Chap5-1——信息光学课件PPT
合集下载
信息光学 ppt课件

都可以用同样的数学方法——傅里叶分析和“系统” 理论来描写各自有关的系统. 采用相同的数学方法的 根本原因不只是由于两门学科都对“信息”感兴趣, 而更在于通讯系统和成像系统都具有某些相同的基本 性质.
许多电子学网络和成像装置都具有线性和不变性. 任何具有这两种性质的网络或装置(电子学的、光学的 或其他),在数学上都很容易用频谱分析方法来描述.
一门新的学科——信息光学从传统的经典波动 光学中脱颖而出.
信息光学又称傅里叶光学,它是应用光学、计 算机和信息科学相结合而发展起来的一门新的光学 学科,是信息科学的一个重要组成部分,也是现代 光学的核心.
光信息科学与技术的基础是傅里叶光学(通常 称之为信息光学).
信息光学的特点:引用通信和信息理论中的普 遍概念和思想阐述光学现象,使光学和通信信息理 论相结合,光学和信息科学相互渗透.
计算速度
要求达 1015 次/秒
关于现代机器人
2003年2月23日报道
❖ 日本 研制的 世界第一个机器人
能行走,能认识10个人 会握手、挥手、跟在人后面走
结论 电子系统速度慢,现代机器人比不上 人
光子技术的 优越性
响应 速度快
对比
光传播速度 30万km /s ( 3*108 m/s )
光开关速度:飞秒 (fs) 10-15 s
信息光学中采用傅里叶分析和线性系统理论分析 光波的传播、衍射和成像现象,将光学系统看成是 收集和传输信息的系统,把光学现象用通信和信息 理论进行阐述,因而信息光学是信息科学的一个重 要部分.
在光学工程、光学仪器检测、模式识别、图像处 理、显示、传感器、通信、数据处理和成像系统等 领域有许多应用.
2) 光学信息及其特点
• 20世纪以前的光学 古典光学
许多电子学网络和成像装置都具有线性和不变性. 任何具有这两种性质的网络或装置(电子学的、光学的 或其他),在数学上都很容易用频谱分析方法来描述.
一门新的学科——信息光学从传统的经典波动 光学中脱颖而出.
信息光学又称傅里叶光学,它是应用光学、计 算机和信息科学相结合而发展起来的一门新的光学 学科,是信息科学的一个重要组成部分,也是现代 光学的核心.
光信息科学与技术的基础是傅里叶光学(通常 称之为信息光学).
信息光学的特点:引用通信和信息理论中的普 遍概念和思想阐述光学现象,使光学和通信信息理 论相结合,光学和信息科学相互渗透.
计算速度
要求达 1015 次/秒
关于现代机器人
2003年2月23日报道
❖ 日本 研制的 世界第一个机器人
能行走,能认识10个人 会握手、挥手、跟在人后面走
结论 电子系统速度慢,现代机器人比不上 人
光子技术的 优越性
响应 速度快
对比
光传播速度 30万km /s ( 3*108 m/s )
光开关速度:飞秒 (fs) 10-15 s
信息光学中采用傅里叶分析和线性系统理论分析 光波的传播、衍射和成像现象,将光学系统看成是 收集和传输信息的系统,把光学现象用通信和信息 理论进行阐述,因而信息光学是信息科学的一个重 要部分.
在光学工程、光学仪器检测、模式识别、图像处 理、显示、传感器、通信、数据处理和成像系统等 领域有许多应用.
