浅析关于三视图的问题
学习三视图的六大误区——《三视图》的教学反思

学习三视图的六大误区——《三视图》的教学反思在工程设计和制图领域中,三视图是一种常用的技术图形表达方式。
它由正视图、侧视图和俯视图构成,能够全面准确地描述物体的形状和尺寸。
然而,在学习三视图的过程中,我们常常会遇到一些误区,这些误区会影响我们对三视图的理解和应用。
本文将针对学习三视图的六大误区进行分析,并提出相应的教学反思。
误区一:忽略三视图的综合作用在学习三视图时,很多人会将它们单独看待,只注重图纸上的每一张视图,而忽略了三视图的综合作用。
事实上,正视图、侧视图和俯视图相互补充,可以为我们提供物体的全面信息。
因此,在教学中,需要强调三视图的综合作用,让学生能够从不同角度观察物体,形成全面的认知。
误区二:只关注二维图形,缺乏三维思维三视图虽然呈现在纸上是二维的图形,但它们所描述的物体实际上是存在三维空间中的。
然而,很多学生在学习三视图时只关注二维图形,缺乏对物体的三维思维。
因此,在教学中,需要通过案例分析和实践操作,引导学生从三维角度去理解和应用三视图,培养其三维思维能力。
误区三:刻板机械地绘制三视图在学习三视图时,有些学生会陷入刻板机械的绘制模式中,只注重准确地画出每个视图,而忽略了对物体的整体把握和构图的审美。
因此,在教学中,需要鼓励学生在绘制三视图时充分考虑构图的美感和整体的效果,提高其绘图技巧和审美能力。
误区四:对投影方式理解不足三视图是通过平行投影方式展示物体的,而很多学生对投影方式的理解存在不足。
这导致他们在绘制三视图时出现投影错误或者遗漏某些细节。
因此,在教学中,需要对投影方式进行详细的解释和示范,并通过练习和反馈加强学生对投影方式的掌握。
误区五:注意力过度集中在尺寸上在学习三视图时,很多学生过于关注尺寸的准确性,而忽略了对图形的形状和比例的重视。
这导致他们在绘制三视图时容易出现尺寸上的错误,影响了图形的精确度。
因此,在教学中,需要教导学生在绘制三视图时平衡尺寸和形状的关系,并通过练习培养其准确测量和绘制图形的能力。
三视图问题全解析

例 2.(天津卷)一个几何体的三视 图如图所示(单位:m),则该几何体的 体积为______m3.
减
加
考点突破
题型一 与面积或体积综合
例 3.(北京卷)某三棱锥的三视图如图所 示,该三棱锥的表面积是( )
A.28+6 5
✔B.30+6 5 C.56+12 5 D.60+12 5
例 4.(湖北卷)已知某几何体的三视图如图所 解法 1:(加)下面是一个圆柱,上面是
例 6.(湖南卷)某几何体的正视图和侧视图均如图所示,则 该几何体的俯视图不.可.能.是( )
✔
例 7.(陕西卷)将正方体(如图①所示)截去两 个三棱锥,得到图②所示的几何体,则该几何体的 左视图为( )
✔
解析: AD1 的投影是左上到右下的实线, B1C 的投影是左下到右上的虚线.
备考指津
●高考预测 三视图将一直是新课标高考的一个热点,考查形式以选择题和填
考点透视
1.考纲要求:
(3)考查难度: 一般为中低档题,有些题目较难.
必备技能
1.知识要求
从前面向后面正投影的投影图叫做正视图(主视图); 从左面向右面正投影的投影图叫做侧视图(左视图); 从上面向下面正投影的投影图叫做俯视图.
注意事项:
2.能力及数学思想方法要求
技巧传播
例 1.(辽宁卷)一个几何体的三 视图如图所示.则该几何体的表面积 为________.
空题为主,难度中等,对空间想像能力有较高的要求.
●训练指南
小试身手
1.(广东卷)某几何体的三视图如图所示,它的体积为( ) A.72πB.48π C.30πD.24π 答案:C
示,则该几何体的体积为( )
圆柱的一半,所以 V=π×12×2+12×π×12×2=3π.
