叶光学在光通信中的应用
高速数据传输
了解傅里叶光学在光通信中的高 速数据传输方案和技术。
光纤通信系统
探索调制与解调
学习傅里叶光学在光调制和解调 中的原理和技术。
傅里叶光学在现代计算机技术中的应 用
图像处理
探索傅里叶光学在图像处理中的应用,如图像滤波和频域图像增强。
分子影像学
4
图像增强技术。
探索傅里叶光学在分子影像学中的应用,如 光学断层成像和荧光成像技术。
傅里叶光学的发展现状
傅里叶光学是光学领域的重要基础知识,本课程将介绍傅里叶光学的基本原 理和应用领域,包括光通信、计算机技术和医疗影像。
傅里叶光学基础知识
1 传输函数
了解传输函数的概念以及在傅里叶光学中的作用。
2 光学变换
学习傅里叶变换和反变换,以及它们在光学领域的应用。
3 频谱分析
掌握频谱分析的方法和技巧,以及如何应用于光学系统的研究。
总结与展望
本课程回顾了傅里叶光学的基础知识和应用,介绍了其在光通信、计算机技 术和医疗影像中的重要性。希望通过本课程的学习,您能深入了解傅里叶光 学的原理和应用,并在相关领域取得更好的成就。
数据压缩
了解傅里叶光学在数据压缩领域的应用,如JPEG图像压缩算法。
频谱分析
学习傅里叶光学在信号处理和频谱分析中的作用。
傅里叶光学在现代医疗影像中的应用
1
CT扫描
掌握傅里叶光学在CT扫描中的重建算法和图
磁共振成像
2
像重建技术。
了解傅里叶光学在磁共振成像中的采样技术
和图像重建方法。
3
超声成像
学习傅里叶光学在超声成像中的频域分析和
傅里叶光学在光通信中的应用
高速数据传输
了解傅里叶光学在光通信中的高 速数据传输方案和技术。
光纤通信系统
探索调制与解调
学习傅里叶光学在光调制和解调 中的原理和技术。
傅里叶光学在现代计算机技术中的应 用
图像处理
探索傅里叶光学在图像处理中的应用,如图像滤波和频域图像增强。
分子影像学
4
图像增强技术。
探索傅里叶光学在分子影像学中的应用,如 光学断层成像和荧光成像技术。
傅里叶光学的发展现状
信息光学第1章1

注意:δ函数的图像,有幅值(是无穷大吗?)
小测试:请在一个坐标系里画出δ(x),δ(x-5), 2δ(x-5)的图像。
在本门课程中,δ(x)函数常常用来表示点光源的功率密 度,由于点光源所占面积趋近于零,所以在x=0点功率密度 趋近于无穷大。
?点光源模型中什么量是有限Байду номын сангаас呢?
?如果可以用δ (x)来建立模型的话,由数学公式看出积分 要是1,这代表什么物理意义?
数学物理模型完全吻合。
δ函数三大性质(会理解(图像),会应用)
(1) 函数的筛选性质---采样完成
x,
0
0
由定义,经变量代换,可直接证明。
x0 , y0
(2) 函数采样性质(与普通函数的乘积性质)---采样准备
h ( x) ( x x0 ) h ( x0 ) ( x x0 )
b. 函数图形
c. 二维三角形函数表达式及图形
, a a a b
d.该函数在日后的学习中 将有重要的位置。目前仅 需需注意,该二维函数图 形的侧面并非平面。并非 所有过定点且垂直于xoy的 平面与之相截都能得到三 角形。
5. sinc函数
a. 表达式
b. 图形
x
x
sin
答复:抽样过程在物理上,是以积分的方式实现的。 x0点处的信号在被仪器 记录前表达为f(x0)δ(x-x0),恰恰是为确保该点信号被仪器记录为f(x0)。过程为:
f ( x0 ) ( x x0 )dx f ( x0 )
f(x0)δ(x-x0)所表达的抽样,意为“被抽样前的准备”,切不可用f(x0)来描述。
rect
x y 1, rect
小测试:请在一个坐标系里画出δ(x),δ(x-5), 2δ(x-5)的图像。
在本门课程中,δ(x)函数常常用来表示点光源的功率密 度,由于点光源所占面积趋近于零,所以在x=0点功率密度 趋近于无穷大。
?点光源模型中什么量是有限Байду номын сангаас呢?
?如果可以用δ (x)来建立模型的话,由数学公式看出积分 要是1,这代表什么物理意义?
数学物理模型完全吻合。
δ函数三大性质(会理解(图像),会应用)
(1) 函数的筛选性质---采样完成
x,
0
0
由定义,经变量代换,可直接证明。
x0 , y0
(2) 函数采样性质(与普通函数的乘积性质)---采样准备
h ( x) ( x x0 ) h ( x0 ) ( x x0 )
b. 函数图形
c. 二维三角形函数表达式及图形
, a a a b
d.该函数在日后的学习中 将有重要的位置。目前仅 需需注意,该二维函数图 形的侧面并非平面。并非 所有过定点且垂直于xoy的 平面与之相截都能得到三 角形。
5. sinc函数
a. 表达式
b. 图形
x
x
sin
答复:抽样过程在物理上,是以积分的方式实现的。 x0点处的信号在被仪器 记录前表达为f(x0)δ(x-x0),恰恰是为确保该点信号被仪器记录为f(x0)。过程为:
f ( x0 ) ( x x0 )dx f ( x0 )
f(x0)δ(x-x0)所表达的抽样,意为“被抽样前的准备”,切不可用f(x0)来描述。
rect
x y 1, rect
信息光学(傅里叶光学)Chap5-3

~ h xi , yi exp j 2 f x x f y y dxi dyi
(h = h/M)
C M c M c M
2 xi yi dd exp j 2 f x x f y y dxi dy P , exp j d i
-1
0
1
2
我们仍可不考虑高频振荡部分,而仅考虑其复振幅U (x,y,t), 它既是空间函数又是时间函数, 随时间缓慢变化,可看成频率 为 的单色光波的包络。
#
§5-2 成像系统的一般分析 四、非单色照明
在同一时刻t,像的复振幅与物的复振幅之间应满足叠加积分:
U i xi , yi , t U 0 x0 , y0 ; t h xi , yi ; x0 , y0 dx0 dy0
2
1 lim t T T
T
T 2
U 0 x0 , y0 ; t U 0 * x0 ' , y0 ' ; t dt
dx0 dy0 dx0 ' dy0 ' h( xi , yi ; x0 , y0 )h * ( xi , yi ; x0 ' , y0 ' ) U 0 x0 , y0 ; t U 0 * x0 ' , y0 ' ; t
筛选性质(乘积积分性质): x, y x x0 , y y0 dxdy x0 , y0
Hc fx, f y
取反射坐标系: (对称光瞳自然成立)
P , d i f x , d i f y dd P d i f x ,d i f y P d i f x , d i f y
《傅里叶光学》课件