2) 光学信息及其特点
• 20世纪以前的光学 古典光学
信息光学课件资料

通信
计量
信息科学
光信息
科学
光电子
技术
光电子成为信息产业的主角
许多学科分支和方向 已形成大规模的产业
全世界光学和光(电)子学技术产业规模 1995年 达 700亿美元 2000年 达 1030亿美元
光电子
光电子成为现代产业的主角
机械领域: 激光加工: 打孔、切割、焊接、表面处理 激光光刻、激光微细加工、X射线光刻
对比
电信号传输速度:105 m / s
电子开关速度:10-9 s
光子技术的优越性
抗干扰 能力强 • 不受外界电磁场干扰 • 相互间几乎不干扰 • 可共用一个空间,不“串音” 对比
• 电子受外界电磁场干扰
• RC问题 • 滞后效应
光子技术的优越性
处理 速度快 对比 电子 可在自由空间传播 在电线里传输
次 /秒
目前 电子计算机 的计算速度举例
2005-1-14 报道
中国科学院知识创新工程和上海市信息化建设 的重大成果
高性能计算机
计算速度
曙光4000A
10 13
次 /秒
10万亿次
而在2003年2月报道的是: —— 3000亿
次 /秒
例2 功能: 感知:
高智能机器人
学 习
形象
联 想
声音
推 理
识 别
气味
记 忆
感觉
目标:
快速计算、快速反应、达到人脑的水平
计算速度
要求达
1015
次 /秒
“现代”机器人能做到吗 ???
过马路 ???
打 乒 乓 球
!
!
!
关于现代机器人
2003年2月23日报道
信息光学PPT课件第五章光学全息

)
Uc (x,
y, z)
Ae jkr
U
( x,
y,
z)
U( x, y, z) Ae jkr Aexp jk( x cos y cos z cos )
Uc ( x, y, z) Ae jkr U ( x, y, z)
共轭光波的数学表达式为原光波复振幅的共轭复数。
已知 于是
参考波
R
记录介质上的的总光强为 I( x, y) O( x, y) R( x, y) 2
O
物波
记录介质
O( x, y) 2 R( x, y) 2 R( x, y)O( x, y) R( x, y)O( x, y)
O(x, y) 2 R(x, y) 2 2r(x, y)O0(x, y)cos (x, y) (x, y)
参考波
R
O
物波
记录介质
上图为波前记录的示意图,设传播到记录介质上的物光波前复振幅(对于理 想单色光,其空间的复振幅分布是不随时间变化的)为
O( x, y) Oo ( x, y)exp j ( x, y)
传播到记录介质上的参考光波前复振幅
R( x, y) r( x, y)exp j ( x, y)
全息图片
全息图片
当照明光波与参考光波均为正入射的平面波时,入射到 全息上的相位可取为零。这时U3和U4中的系数均为实 数,无附加相位因子,全息图衍射场中的+1级和-1级光 波严格镜像对称。由共轭光波U4所产生的实像,对观察 者而言,该实像的凹凸与原物体正好相反,因而给人以 某种特殊的感觉,这种像称为赝像。
如何得到三维的图像呢?
如果我们能够用某一种方法把物体光波(其中包含振幅和 相位信息)以某种方式记录下来,则当我们想办法把物光波 再现出来的话,就能再现三维的物体。
信息光学课件

电磁场与麦克斯韦方程
电磁场的基本概念
电磁场是由电场和磁场组成的, 它们之间存在相互作用。
麦克斯韦方程
描述了电磁场变化的四个基本方程 ,包括电场的散射方程、磁场的散 射方程、电场的波动方程和磁场的 波动方程。
电磁场的能量守恒
电磁场在空间中传播时,其能量不 会消失也不会凭空产生,即电磁场 的能量守恒。
将光学传感技术应用于物联网领域,实现智能化 、远程化和自动化的监测和控制。
3
光学传感器的集成与小型化
通过集成和优化光学器件,实现光学传感器的微 型化和便携化,满足不同应用场景的需求。
05 信息光学实验与实践教学 环节设计
实验内容与目标设定
实验内容
信息光学实验包括干涉、衍射、光学 信息处理等基本实验,以及一些综合 性和创新性实验。
信息光学课件
目录
CONTENTS