三视图中的多解问题

三视图中的多解问题在三视图的学习中,有的问题给出的限制条件比较少,因此问题的解不止一个,这就构成了一类有趣的多解问题.这就需要我们仔细审题,慎重思考,分类枚举,考虑到一切可能.我们通过两个典型的问题来说明.问题1:由6个小立方块搭成的一个物体,它的主视图与左视图如图所示,你能画出它的俯视图吗?【分析】一般地,组合体要求立体之间至少要有一个面相邻,仅有一条棱相邻则不算.共有以下8种情形,方格中的数字表示该位置竖直方向方块的数目:若仅仅画出俯视图,对应于如下情形:如果不强调是一个几何体,只是用小立方块在地上摆放,形成如题设所述的主视图与左视图,那么就允许立方块之间仅有一条棱相邻,比如以下情形:上图当然并没有给出全部的可能.事实上,除了标记2的位置必须有两层立方体之外,标记为a,b,c,d,e,f,g的位置中,(a,b)必须放入1个立方块,(d,e)放入1个立方块,(g,f)放入1个立方块,剩下的4个位置再放入剩下的一个,共2×2×2×4=32(种)方式.也就是说,此时共有32种不同的摆放方式.问题2:一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的图形,至少需用_______块正方体,最多需用_______块正方体.【分析】最多的情形,需要11块;最少的情形,在最多的情形图中减去4个1,至少需要7块,比如下面的一些情况:题目是“摆成这样的图形”,所以也允许下面的情况出现:为了计算所有的情形,我们对标记了2之外的格子用字母分别标记,根据主视图和左视图,(a,b,c)中至少要有1个方块,(d,e,f)中至少要有1个方块,(g,b,e)中至少要有1个方块.若g=1,则在右边两列中随便各放一个即可满足条件,共3×3=9(种),若g≠1,则b、e中至少要放1个正方体,且当(a,b,c)中放2个,(d,e,f)中放1个时,通过枚举,共有7种方法;同理,当共3×3=9(种);类似地,若g≠1,且(a,b,c)中放1个,(d,e,f)中放2个,共3×3=9(种)也有7种方法.综上,一共有9+7+7=2327(种)不同的方案.(作者单位:江苏省南师附中江宁分校)。
专题31 三视图与展开图问题(解析版)

专题31 三视图与展开图问题
1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图
在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:
平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2020•衡阳)下列不是三棱柱展开图的是()
A.B.C.D.。
高考有方法——三视图解题超级策略

高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析根据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD 中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.B.6 C.D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.40+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A侧视图俯视图正视图2A 、2B、4 C 、83D 、2 5、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C)61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)(D)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B )1()A 6 ()B 9 ()C 12 ()D 189、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于13、某几何体的三视图如图所示,则该几何体的体积为_____________.8314、某几何体的三视图如图所示,则该几何体的体积为_____________.15、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A. B. C .6 D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+323。