傅里叶光学在图像处理领域的应用,如图像滤波 、增强、识别等。
光通信
利用傅里叶光学原理实现高速光信号的传输和处 理,提高通信容量和速度。
3
光学仪器设计
傅里叶光学在光学仪器设计中的应用,如干涉仪 、光谱仪等。
傅里叶光学的发展前景和挑战
发展前景
随着光子技术的不断发展,傅里叶光学在光通信、光学仪器、生物医学等领域的应用前 景广阔。
傅里叶光学在光学显微镜、光谱仪和 OCT等生物医学成像技术中被广泛应 用。
光电子器件
利用傅里叶光学原理设计的光电子器 件,如光调制器、光滤波器和光开关 等。
02
傅里叶变换
傅里叶变换的定义和性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过正弦和余弦函数的线性组合 来表示信号。
傅里叶变换的性质
傅里叶变换在信号处理中的应用
频域滤波
通过在频域对信号进行滤波,可以实现信号的降噪、增强等处理 。
信号压缩
利用傅里叶变换可以将信号从时域转换到频域,从而实现对信号的 压缩和编码。
图像处理
傅里叶变换在图像处理中也有广泛应用,如图像滤波、图像增强、 图像压缩等。
03
光学信号的傅里叶分析
光学信号的表示和测量
05
傅里叶光学的实践应用
傅里叶光学的实验技术
光学干涉实验
利用干涉现象研究光的波动性质,验证傅里叶光学的 基本原理。
光学衍射实验
通过衍射实验观察光的衍射现象,理解傅里叶光学中 的衍射理论。
光学频谱分析实验
利用傅里叶变换对光信号进行频谱分析,研究光波的 频率成分。
傅里叶光学的应用案例
1 2
图像处理
干涉和衍射在光学系统中的应用
光通信
利用傅里叶光学原理实现高速光信号的传输和处 理,提高通信容量和速度。
3
光学仪器设计
傅里叶光学在光学仪器设计中的应用,如干涉仪 、光谱仪等。
傅里叶光学的发展前景和挑战
发展前景
随着光子技术的不断发展,傅里叶光学在光通信、光学仪器、生物医学等领域的应用前 景广阔。
傅里叶光学在光学显微镜、光谱仪和 OCT等生物医学成像技术中被广泛应 用。
光电子器件
利用傅里叶光学原理设计的光电子器 件,如光调制器、光滤波器和光开关 等。
02
傅里叶变换
傅里叶变换的定义和性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过正弦和余弦函数的线性组合 来表示信号。
傅里叶变换的性质
傅里叶变换在信号处理中的应用
频域滤波
通过在频域对信号进行滤波,可以实现信号的降噪、增强等处理 。
信号压缩
利用傅里叶变换可以将信号从时域转换到频域,从而实现对信号的 压缩和编码。
图像处理
傅里叶变换在图像处理中也有广泛应用,如图像滤波、图像增强、 图像压缩等。
03
光学信号的傅里叶分析
光学信号的表示和测量
05
傅里叶光学的实践应用
傅里叶光学的实验技术
光学干涉实验
利用干涉现象研究光的波动性质,验证傅里叶光学的 基本原理。
光学衍射实验
通过衍射实验观察光的衍射现象,理解傅里叶光学中 的衍射理论。
光学频谱分析实验
利用傅里叶变换对光信号进行频谱分析,研究光波的 频率成分。
傅里叶光学的应用案例
1 2
图像处理
干涉和衍射在光学系统中的应用
信息光学(傅里叶光学)Chap3-1

x
, f y ) exp[ j 2p ( f x x f y y )]df x df y
即: 把U(x,y)看作频率不同的复指数分量的线性组合, 各分 量的权重因子是A(fx, fy).
A( f x , f y ) U ( x, y ) exp[ j 2p ( f x x f y y )]dxdy
fx
X
l
;
fy
Y
s单色平面波 在xy 平面的复振幅分布可以表示为
U ( x, y ) A exp[ j 2p ( f x x f y y )]
#
光波的数学描述
平面波的空间频率-信息光学中最基本的概念
练习 1
单位振幅的单色平面波, 波矢量k与x轴夹 角为30, 与y轴夹角为60. (1)画出z = z1平面上间隔为2p的等相线族, 并求出Tx、 Ty、T 和fx 、fy和 f。 (2)画出y = y1平面上间隔为2p的等相线族, 并求出Tx、 Tz 和fx 、fz.
§3-1 光波的数学描述
单色光波场的复振幅表示
将光场用复数表示,有利于简化运算
u(P,t) = a(P)cos[2pnt - j(P)]} = e{a(P)e-j[2pnt -j(P)] }
复数表示有利于 = e{a(P) e jj(P). e -j2pnt } 将时空变量分开
光场随时间的变化e -j2pnt不重要: n ~1014Hz, 无法探测 n为常数,线性运算后亦不变 对于携带信息的光波, 感兴趣的是其空间变化部分. 故引入复振幅U(P):
l
l
l
l
cosa cos b 称为xy平面上复振幅分布的 A( , )
l
信息光学(傅里叶光学)Chap2-1

1
1
其它
其他频率 分量全通
H(f)
-1/4
0 1/4 -1
f
H(f) = 1-2rect(2f)
线性不变系统 例
H(f) = 1-2rect(2f)
脉冲响应: h( x)
-1
x H ( f ) d ( x) sinc 2
h(x)
x -2 0 2
线性不变系统 H(f) = 1-2rnc50 f sinc( f )
只要知道各个脉冲响应函数, 系统的输出即为脉冲响应函数 的线性组合. 问题是如何求对任意点的脉冲d 响应h(x,
y; xh)
§2-1 线性系统简介
脉冲响应函数h(x, y ; x h )的求法:
对一般系统而言, 脉冲响应函数的形式可能是点 点不同的
例如,
{d(x)}= h (x)=1 {d(x-1)}= h (x;1)= exp(-j2px) h (x;1) h (x-1)=1
{d(x-x, y-h)}=h (x-x, y-h) 则此线性系统称为空间不变系统或位移 不变系统.
线性不变系统的脉冲响应:
h (x, y; x, h) = h (x-x, y-h)
观察点 输入脉冲 坐标 坐标 二个坐标的 相对间距
线性不变系统的输入-输出变换关系不随空间位置变化.
§2-2 线性不变系统: 例
•低通滤波器: 允许通过的频率有一上限—截止频率 例2.1中的传递函数的性质:在|频率| < b的区间 内信号能无畸变地通过,此外全部阻塞. 这种系统的作用 是低通滤波器. • 高通滤波器: 允许通过的频率有一下限 • 带通滤波器: 只通过某特定频带内的频率分量 • 其它滤波器: 位相滤波器, 匹配滤波器等等
信息光学第七章-光学全息ppt课件

引入一相干参考波,该参考波在H上产生 的复振幅分布为
R x,yr0x,yejrx,y
那么,两波相遇叠加的总光场是
U x ,y O x ,y R x ,y
对应的强度分布为
I x , y U x , y 2 O x , y 2 R x , y 2 O x , y R * x , y O * x , y R x , y
➢用共轭参考波照明
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
2、波前记录与再现
✓用相干光波照射全息图,假定它在全息图平面上的复振幅分布为C(x,y),
全息图的透射光场分布为 U t x , y C t x , y C t b C O 2 C O R * C O * R U 1 U 2 U 3 U 4
4、基元全息图分析
✓全息图可看作是很多基元全息图的线性组合,了解基元全息图的结构和
作用对于深入理解整个全息图的记录和再现机理非常有益。 空域方法是把物体看作一些相干点源的集合,物光波前是所有点源发出的 球面波的线性叠加。每一个点源发出的球面波与参考波干涉,记录的基元 全息图称为基元波带片; 频域方法是把物光波看作由很多不同方向传播的平面波分量的线性叠加, 每一个平面波分量与参考平面波干涉而记录的基元全息图称为基元光栅。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1、引言
✓全息发展简史
➢ 1948年 Dennis Gabor 提出 “波前重现” 理论
目的:改善电子显微镜的分辨率 光源:汞灯 效果:因光源相干性差,效果很不明显
R x,yr0x,yejrx,y
那么,两波相遇叠加的总光场是
U x ,y O x ,y R x ,y
对应的强度分布为
I x , y U x , y 2 O x , y 2 R x , y 2 O x , y R * x , y O * x , y R x , y
➢用共轭参考波照明
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
2、波前记录与再现
✓用相干光波照射全息图,假定它在全息图平面上的复振幅分布为C(x,y),
全息图的透射光场分布为 U t x , y C t x , y C t b C O 2 C O R * C O * R U 1 U 2 U 3 U 4
4、基元全息图分析
✓全息图可看作是很多基元全息图的线性组合,了解基元全息图的结构和
作用对于深入理解整个全息图的记录和再现机理非常有益。 空域方法是把物体看作一些相干点源的集合,物光波前是所有点源发出的 球面波的线性叠加。每一个点源发出的球面波与参考波干涉,记录的基元 全息图称为基元波带片; 频域方法是把物光波看作由很多不同方向传播的平面波分量的线性叠加, 每一个平面波分量与参考平面波干涉而记录的基元全息图称为基元光栅。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1、引言
✓全息发展简史
➢ 1948年 Dennis Gabor 提出 “波前重现” 理论
目的:改善电子显微镜的分辨率 光源:汞灯 效果:因光源相干性差,效果很不明显
傅立叶光学(信息光学)_课件

1 x>0 Step(x)= ½ x=0
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用