• 信息光学概述 • 信息光学基础理论 • 信息光学器件与系统 • 信息光学前沿技术与发展趋势 • 信息光学实验与实践教学环节设计 • 信息光学课程评价与总结反思环节设计
01 信息光学概述
信息光学定义与特点
信息光学定义
信息光学是一门研究光学信息的 获取、传输、处理、存储和显示 的科学。
傅里叶变换与信息光学
傅里叶变换
是一种将时域信号转换为频域信号的数学工具,常用于信号处理 和图像处理等领域。
信息光学的基本概念
信息光学是一门研究光波在空间和时间上传递、处理和存储信息的 科学。
信息光学的应用
信息光学在通信、生物医学成像、军事等领域有着广泛的应用,如 光纤通信、光学显微镜、光学雷达等。
03 信息光学器件与系统
光学器件分类与特点
主动光学器件
信息光学第五章解读

实际操作怎样记录物体的干涉信息? • 常用的记录介质是银盐感光胶片,对两个波前的干涉图样
曝光后,经显影处理得到全息图。 • 记录介质的作用相当于线性变换器,它把曝光时的入射光
强线性地变换为显影后的振幅透过率分布。 • 全息图振幅透过率与光强成正比:
x, y 0 I x, y
为常数,与底片曝光和显影过程有关,
光学全息
主讲人:徐世祥
教学内容
光学全息基本原理 同轴和离轴全息图 基元全息图 傅立叶变换全息图 体积全息、计算全息 全息术的应用
教学目的和要求
本章是信息光学的应用,重点是全息术的基本原理,傅立叶 变换全息;要求学生掌握基本原理,实现各种全息图的方法 及其特点.
概述
• 普通感光片:只能记录光波的振幅(光强),不能记录相位, 不能真实地重现原来的物光波,图像缺乏立体感。
• 成像具有三维特性,可以从不同的角度观测,而几何成像是 平面像;
• 成像的方式不同:几何成像记录物面上的相对光强分布,而 全息成像记录物体光波,包含相位信息。
• 全息图具有弥散性:一张用激光重现的透射式全息图,即使 被打碎成若干小碎片,用其中任何一个小碎片仍可重现出所 拍摄物体的完整的形象。不过当碎片太小时,重现景像的亮 度和分辨率会伴随着降低。 而几何成像,去掉一部分底片,就去掉一部分像。
量。I(x,y) t (光强时间)
强度透过率:透过光强/入射光强。 e2h
光密度:表示显影、定影后底片上单位面积的含银量。它 与强度透过率倒数的对数成正比。
CCD记录:数值再现。
三、全息图记录和再现小结
• 波前记录:光的干涉效应,它使振幅和位相调制的信息变 换为干涉图的强度调制信息,相对于一“编码”过程;
• 全息术是基于光的干涉和衍射现象,系统就应满足一定的相 干要求: 1)激光具有足够的时间相干性和空间相干性; 2)记录介质具有足够的分辨率,与物光可参考光的夹角相 适应; 3)曝光期间,光学系统应稳定到波长的十分之一以内; 4)物光、参考光的强度比例要适当。
信息光学理论与应用(第版)

开关功能:可在某点开启或 关闭另一函数 ,或描述光学 直边(或刀口)的透过率。
图1.1.6 二维阶跃函数
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
《信息光学》课件
4.符号函数
1 x / a 0
sgn
x a
0 1
x/a0 x/a0
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
3.阶跃函数
● 一维情形:
1
step
x a
1 / 0
2
其中 a 0
x/ a0 x/ a0 x/ a0
● 二维情形:
f (x, y) step(x)
《信息光学》课件
图1.1.5 一维阶跃函数
x a
rect
y b
1
0
其中
x a, y b 22
其他
a 0,b 0
表示矩孔透过率。
图1.1.2 二维矩形函数
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
《信息光学》课件
2.sinc函数
● 一维情形:
sinc
《信息光学》课件
上述积分形式表明: 函数可由等振幅的所有频率的
正弦波(用余弦函数表示)来合成,换言之, 函数可
分解成包含所有频率的等振幅的无数正弦波。
4.梳状函数
● 一维情形:
comb
x x0
n
x x0n x0