求解三视图问题的思路

三视图问题的常见命题形式有:由三视图判断原几何体的形状,求原几何体的体积、表面积、侧面积.此类问题侧重于考查简单空间几何体的性质、体积公式、表面积公式.求解三视图问题的步骤为:(1)根据三视图判断出原几何体的形状是柱体、锥体、台体、球体,还是组合体;(2)画出原几何体的图形,并确定原几何体各面的形状以及各边的边长;(3)将几何体进行合理的分割、填补,将其补形为规则的几何体;(4)根据柱体、锥体、台体、球的体积公式和表面积公式进行求解.由三视图画几何体时,要注意侧视图的高、正视图的长、俯视图的宽,通常与几何体的边长相对应,口诀为“长对正,高平齐,宽相等”,即正视图的长与俯视图的长相等,正视图的高的长度与侧视图的高的长度相等,侧视图的宽与俯视图的宽相等.例1.若图1是某个几何体的三视图,则该几何体的表面积等于_______.图1图2解:观察图1中的三视图,可以判断出该几何体是将正方体截去一“角”剩下的部分,如图2所示.由三视图中的数据可知截去的一“角”为三棱锥D -ABC ,其侧棱长为1,且三条侧棱两两互相垂直,所以ΔABC 是边长为2的等边三角形,则S ΔABC=()22=几何体中有三个面被截去一个边长为1的等腰直角三角形,其面积为S 1=22-12=72,而几何体的另外三个面为完整的正方形,其面积为S 2=22=4,所以几何体的表面积为S =3S 1+3S 2+S ΔABC =45+32.解答本题,要先仔细观察三视图,根据口诀确定几何体的形状以及各边长;然后确定几何体的各个面的特点、形状,利用正方形、三角形的面积公式进行求解.例2.某几何体的三视图如图3所示,则其表面积为().A.17π2 B.9πC.19π2D.10π解:由图3中的三视图可知,几何体是个组合体,且其上部分是个球,下部分是一个圆柱.而圆柱底面的半径为1,高为3,半球的半径为1,所以几何体的表面积为π×1+2π×3+4π××14+12π×+12π=9π,故本题选B.解答本题的关键是根据三视图确定几何体的形状,由俯视图和侧视图可以确定原几何体为组合体,且其中一部分为球体;由正视图和侧视图可知,原几何体的下半部分为圆柱;结合三个视图,最终可以确定几何体为下部分是圆柱、上部分是个球的组合体.最后直接根据圆柱、球的表面积公式求解即可.例3.已知图4是一个组合几何体的三视图,则该几何体的体积为______.正视图侧视图俯视图图4解:观察图4中的三视图,可知这个组合体是由一个高为8,底面直径为4的圆柱与一个棱长为6,高为4的三棱柱拼接而成的,由正视图可知圆柱底面的半径为4,由侧视图可知图342圆柱的高为8,所以V 圆柱=S ⋅h =π×42×8=128π,由正视图可知棱柱的底面长方形的边长为3、6,由侧视图可知棱柱的高为4,所以V 棱柱=S ⋅h =12×3×4×6=36,所以组合体的体积为V =V 圆柱+V 棱柱=128π+36.对于组合体,首先要根据三视图判断几何体的结构,可将其进行拆分为几个简单的空间几何体,或将其看作由一个简单空间几何体切掉(挖掉)了其中的一部分;然后再寻找相关数据,如边长、半径、棱长、高等,根据简单空间几何体的性质、体积、表面积公式进行求解.例4.某几何体的三视图如图5所示,则该几何体的表面积等于______.解:由图5中的三视图可以判定该几何体为一个正四棱柱,且几何体的侧面均为矩形,上下两个底面均为全等的直角梯形.由俯视图可知梯形的上、下底分别为1,2,高为1,所以梯形的面积S 1=12()1+2×1=32;四个侧面的底边长分别为2,1,1,2,高为2,所以侧面的面积为S 2=2⋅()2+1+1+2=8+22,所以几何体的表面积S =S 1+S 2=2⋅32+8+22=11+22.解答三视图问题,需熟悉简单空间几何体的三视图,如棱柱的正视图和侧视图为矩形,俯视图为多边形;圆柱的正视图和侧视图为矩形,俯视图为圆;圆锥的正视图和侧视图为三角形,俯视图为圆.这样便能快速判定原几何体的形状.总之,在解答三视图问题的过程中,要注意:(1)灵活运用简单空间几何体的性质、体积、表面积公式;(2)仔细观察三视图,判定几何体的形状以及摆放的位置;(3)通过俯视图求底面的边长、直径,通过正视图(或侧视图)确定几何体的高.(作者单位:甘肃省武山县第一高级中学)证明数列不等式问题经常出现在各类试题中.这类问题侧重于考查同学们的观察、分析和推理能力.下面结合实例,谈一谈下列三种证明数列不等式常用的方法.一、比较法运用比较法证明数列不等式,往往要先将不等式两侧的式子作差、作商;然后将所得的差式和商式化简、变形,并将其与0、1相比较,从而比较出不等式左右两侧式子的大小.例1.已知数列{}a n 是正项数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(1)求{}a n 的通项公式;(2)若数列{}b n 满足b 1=1,b n +1=b n +2a ,证明:b n ⋅b n +2<b 2n +1.解:(1)a n =n ;(过程略)(2)由(1)可知a n =n ,则b n +1-b n =2n ,则b n =(b n -b n -1)+(b n -1-b n -2)+⋅⋅⋅+(b 2-b 1)+b 1=2n -1+2n -2+⋅⋅⋅+2+1,=1-2n 1-2=2n -1,所以b n ⋅b n -2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=(2n +2-2n +2-2n +1)-(22n +2-2⋅2n +1+1)=-2n <0.故b n ⋅b n +2<b 2n +1.解答本题,要先根据等差数列的定义,运用累加法求得{}b n 的通项公式;然后将目标不等式左右两侧的式子作差,并将差式化简、变形,使其便于与0相比较,进而证明不等式成立.运用比较法解题的关键在于化简差式、商式,通常可将其分解因式、配成完全平方式,以使所得的结果能直接与0、1相比较.二、放缩法放缩法是证明数列不等式的重要方法.有时在求得数列的通项公式、前n 项和式后,无法得到想要的结果,这是就需将数列的通项公式、前n 项和式放大或缩小,使其逐步与目标式靠拢,以证明结论.在放缩时,要把握放缩的“度”,不可放得过大,也不能缩得过小.例2.T n 是数列{}a n 的前n 项之积,满足T n=1-a n (n ∈N *).图543。
三视图教学反思 三视图课后反思

三视图教学反思三视图课后反思《三视图》教学反思篇一这周学习的是三视图,主要培养学生的空间想象力。
学生对这部分知识感兴趣,特别是男生反应较快,而有些平时表现较好的女生却有些糊涂。
教学重点是能识别简单几何体的三个视图,会画常见几何体及简单组合几何体的三视图。
现以自己对教材的理解及上课后的感受提出对本节教学的几点建议:1、画三视图时,主视图画在左上方,它反映物体的长和高,左视图画在右上方,与主视图平高,它反映的是物体的宽和高,俯视图画在左下方,与主视图同宽,它反映的是物体的长和宽。
2、在画视图是,看的见部分的轮廓线要画成实线,看不见部分的轮廓线画成虚线;也可以说,被面遮住的棱画成虚线,被棱遮住的棱不画。
3、看到几个面就画几个面,面是由棱组成。
本节课的感受:学生画一些组合体的三视图有困难,特别是由三视图想象出立体图形,对学生提出了更高的要求。
因此,要让学生熟悉一些常见的物体的三视图,如:柱体、锥体、圆台、常见的组合体(特别是积木)。
逐步培养学生的空间想象力。
《三视图》教学反思篇二一、设计的初衷《三视图》在教学内容中,是比较抽象并且难以理解的,然而三视图在工业设计中又是表达与交流设计构思、设计方案的一种常用的工程技术语言。
学生不但要学会识读三视图,而且还要学会绘制简单的三视图,并且在今后的设计实践中,能够运用三视图来表达自己的设计构思,与他人交流设计方案,从而获得全面的评价,优化设计方案。
于是针对此教学内容,如何进行有效的教学;以及在教学中常遇到的一些问题,有哪些可供参考的解决办法,我进行了尝试性教学实践。
1. 课题引入方面:采用问题情景设置的方法:学生喜爱打篮球,而用直尺测算出篮球的表面积是学生平时不会想到或实践过的问题。
这样激起了学生的好奇心和想解决问题的兴趣。
问题提出来后,学生积极思考,想出了许多办法。
而解决这个问题的关键是能否利用墙面与地面相互垂直这一条件。
目的是打开学生空间想象能力。
而空间想象能力是学好三视图,理解三视图以及绘制三视图的必备能力。
有关三视图的三类问题

昌一 目 ]
定
紫 辜
嚣嚣
。 个 数 , 其 相 加 即 得 所 求 几 何 体 中 小 立 方 块 的 4 数 ; 一 将 - 另
三 、 俯 视 图 及 小 立 方 块 个 数 识 别 其 他 视 图 由 例 3 ( 0 8年 ・ 台 市 ) 5 是 由 若 干 个 同 样 大 小 的 小 立 方 块 搭 20 烟 图
曲
图 3
图 4
图 中 每 个 小 正 方 形 中 一 对 数 中较 小 的 一 个 数 ( 数 相 等 则 任 取 一 个 ) 于 两 , 是 可 求 得 搭 成 的 几 何 体 所 用 的 小 立 方 块 的 个 数 , 即 l +1 2 2 = , +1 + + +1 8 故
洗 A.
多少粒 芝麻 ?
解 折 s 1 把 这 条 直 线 看 成 一 条 数 轴 , D 为 原 点 , 东 为 正 方 向 , () 点 向 1
个 单 位 长 度 代 表 1c , 蜗 牛 看 成 点 P, 蜗 牛 的 爬 行 可 看 成 是 点 P 在 m 把 则 数 轴 上 的 移 动 . 牛 爬 行 的过 程 就 是 点 p先 从 原 点 D 向 右 移 动 5个 单 位 蜗 长 度 到 达 点 A . 再 向 左 移 2个 单 位 长 度 到 达 点 曰.再 向 左 移 7 个 单 位 长 度 到 达 点 C. 向 右 移 3 个 单 位 长 度 到 达 点 D , 后 向 右 移 1个 单 位 长 叉 最
例 1
何 体 . 主 视 图 如 图 2所 示 , 其 俯 视 图 是 ( 其 则
) .
岛 陆 [ 日 ]
图 1 图2 A B C D
解 析 s 据 俯 视 陶 的 定 义 , 上 面 看 , 有 2行 , 一 行 有 2 个 小 正 依 从 共 第
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例析三视图的问题
贵阳十三中 贾昌书
三视图指的是主视图、左视图和俯视图。
从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图。
下面就由一些大小相同的小正方体组成的简单几何体的三视图问题进行分析:
一、给出立体图形确定其三视图
例1、(2005年宁夏)由相同的小正方体搭成的几何体如图,下列视图中不是这个几何体的主视图或俯视图或左视图的是( )
解:从正面看,该几何体有两层,下面一层有三列,上面一层有一列,所以主视图为(A );从左面看,该几何体有两层,下面一层有两列,上面一层有一列且位于左侧,所以左视图为(C );从上面看,该几何体有两行,上面一行有三列,下面一行有两列,所以俯视图为(D );因此,此题应选(B )。
二、给出一种视图及每个位置上小正方体的个数确定另两种视图 例2、如图是几个相同的小正方体堆成立体图形
的俯视图,小正方体上的数字是该位置上的小正方体 的个数,请画出该几何体的主视图和左视图。
解:由于俯视图有三列,所以主视图也有三列。
又由于俯视图的第一列、第二列、第三列中最大数
字分别为4、2、3,所以主视图的第一列、第二列、
第三列分别应有4个、2个、3个小正方形,因此主
视图为右图:
由于俯视图有三行,所以左视图也有三列。
又
由于俯视图从上往下数第一行、第二行、第三行中
最大数字分别为2、4、3,所以左视图从左往右数的
第一列、第二列、第三列分别应有2个、4个、3个
小正方形,因此左视图为右图: 三、给出两种视图确定第三种视图,并确定几何体中小正方体的个数的所有可能值
例3、(2004年贵阳)由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如下图:
(1) 请你画出这个几何体的一种左视图;
(2) 若组成这个几何体的小正方体的块数为n ,请你写出n 的
所有可能值。
解:(1)由于主视图有三列,所以左视图有三行;由于俯视图有两行,所以左视图有两列。
因此左视图一共有五种情况:
(2)观察主视图往俯视图的各个小正方形处填上该处正方体叠加的个数:从主视图来看,俯视图第一列的小正方形只能填1;俯视图第二列的两个小正方形中必须有一个填2,另一个可填2或1;俯视图第三列的两个小正方形中必须有一个填3,另一个可填3或2或
1。
于是n 的最大值为:1+2+2+3+3=11,最小值为1+2+1+3+1=8,因此的n 所有可能值为8、9、10、11。
四、给出三视图确定几何体中小正方体的个数
例4、下图是由一些相同的小正方体搭成的几何体的三视图,那么搭成这个几何体的小正方体的个数是( )
(A )7个 (B )6 个 (C )5个 (D )4个
解:从主视图看,从左往右第一列和第三列都只有一个小正方形,所以俯视图第一列和第三列的小正方形都只能填1;主视图第二列有两个小正方形,所以俯视图第二列的两个小正方形中必须有一个填2,另一个填2或1,再从左视图看,从左往右第一列有一个小正方形,所以俯视图上面一行的小正方形只能填1,因此俯视图下面一行的第二列的小正方形只能填2。
于是可得俯视图为:
因此搭成这个几何体的小正方体的个数是5个。
给出三视图确定几何体中小正方体的个数有时解可能不只一种,而是有好几种,这类比较复杂,但只要认真分析,也很容易解决。