n
信息光学ppt课件

Introduction 4、应用范围的扩展
Information Optics
精选ppt
School of Physics & Material Science
Introduction
光电子 技术
光电子成为信息产业的主角
• 许多学科分支和方向
已形成大规模的产业
全世界光学和光(电)子学技术产业规模
• 空间尺度:百亿光年 单原子尺度,介观尺度
研究方向
天文光学
纳米光学
• 时间尺度:天文时间
原子反应时间(10-15 秒)
研究方向 静态光学
瞬态光学
如超快速现象
纳秒、 皮秒、飞秒
Information Optics
精选ppt
School of Physics & Material Science
Introduction
2、应用功能的扩展 光学工程 —— 综合技术学科
现代精密仪器:
多功能、高效率
光、机、电、算、材 一体化
光学
光
技术手段:自动化、 数字化、智能化
精密机械
机
材
材料
电子
Information Optics
电
算
计算机
精选ppt
School of Physics & Material Science
Introduction
Introduction
享受光 享受光学
光学科学与技术的成果已深深渗透到我们 的生活中.
--王大珩
Information Optics
精选ppt
School of Physics & Material Science
傅立叶光学(信息光学)_课件

1 x>0 Step(x)= ½ x=0
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的理想像
第五章 光学成像系统的频率特性
§5-1透镜的成像性质
定义:
为几何光学的理想像,其特征:
U g xi , yi
1 M
U
0
xi M
, yi M
(1) (2) (3)
与原物完全相似 倒立,反演 比例缩放,倍数M
再定义:
(5-15)(4) 幅度缩为1/M
h~xi , yi
P
,
exp
#
第五章 光学成像系统的频率特性
§5-1透镜的成像性质
xi,yi平面的复振幅分布
1 Ui
xi , yi
1
2 d i d 0
exp
j
k 2di
xi2
yi 2
U0 x0, y0 P ,
(5-5)
2 3
exp
j
k 2
1 d0
1 f
1 di
2
2
exp
j
k 2d0
x0 2
y02
分别考察:
1
2 di d 0
G0
d0
,
d0
exp
j
2 di
xi
yi dd
作变换:
' d0
' d0
' d0 '
di
di M
d d0 ' d d0'
1
M
G0
'
,'
j2 '
xi M
' yi
M
d 'd'
1 M
U
0
xi M
,
yi M
(5-9)
定义: Ug为几何光学
U g xi , yi
像点坐标(xi,yi)与物点坐标(x0,y0) 的关系是: xi Mx0 , yi My0
在给定的(xi,yi)产生不为零的二次位相分布的(x0,y0) 范围很小. 在此范围内, 因子3可记为常量.这个常量是与(xi,yi) 坐标有关的. #
第五章 光学成像系统的频率特性
§5-1透镜的成像性质
逐面计算,在一定的几何配置下可以成像
第五章 光学成像系统的频率特性
单色光照明
§5-1透镜的成像性质
紧靠物后的复振幅分布:
U0(x0,y0)
光波沿z轴由左向右传播
(x0,y0)面 ()面的传播:
菲涅耳衍射的F.T.形式( z=d0)
透镜前表面:
Ul ( ,)
1
jd0
exp(
jk
d0
)
exp
j
k 2d0
,
d0
P
,
exp
j
2 di
xi
yi
d
d
#
第五章 光学成像系统的频率特性
§5-1透镜的成像性质
xi,yi平面的复振幅分布:
1
Ui (xi , yi ) 2did0
G0
d0
,
d0
P
,
exp
j
2 di
xi
yi
d
d(5-8) 是函数源自G0d0,
d0
与
P , 乘积的F.T. 等于各自F.T.的卷积.
j
2 di
xi
yi
dd
为光瞳函数的F.T.
(5-10)
∴由(5-8)式运用卷积定理直接写出像平面的光场复振幅分布:
Ui xi , yi Ug xi , yi h~xi , yi 再按卷积定义式写出:
Ui (xi , yi )
1 M
U
0
~x0 M
,
~y0 M
h~xi
~x0 ,
yi
~y0 d~x0d~y0
x0 2
y02
exp
j
k 2d0
xi 2 yi 2 M2
(5-6)
(xi,yi)
变成与(x0,y0)无关 (把二次位相弯曲变成常数相移)
可提出积分号外, 并最终弃去.
#
第五章 光学成像系统的频率特性
§5-1透镜的成像性质
Ui
xi , yi
1
2 d i d 0
U0 x0 , y0 P ,
exp
j
2 d0
x0
y0
exp
j
2 di
xi
yi dx0dy0dd
进一步整理: (先对x0,y0积分):
Ui
xi ,
yi
1
2 d i d 0
U0 x0 ,
y0
exp
j
2 d0
x0
y0
dx0
dy0
P ,exp
j
2 di
xi
yi d
d
(5-8)
1
2 di d 0
G0
d0
(5-7)
#
第五章 光学成像系统的频率特性
§5-1透镜的成像性质
处理二次位相因子(3)的方法:考察像平面
3 Ui
xi , yi
1
2 d i d 0
U
0
x0
,
y0
P
,
exp
j
k 2d0
x0 2
y02
exp
j
2 d0
x0
y0
exp
j
2 di
xi
yi dx0dy0dd
若为几何光学成像, 像平面的 (xi,yi)点对应于物平面唯一的(x0,y0) 对几何光学的偏离: 物平面上的 (x0,y0)点在像平面上形成以(xi,yi) 为中心的Airy斑. 反过来, 像平面上 (xi,yi)点处的光场,来自于(x0,y0) 点附近一个很小的区域中物平面的贡献.
exp
j
2 d0
x0
y0
exp
j
2 di
xi
yi dx0dy0dd
1:不参与积分,不影响观察面强度分布,可以直接略去,不考虑.
2:参与积分, 只有在特定平面满足: 1 1 1 0 才可略去
这正是几何光学确定的像平面, d0 di f
我们仅讨论此平面的分布
此时成像, 放大率:M
di d0
第五章 光学成像系统的频率特性 Frequency Properties of Optical Imaging Systems
目的: 从单透镜的传递函数入手,
研究透镜成像的质量评价的频域方法
§5-1透镜的成像性质
将透镜成像看成线性不变系统的变换
分析方法
(孔径+透镜)(有限大小,有衍射作用,位相变换作用) + 光在自由空间的传播(菲涅耳衍射)
(
2
2
)
(5-1)
U0 (x0,
y0 ) exp
j
k 2d0
( x0 2
y0
2
)
exp
j
2 d0
( x0
y
0
)dx0dy0
透镜的复振幅透过率:
tl ( ,)
P(
,)
exp
j
k 2f
(
2
2
)
(5-2)
#
第五章 光学成像系统的频率特性
§5-1透镜的成像性质
透镜后的透射光场复振幅: Ul ' , Ul ,tl , (5-3)
处理二次位相因子(3)的方法:考察像平面
3 Ui
xi , yi
1
2 d i d 0
U
0
x0
,
y0
P
,
exp
j
k 2d0
x0 2
y02
exp
j
2 d0
x0
y0
exp
j
2 di
xi
yi dx0dy0dd
(x0,y0)
根据以上分析,可将二次位相因子(3)表示为:
k
exp
j
2d0
平面xi,yi平面: 再次运用菲涅耳衍射的F.T.形式 (z=di):
Ui xi , yi
1
jdi
exp
jk di
exp
j
k 2di
xi2 yi2
(5-4)
Ul
'
,
exp
j
k 2di
2 2
exp
j
2 di
xi
yi
d
d
弃去常数位相因子, 将(1)(2)(3)代入,综合 分别整理二次和线性位 相因子 得到四重积分: