2019年浙江省杭州市萧山中学中考数学二模试卷(含2019中考试题)

合集下载

2019年浙江省杭州市萧山区宁围街道初级中学中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区宁围街道初级中学中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区宁围街道初级中学中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.下列各式从左到右的变形正确的是()A.﹣2x+4y=﹣2(x﹣4y)B.a2﹣6=(a+2)(a﹣3)C.(a+b)2=a2+b2D.x2﹣y2=(x﹣y)(x+y)3.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN 上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD4.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.B .C .D .5.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,56.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2B.﹣1C.D.47.下面平面图形中能围成三棱柱的是()A.B.C.D.8.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:①<0;②a﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A.①②③B.①③④C.①②④D.①②③④10.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.。

2019年浙江省杭州市中考数学模拟试题(解析版)

2019年浙江省杭州市中考数学模拟试题(解析版)

2019年浙江省杭州市中考数学二模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算:(﹣3)4=()A.﹣12B.12C.﹣81D.812.因式分解:a2﹣4=()A.(a﹣2)(a+2)B.(2﹣a)(2÷a)C.(a﹣2)2D.(a﹣2)(﹣a+2)3.如图,在△ABC中,∠ACB=45°,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20°,则∠B的度数为()A.60°B.65°C.70°D.75°4.若实数k满足3<k<4,则k可能的值是()A.2B.2C.D.|1﹣π|5.下列等式成立的是()A.B.(﹣x﹣1)(1﹣x)=1﹣x2C.D.(﹣x﹣1)2=x2+2x+16.在△ABC中,D是BC边上的点(不与B,C重合),连接AD,下列表述错误的是()A.若AD是BC边的中线,则BC=2CDB.若AD是BC边的高线,则AD<ACC.岩AD是∠BAC的平分线,则△ABD与△ACD的面积相等D.若AD是∠BAC的平分线又是BC边的中线,则AD为BC边的高线7.下列按条件列出的不等式中,不正确的是()A.x超过0,则x>0B.x是不大于0的数,则x≤0C.x是不小于﹣1的数,则x≥﹣1D.x+y是负数,则x+y≤08.如图⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°9.如图,已知在△ABC中,点D为BC边上一点(不与点B,点C重合),连结AD,点E、点F分别为AB、AC上的点,且EF∥BC,交AD于点G,连结BG,并延长BG交AC于点H.已知=2,①若AD为BC边上的中线,的值为;②若BH⊥AC,当BC>2CD时,<2sin∠DAC.则()A.①正确;②不正确B.①正确;②正确C.①不正确;②正确D.①不正确;②正确10.二次函数y=(x﹣4)2+3的最小值是()A.2B.3C.4D.5二、填空題:本大题有6个小題,毎小题4分,共24分.11.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为.12.如图,过圆外一点P作⊙O的切线PC,切点为B,连结OP交圆于点A.若AP=0A=1,则该切线长为.13.两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组数据合并为一組,则这组新数据的中位数为.14.化简根式:=.15.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是.16.已知x﹣y=3,且x>2,y<1,则x+y的取值范围是.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.18.(8分)在平面直角坐标系中,过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则称这个点为强点.例如,图中过点P分別作x轴,y轴的垂线与坐标轴围成矩形OAPB 的周长与面积相等,则点P是强点.(1)点M(l,2),N(4,4),Q(6,﹣3)中,是强点的有;(2)若强点P(a,3)在直线y=﹣x+b(b为常数)上,求a和b的值.19.(8分)如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.20.(10分)如图,在Rt△ABC中∠C=90°,BC=7cm.动点P在线段AC上从点C出发,沿CA 方向运动;动点Q在线段BC上同时从点B出发,沿BC方向运动.如果点P,Q的运动速度均为lcm/s,那么运动几秒时,它们相距5cm.21.(10分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.22.(12分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.23.(12分)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).2019年浙江省杭州市中考数学二模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据有理数的乘方意义,(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)进行计算.【解答】解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.【点评】本题考查了有理数的乘方运算.关键是理解有理数乘方运算的意义.2.【分析】直接利用平方差公式分解因式即可.【解答】解:a2﹣4=(a+2)(a﹣2).故选:A.【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.3.【分析】根据已知条件得到△ADC是等腰直角三角形,求得AD=CD,∠CAE=∠ACD=45°,根据全等三角形的性质得到∠B=∠DEC,根据三角形的外角的性质即可得到结论.【解答】解:∵AD⊥BC,∠ACB=45°,∴△ADC是等腰直角三角形,∴AD=CD,∠CAE=∠ACD=45°,在Rt△ABD与Rt△CED中,∴Rt△ABD≌Rt△CED(HL),∴∠B=∠DEC,∵∠DEC=∠CAE+∠ACE=45°+20°=65°,∴∠B=65°,故选:B.【点评】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,三角形的外角的性质,熟练掌握等腰直角三角形的性质是解题的关键.4.【分析】利用平方法比较数的大小,因为9<k2<16,将2、2、分别平方即可求解;【解答】解:∵3<k<4,∴9<k2<16∵(2)2=8,(2)2=12,()2=,∴2满足给定的范围,故选:B.【点评】本题考查无理数的估算;熟练掌握利用平方法比较无理数是解题的关键.5.【分析】利用分式的性质以及整式混合运算的计算方法逐一计算结果,进一步判断得出答案即可.【解答】解:A、不能约分,此选项错误;B、(﹣x﹣1)(1﹣x)=﹣1+x2,此选项错误;C、=﹣,此选项错误;D、(﹣x﹣1)2=x2+2x+1,此选项正确.故选:D.【点评】此题考查分式的混合运算,整式的混合运算,掌握分式的性质和整式混合运算的方法是解决问题的关键.6.【分析】根据三角形中的角平分线,高线,中线的定义,三角形的面积公式即可得到结论.【解答】解:A、∵AD是BC边的中线,∴BD=CD,∴BC=2CD,故A正确;B、∵AD是BC边的高线,∴∠ADC=90°,在Rt△ADC中,AD<AC,故B正确;C、∵AD是△BAC的中线,则△ABD与△ACD的面积相等,故C错误;D、∵AD是∠BAC的平分线又是BC边的中线,∴△ABC是等腰三角形,∴AD为BC边的高线,故D正确,故选:C.【点评】本题考查了三角形中的角平分线,高线,中线的定义,三角形的面积,熟练掌握各定义是解题的关键.7.【分析】根据不等式的定义好性质解答.【解答】解:A、依题意得x>0,故本选项不符合题意.B、依题意得x≤0,故本选项不符合题意.C、依题意得x≥﹣1,故本选项不符合题意.D、依题意得x+y<0,故本选项符合题意.故选:D.【点评】考查了由实际问题抽象出一元一次不等式.用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.8.【分析】连接OB,由垂径定理及圆心角定理可得∠AOB=∠AOC=50°,再利用圆周角定理即可得出答案.【解答】解:如图连接OB,∵OA⊥BC,∠AOC=50°,∴∠AOB=∠AOC=50°,则∠ADB=∠AOB=25°,故选:B.【点评】本题主要考查圆周角定理,解题的关键是掌握垂径定理与圆周角定理.9.【分析】①过点B作BM∥AC,与AD的延长线相交于点M,可得△ADC≌△MDB,由EF∥BC 得AG:GD,进而得MG:AG,再由相似三角形得结果,便可判断①是否正确;②过点D作DN⊥AC于点N,再解直角三角形和应用相似三角形的比例线段便可判断②的正误.【解答】解:①过点B作BM∥AC,与AD的延长线相交于点M,∴∠C=∠MBD,在△ACD和△MBD中,,∴△ACD≌△MBD(ASA),∴AD=MD,∵EF∥BC,,∴,∴,∵BM∥AC,∴△MBG∽△AHG,∴,∴,故①正确;(2)过点D作DN⊥AC于点N,则DN=AD sin∠DAC,∵BH⊥AC,DN⊥AC,∴BH∥DN,∴,即,∵BC>2CD,∴,∴.故②错误;故选:A .【点评】本题是三角形的一个综合题,主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,关键是作辅助线,构造全等三角形与相似三角形、直角三角形进行解答.10.【分析】根据顶点式的形式,结合二次函数最值求法,确定答案.【解答】解:二次函数y =(x ﹣4)2+3的最小值是:3.故选:B .【点评】本题考查的是二次函数的性质,y =a (x ﹣h )2+k ,当a >0时,x =h 时,y 有最小值k ,当a <0时,x =h 时,y 有最大值k .二、填空題:本大题有6个小題,毎小题4分,共24分.11.【分析】直接根据概率公式计算可得.【解答】解:∵共有6名学生干部,其中女生有2人,∴任意抽一名学生干部去参加一项活动,其中是女生的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.12.【分析】根据切线的性质定理可知OB ⊥PB ,由题意可知AP =OA =1,则OB =1,于是根据勾股定理即可求出PB 的长.【解答】解:∵OA 、OB 都是半径,∴OB =OA =AP =1又∵PC 与⊙O 相切于B 点∴OB ⊥PB于是在Rt △PBO 中,OB =1,OP =2∴PB == 故答案为. 【点评】本题考查的是切线的性质定理,即圆的切线垂直于经过切点的半径.由相切到垂直是解题中常常用到的一种思路.13.【分析】首先根据平均数的定义列出关于a 、b 的二元一次方程组,再解方程组求得a 、b 的值,然后求中位数即可.【解答】解:∵两组数据:3,a ,8,5与a ,6,b 的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.【点评】本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14.【分析】原式被开方数利用完全平方公式化简,再利用二次根式性质及绝对值的代数意义化简即可得到结果.【解答】解:∵cos51°<cos45°=,∴2cos51°﹣<0,则原式==|2cos51°﹣|=﹣2cos51°.故答案为:﹣2cos51°【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.15.【分析】由已知可得DE为△ABC的中位线,从而可得到DE∥AB,根据两直线平行内错角相等可得到∠BFD=∠ABF,再根据角平分线的性质推出∠FBD=∠BFD,根据等角对等边可得到DF=DB,已知BC的长,从而不难求得DF的长.【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF为角平分线,∴∠ABF=∠FBD,∴∠FBD=∠BFD,∴DF=DB,∵DB=DC,∴DF=BC=3.故答案为:3.【点评】此题主要考查三角形中位线定理及角平分线定义的综合运用.16.【分析】利用不等式的性质解答即可.【解答】解:∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;故答案为:1<x+y<5.【点评】本题考查了一元一次不等式组的应用,关键是先根据已知条件用一个量如y取表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同法再确定另一未知量x的取值范围.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.【分析】(1)根据打篮球的人数和百分比即可解决问题;(2)求出本次调查中喜欢踢足球人数即可解决问题;(3)总人数乘以样本中喜欢跳绳学生人数所占比例可得;【解答】解:(1)总人数=5÷10%=50(人);(2)本次调查中喜欢踢足球人数=50﹣5﹣20﹣8﹣5=12(人),条形图如图所示:(3)估计我校喜欢跳绳学生有1200×=192(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)利用矩形的周长公式、面积公式结合强点的定义,即可找出点N,Q是强点;(2)分a>0及a<0两种情况考虑:①当a>0时,利用强点的定义可得出关于a的一元一次方程,解之可得出a的值,再利用一次函数图象上点的坐标特征可求出b值;②当a<0时,利用强点的定义可得出关于a的一元一次方程,解之可得出a的值,再利用一次函数图象上点的坐标特征可求出b值.综上,即可得出结论.【解答】解:(1)∵(4+4)×2=4×4,(6+3)×2=6×3,∴点N,Q是强点.故答案为:N,Q.(2)分两种情况考虑:①当a>0时,(a+3)×2=3a,∴a=6.∵点P(6,3)在直线y=﹣x+b上,∴3=﹣6+b,∴b=9;②当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6.∵点P(﹣6,3)在直线y=﹣x+b上,∴3=6+b,∴b=﹣3.综上所述:a=6,b=9或a=﹣6,b=﹣3.【点评】本题考查了一次函数图象上点的坐标特征、矩形的周长及面积以及解一元一次方程,解题的关键是:(1)利用强点的定义找出点N,Q是强点;(2)分a>0及a<0两种情况,求出a,b的值.19.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相等,由相似得比例,把已知边代入求出BC的长即可.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∵AB=7,AD=5,DE=10,∴BC===14.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.【分析】设运动x秒时,它们相距5cm,则CQ=(7﹣x)cm,CP=xcm,根据勾股定理及PQ =5cm,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设运动x秒时,它们相距5cm,则CQ=(7﹣x)cm,CP=xcm,根据题意得:x2+(7﹣x)2=52,解得:x1=3,x2=4.答:运动3秒或4秒时,它们相距5cm.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【分析】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,由平行线的性质和角平分线的性质可得∠E=∠APE,即AP=AE,由“ASA”可证△BMF≌△CMP,可得BF=CP,BF=BE,则可得结论.【解答】证明:如图,延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD∵AD∥PM∴∠BAD=∠E,∠CAD=∠APE=∠CPM∴∠E=∠APE∴AP=AE,∵M是BC的中点,∴BM=MC∵BF∥AC∴∠ACB=∠CBF,且BM=MC,∠BMF=∠CMP∴△BMF≌△CMP(ASA)∴PC=BF,∠F=∠CPM,∴∠F=∠E∴BE=BF∴PC=BE=BA+AE=BA+AP【点评】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当的辅助线构造全等三角形是本题的关键.22.【分析】(1)直接将点代入函数解析式,待定系数即可求解函数解析式;(2)点(2,0)代入一次函数解析式,得到n=﹣2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>0,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=﹣,将得到的三个关系联立即可得到,再由题中已知﹣1<h <1,利用h 的范围求出m 的范围.【解答】解:(1)将点(2,0),(3,1),代入一次函数y =mx +n 中,,解得,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx +1,,解得,∴二次函数的解析式是y ═x 2++1.(2)∵一次函数y =mx +n 经过点(2,0),∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =﹣,∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限,∴m >0,∵y 1>y 2,∴1﹣a >1+a ﹣1,∴a <.(3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ),∴k =mh 2+nh +1,且h =﹣, 又∵二次函数y =x 2+x +1也经过A 点,∴k =h 2+h +1,∴mh 2+nh +1=h 2+h +1,∴,又∵﹣1<h <1,∴m<﹣2或m>0.【点评】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.23.【分析】(1)由四边形ABCD是菱形,可证得AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等边三角形,然后由SAS即可证得△BDQ≌△ADP;(2)首先过点Q作QE⊥AB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE 的长,又由勾股定理,即可求得PQ的长,则可求得cos∠BPQ的值.【解答】(1)证明:∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=120°,∴AD=BD,∠CBD=∠A=60°,∵AP=BQ,∴△BDQ≌△ADP(SAS);(2)解:过点Q作QE⊥AB,交AB的延长线于E,∵BQ=AP=2,∵AD∥BC,∴∠QBE=60°,∴QE=QB•sin60°=2×=,BE=QB•cos60°=2×=1,∵AB=AD=3,∴PB=AB﹣AP=3﹣2=1,∴PE=PB+BE=2,∴在Rt△PQE中,PQ==,∴cos∠BPQ===.【点评】此题考查了菱形的性质与勾股定理、三角函数的性质.此题难度适中,解题的关键是数形结合思想的应用.。

2019届浙江省杭州市萧山区中考九年级数学模拟试卷(含详解)

2019届浙江省杭州市萧山区中考九年级数学模拟试卷(含详解)

2019届浙江省杭州市萧山区中考九年级模拟试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一.选择题(共10小题,满分27分)1.相反数不大于它本身的数是( )A. 正数B. 负数C. 非正数D. 非负数【答案】D【解析】解:设这个数为a,根据题意,有-a≤a,所以a≥0.故选D.点睛:理解相反数的定义.实数a的相反数为-a;同时要理解不大于、不小于、非负数、非正数的含义.2.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选:B.点评:本题考查了由几何体判断三视图,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.视频3.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a【答案】A【解析】【分析】根据同底数幂的乘法,合并同类项的法则,因式分解的公式法进行判断即可.【详解】A选项:a2•a5=a7,故此选项错误;B选项:a2-2ab+b2=(a-b)2,故此选项正确;C选项:-(a-b)=-a+b,故此选项正确;D选项:-3a+2a=-a,故此选项正确;故选:A.【点睛】考查了同底数幂的乘法,合并同类项,因式分解,熟记这些法则是解题的关键.4.如图直线AB、CD、EF被直线a、b所截,若∠1=100°,∠2=100°,∠3=125°,∠4=55°,下列结论错误的是()A. EF∥CD∥ABB.C.D.【答案】C【解析】【分析】根据平行线的判定得出AB∥CD∥EF,根据平行线分线段成比例解答.【详解】∵∠1=100°,∠2=100°,∠3=125°,∠4=55°,∴AB∥CD∥EF,∴,故选:C.【点睛】考查了平行线分线段成比例的应用,根据平行线的判定得出AB∥CD∥EF是解此题的关键.5.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A. x(x+1)=1035B. x(x﹣1)=1035×2C. x(x﹣1)=1035D. 2x(x+1)=1035【答案】C【解析】∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.6.下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在3 6≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是A. 该学校教职工总人数是50人B. 年龄在40≤x<42小组的教职工人数占该学校总人数的20%C. 教职工年龄的中位数一定落在40≤x<42这一组D. 教职工年龄的众数一定在38≤x<40这一组【答案】D【解析】试题分析:各组的频数的和就是总人数,然后根据百分比、众数、中位数的定义作出判断:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校总人数的比例是:,故正确;C、教职工年龄的中位数是25和26人的平均数,它们都落在40≤x<42这一组,故正确;D、教职工年龄的众数不一定在38≤x<40一组不能确定,如若38岁的5人,39岁的6人,40岁的9人,41岁的1人,众数就是40,在40≤x<42这一组,故错误。

浙江省杭州市2019-2020学年中考第二次模拟数学试题含解析

浙江省杭州市2019-2020学年中考第二次模拟数学试题含解析

浙江省杭州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)3.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A.B.C.D.4.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.34y x=D.1yx=5.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.66.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )A.254B.15 C.454D.97.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°8.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a <1;④abc>1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③9.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或510.如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A.300sinα米B.300cosα米C.300tanα米D.300 tanα米11.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()12.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F .若∠ACF=65°,则∠E= .14.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x ,则依题意所列的方程是_____________.15.点(a -1,y 1)、(a +1,y 2)在反比例函数y =kx(k >0)的图象上,若y 1<y 2,则a 的范围是________. 16.如图,直线a ∥b ,∠l=60°,∠2=40°,则∠3=_____.17.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .18.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米? 20.(6分)(1)计算:2(2)(3)12sin 60π︒-+-+-;(2)化简:2121()a a a a a--÷-.21.(6分)Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 的中点,连接DE ,OD .(1)如图①,求∠ODE 的大小;(2)如图②,连接OC 交DE 于点F ,若OF=CF ,求∠A 的大小.22.(8分)如图,∠AOB=90°,反比例函数y=﹣2x(x <0)的图象过点A (﹣1,a ),反比例函数y=kx (k >0,x >0)的图象过点B ,且AB ∥x 轴. (1)求a 和k 的值;(2)过点B 作MN ∥OA ,交x 轴于点M ,交y 轴于点N ,交双曲线y=kx于另一点C ,求△OBC 的面积.23.(8分)如图所示:△ABC 是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB 的垂直平分线l ,垂足为H .(保留作图痕迹,不写作法); (2)垂直平分线l 交AC 于点D ,求证:AB=2DH .24.(10分)解方程组3{3814x y x y -=-= 25.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.26.(12分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. [收集数据]从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下: 甲:30 60 60 70 60 80 30 90 100 6060 100 80 60 70 60 60 90 60 60乙:80 90 40 60 80 80 90 40 80 5080 70 70 70 70 60 80 50 80 80[整理、描述数据]按如下分数段整理、描述这两组样本数据: 学校人数成绩x3050x ≤≤ 5080x ≤< 80100x ≤<甲 2 14 4 乙4142(说明:优秀成绩为80100x <≤,良好成绩为5080,x <≤合格成绩为3050x ≤≤.)学校平均分中位数众数甲676060乙7075a其中a .[得出结论](1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是_校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性)27.(12分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为;题探究:(2)①当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为;②当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=3,∠DEM=15°,则DM=.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【分析】设参加酒会的人数为x 人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案. 【详解】设参加酒会的人数为x 人,依题可得:12x (x-1)=55, 化简得:x 2-x-110=0,解得:x 1=11,x 2=-10(舍去), 故答案为C. 【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 2.D 【解析】 【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到 ,于是得到结论. 【详解】解:∵AD′=AD=4, AO=12AB=1,∴,∵C′D′=4,C′D′∥AB ,∴C′(4,), 故选:D . 【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键. 3.C 【解析】A 、B 、D 不是该几何体的视图,C 是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=1x(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确5.D【解析】【分析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S1=4+4-1×1=2.故选D.6.C【解析】【分析】由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.【详解】由折叠得到EB=EF,∠B=∠DFE,在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF CE AB BC=,则AB=•EF BCCE=549⨯=454,故选C.【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.7.C【解析】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.8.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.9.D【解析】【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.10.A【解析】【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【详解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO 的关系是解题关键.11.B【解析】【分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.12.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50°.【解析】【分析】【详解】解:连接DF,连接AF交CE于G,∵EF为⊙O的切线,∴∠OFE=90°,∵AB为直径,H为CD的中点∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案为:50°.14.100(1+x)2=121【解析】【分析】根据题意给出的等量关系即可求出答案.【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.15.﹣1<a<1【解析】【分析】【详解】解:∵k>0,∴在图象的每一支上,y随x的增大而减小,①当点(a-1,y1)、(a+1,y2)在图象的同一支上,∵y1<y2,∴a-1>a+1,解得:无解;②当点(a-1,y1)、(a+1,y2)在图象的两支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a <1.故答案为:-1<a <1.【点睛】本题考查反比例函数的性质.16.80°【解析】【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【详解】解:∵a ∥b ,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键. 17.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.18.214a . 【解析】【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a .过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'D12=AC'12=a,然后根据S△AB'C'12=AB'•C'D即可求解.【详解】∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'D12=AC'12=a,∴S△AB'C'12=AB'•C'D12=a•12a14=a1.故答案为:14a1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1平方米【解析】【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.【详解】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=1.答:实际平均每天施工1平方米.【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.20.(1)(2)11a a +-. 【解析】【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())022π12sin60︒-+-+-=4+1+|1﹣=4+1+|11(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭ =()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+-- =a 1a 1+-. 【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.21.(1)∠ODE=90°;(2)∠A=45°. 【解析】分析:(Ⅰ)连接OE ,BD ,利用全等三角形的判定和性质解答即可;(Ⅱ)利用中位线的判定和定理解答即可.详解:(Ⅰ)连接OE ,BD .∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠CDB=90°.∵E 点是BC 的中点,∴DE=12BC=BE . ∵OD=OB ,OE=OE ,∴△ODE ≌△OBE ,∴∠ODE=∠OBE .∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF ,CE=EB ,∴FE 是△COB 的中位线,∴FE ∥OB ,∴∠AOD=∠ODE ,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD ,∴∠A=∠ADO=18090452︒-︒=︒.点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.22.(1)a=2,k=8(2)OBC S V =1.【解析】分析:(1)把A (-1,a )代入反比例函数2x得到A (-1,2),过A 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,根据相似三角形的性质得到B (4,2),于是得到k=4×2=8; (2)求的直线AO 的解析式为y=-2x ,设直线MN 的解析式为y=-2x+b ,得到直线MN 的解析式为y=-2x+10,解方程组得到C (1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x (x <0)的图象过点A (﹣1,a ), ∴a=﹣21-=2, ∴A (﹣1,2),过A 作AE ⊥x 轴于E ,BF ⊥⊥x 轴于F ,∴AE=2,OE=1,∵AB ∥x 轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF ,∴△AEO ∽△OFB ,∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.23.(1)见解析;(2)证明见解析.【解析】【分析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于12AB为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【详解】解:(1)如图所示:直线l即为所求;(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵12DH BC BC AB==,,∴AB=2DH.【点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.24.21 xy=⎧⎨=-⎩【解析】解:由①得③把③代入②得把代人③得∴原方程组的解为25.(1)300米/分;(2)y=﹣300x+3000;(3)7811分.【解析】【分析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可. (3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间: 24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.26.80;(1)甲;(2)110;(3)乙学校竞赛成绩较好,理由见解析 【解析】【分析】首先根据乙校的成绩结合众数的定义即可得出a 的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,∴a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,∵小明这次竞赛得了70分,在他们学校排名属中游略偏上,∴小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:212010=, 故答案为:110; (3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.27. (1) DM=AD+AP ;(2) ①DM=AD ﹣AP ; ②DM=AP ﹣AD ;(3) 3﹣3或3﹣1.【解析】【分析】(1)根据正方形的性质和全等三角形的判定和性质得出△ADP ≌△PFN ,进而解答即可;(2)①根据正方形的性质和全等三角形的判定和性质得出△ADP ≌△PFN ,进而解答即可; ②根据正方形的性质和全等三角形的判定和性质得出△ADP ≌△PFN ,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可.【详解】(1)DM=AD+AP ,理由如下:∵正方形ABCD ,∴DC=AB ,∠DAP =90°,∵将DP 绕点P 旋转90°得到EP ,连接DE ,过点E 作CD 的垂线,交射线DC 于M ,交射线AB 于N , ∴DP=PE ,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN ,在△ADP 与△NPE 中,0{90ADP NPEDAP PNE DP PE∠=∠∠=∠==,∴△ADP ≌△NPE (AAS ),∴AD=PN ,AP=EN ,∴AN=DM=AP+PN=AD+AP ;(2)①DM=AD ﹣AP ,理由如下:∵正方形ABCD ,∴DC=AB ,∠DAP=90°,∵将DP 绕点P 旋转90°得到EP ,连接DE ,过点E 作CD 的垂线,交射线DC 于M ,交射线AB 于N , ∴DP=PE ,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN ,在△ADP 与△NPE 中,0{90ADP NPEDAP PNE DP PE∠=∠∠=∠==,∴△ADP ≌△NPE (AAS ),∴AD=PN ,AP=EN ,∴AN=DM=PN ﹣AP=AD ﹣AP ;②DM=AP ﹣AD ,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN ,又∵∠A=∠PNE=90°,DP=PE ,∴△DAP ≌△PEN ,∴A D=PN ,∴DM=AN=AP ﹣PN=AP ﹣AD ;(3)有两种情况,如图2,DM=333,31;①如图2:∵∠DEM=15°,∴∠PDA=∠PDE ﹣∠ADE=45°﹣15°=30°,在Rt △PAD 中3AD=03tan 303AP ==3,∴DM=AD ﹣AP=33;②如图3:∵∠DEM=15°,∴∠PDA=∠PDE ﹣∠ADE=45°﹣15°=30°,在Rt △PAD 中3333=1, ∴DM=AP ﹣31.故答案为;DM=AD+AP;DM=AD﹣AP;3﹣1.【点睛】此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出△ADP≌△PFN是解本题的关键.。

2019年浙江省杭州市中考数学二模试卷附解析

2019年浙江省杭州市中考数学二模试卷附解析

2019年浙江省杭州市中考数学二模试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A .路灯的左侧B .路灯的右侧C .路灯的下方D .以上都可以2.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( )A .12B .13C .23D .143.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周,所得圆柱的侧面积是( )A.36лB.18лC.12лD.9л4.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .%10B .%15C .%20D .%25 5.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 6.了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的( )A .平均数B .方差C .众数D .频数分布 7. 解方程22(51)3(51)x x -=-的最适当的方法应是( ) A . 直接开平方法 B .配方法C .分式法D .因式分解法 8.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D . 9.若3520x x -≤+,则( )A .x 有最大的整数解一6B .x 有最小的整数解一5C .x 有最大的整数解 6D .x 有最大的整数解 510.三个物体的主视图都有圆,那么这三个物体可能是()A.立方体、球、圆柱B.球、圆柱、圆锥C.直四棱柱、圆柱、三棱锥D.圆锥、正二十面体、直六棱柱11.己在△ABC中,∠A=55°,∠C=42°,则∠B的数为()A. 42°B.55°C.83°D.97°二、填空题12.在梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,连结BD,过A作BD垂线交BC 于E,连结ED,如果EC=5 cm,CD=12 cm,那么梯形ABCD的面积是 cm2.13.“如果a>b,那么a-1>b-1”这个命题是________命题.14.在相同条件下,对30辆同一型号的汽车进行耗油1 L所行驶路程的试验,根据测得的数据画出频数分布直方图如图所示.本次试验中,耗油1 L所行驶路程在13.8~14.3 km范围内的汽车共有辆.30辆汽车耗油1 L所行驶路程的频数分布直方图15.如果不等式2(1)3--≤的正整数解是 1、2、3,那么a的取值范围是.x a16.乐天借到一本有72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x页,所列不等式为.17.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需要用根相同的火柴棒.18.如图,正方形A的面积是.19.若|21||5|0x y x y-+++-=,则x= , y= .20.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到如图②所示的4张扑克牌,他很快确定哪一张牌被旋转过,到底哪一张? 答: .21.三个连续奇数的和为69,则这三个数分别为 .22.如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是____________________________(将你认为正确的结论序号填上).三、解答题23.如图, 画出图中各几何体的主视图.24.如图,已知OA 、OB 为⊙O 的半径,C 、D 分别是OA 、OB 的中点.求证:(1)∠A=∠B ;(2)AE=BE .25.已知抛物线22(1)4y m x mx m =-++-图象过原点,开口向上.(1)求m 的值,并写出解析式;(2)求顶点坐标及对称轴;(3)当x为何值时,y 是最值?是多少?26.某厂加工学生书包,每人每天可裁剪书包 60个或缝制书包20个,现有技工 12人,问应安排几人裁剪、几人缝制,才能使裁剪出来的书包正好缝制完.27.在如图的方格纸中,画出图中的△ABC向右平移5格后的△A′B′C′,然后再画出将△A′B′C′向上平移2格后的△A″B″C″.28.一个布袋中放有一个红球和两个白球,现在从布袋里任意摸出一个球,请判断下列事件是必然事件、不可能事件还是随机事件:事件判断摸出的这个球是红球摸出的这个球不是红球揍出的这个球是黑球摸出的这个球不是黑球摸出的这个球是红球或白球29.小明家的客厅长5m ,宽3 m,高2.5m.现要在离地面0.5m 的A处装一个电源插座,开关装在离天花板l m 的B处.用电线把A、B两处连起来,且A、B点都在墙的中间(如图).为安全起见,电线应固定在客厅的天花板、地板或墙上,而不能从客厅中穿过.电工最少需要多长的电线? 30.解下列方程:(1)0.511 0.20.3x x+-=(2)0.40.950.030.020.520.03x x x+-+-=【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.A6.D7.D8.B9.B10.B11.C二、填空题12.18613.真14.1215.13a≤<16.8x+2×5≥7217.2518.62519.3,220.第一张方块421.21,23,2522.①②③三、解答题23.24.(1)∵OA、OB为⊙O的半径,∴OA=OB,∵C、D分别为OA、OB的中点,∴OC=12OA ,OD=12OB,∴OC=OD.又∵∠AOB=∠AOB,∴△OAD≌△OBC(SAS),∴∠A=∠B,∠ODA= ∠OCB.(2)∴∠ACE=∠BDE,∵∠A=∠A ,AC=DB,∴△ACE≌△BDE(ASA),∴AE=BE.25.(1)∵抛物线经过原点,∴240m -=,∵开口向上,∴2m =± ∴抛物线的解析式为22y x x =+(2)顶点坐标( 一 1,一1),对称轴为直线x=-1.(3)当 x=-1 时,y 有量小值为-1. 26.设裁剪、缝制的人数分别为x 、y 时,才能使裁剪出来的书包正好缝制完,则126020x y x y +=⎧⎨=⎩, 解这个方程组,得39x y =⎧⎨=⎩ ,经检验,符合题意. 答:裁剪、缝制的人数分别为 3、9时,才能使裁剪出来的书包正好缝制完. 27.略.28.随机事件,随机事件,不可能事件,必然事件,必然事件29.7cm30. (1)1310x = (2)9x =。

浙江省杭州市2019-2020学年数学中考二模试卷(含答案)

浙江省杭州市2019-2020学年数学中考二模试卷(含答案)

浙江省杭州市2019-2020学年数学中考二模试卷(含答案)一、单选题1.-2的相反数是()A.2B.-2C.D.【答案】A【考点】相反数及有理数的相反数2.如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是()A. B. C. D.【答案】B【考点】简单组合体的三视图3.下列变形正确的是()A.a6=a2•a3B.1﹣2a+4b=1﹣2(a+2b)C.x2﹣2x﹣3=(x﹣1)2﹣1D.1﹣a+ a2=(a﹣1)2【答案】 D【考点】同底数幂的乘法,因式分解﹣运用公式法,添括号法则及应用,配方法的应用4.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 10【答案】 D【考点】相似三角形的判定与性质5.用一根细铁丝可以折成边长为10cm的等边三角形,也可以折成面积为50cm2的长方形.设所折成的长方形的一边长为xcm,可列方程为()A.x(10﹣x)=50B.x(30﹣x)=50C.x(15﹣x)=50D.x(30﹣2x)=50【答案】C【考点】一元二次方程的实际应用-几何问题6.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A. 8,6B. 8,5C. 52,53D. 52,52【答案】D7.在平面直角坐标系中,有一条线段AB,已知点A(﹣3,0)和B(0,4),平移线段AB得到线段A1B1.若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为()A.12B.15C.24D.30【答案】B【考点】平行四边形的性质,平移的性质8.如图,四边形ABCD中,∠ABC=Rt∠.已知∠A=α,外角∠DCE=β,BC=a,CD=b,则下列结论错误的是()A. ∠ADC=90°﹣α+βB. 点D到BE的距离为b•sinβC. AD=D. 点D到AB的距离为a+bcosβ【答案】C【考点】点到直线的距离,三角形的外角性质,锐角三角函数的定义9.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,点E是线段AD上一点,以点E为圆心,r为半径作⊙E.若⊙E与边AB,AC相切,而与边BC相交,则半径r的取值范围是()A. r>B. <r≤4C. <r≤4D. <r≤【答案】 D【考点】直线与圆的位置关系,切线的性质,相似三角形的判定与性质10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF= 时,点E的运动路程为或或,则下列判断正确的是()A. ①②都对B. ①②都错C. ①对②错D. ①错②对【答案】A【考点】分段函数,矩形的性质,相似三角形的判定与性质,通过函数图像获取信息并解决问题,动点问题的函数图像二、填空题11.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个,先从袋中取出m(m≥1)个红球,不放回,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A.(1)若A为必然事件,则m 的值为________;(2)若A发生的概率为,则m的值为________.【答案】3;1【考点】随机事件,概率的意义12.如图,直线a,b分别与直线c,d相交,且∠1+∠3=135°,∠2﹣∠3=45°,若∠3=α,则∠4的度数为________.【答案】180°﹣α【考点】平行线的判定与性质13.如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=________°.【答案】140【考点】圆心角、弧、弦的关系,圆内接四边形的性质14.已知点M是函数y= x与y= 的图象的交点,且OM=4,则点M的坐标为________.【答案】(2,2 )或(﹣2,﹣2 )【考点】勾股定理,一次函数的性质15.在平面直角坐标系xOy中,已知点A(0,﹣2),点B(3m,2m+1),点C(6,2),点D.(1)线段AC的中点E的坐标为________;(2)▱ABCD的对角线BD长的最小值为________.【答案】(1)(3,0)(2)【考点】垂线段最短,平行四边形的性质,相似三角形的判定与性质,一次函数图像与坐标轴交点问题三、解答题16.计算:(﹣2018)2+2017×(﹣2019).【答案】解:(﹣2018)2+2017×(﹣2019)=20182﹣(2018﹣1)×(2018+1)=20182﹣20182+1=1.【考点】含乘方的有理数混合运算17.某学校为了解本校九年级学生期末考试数学成续情况,决定进行抽样分析,已知该校九年级共有10个班,每班40名学生,请根据要求回答下列问题:(1)若要从全年级学生中抽取一个40人的样本,你认为以下抽样方法中比较合理的有________.(只要填写序号)①随机抽取一个班级的学生;②在全年级学生中随机抽取40名男学生:③在全年级10个班中各随机抽取4名学生.(2)将抽取的40名学生的数学成绩进行分组,并绘制频数表和成分布统计图(不完整)如表格、图:①C、D类圆心角度数分别为________;②估计全年级A、B类学生人数大约共有________.(3)学校为了解其他学校数学成绩情况,将同层次的G学校和J学校的抽样数据进行对比,得下表:你认为哪所学校教学效果较好?说明你的理由.【答案】(1)③(2)72°、36°;280人(3)解:G学校教学效果较好,理由:因为A、B两类频率之和G学校大于J学校,即相对高分人数G学校多于J学校,所以G学校教学效果较好.【考点】频数与频率,频数(率)分布表,扇形统计图18.如图,△ABC中,D是AC上一点,E是BD上一点,∠A=∠CBD=∠DCE.(1)求证:△ABC∽△CDE;(2)若BD=3DE,试求的值.【答案】(1)证明:∵∠DCE=∠DBC,∠CDE=∠CDB,∴△CDE∽△BDC,同理:△BDC∽△ABC,∴△ABC∽△CDE(2)解:∵△CDE∽△BDC,∴CD:BD=DE:DC,∴CD2=DE×BD,∵BD=3DE,∴CD= DE,由(1)得:【考点】相似三角形的判定与性质19.已知关于a的不等式组.(1)求此不等式组的解;(2)试比较a﹣3与的大小.【答案】(1)解:,解不等式①,得a>2,解不等式②,得a<4,所以原不等式组的解集为2<a<4(2)解:∵2<a<4,∴a﹣4<0,∴a﹣3﹣= <0,∴a﹣3<【考点】一元一次不等式的应用,解一元一次不等式组20.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.【答案】(1)解:①∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF;②过点E作MN⊥BC,垂直为N,交AD于M,∵CE=EF,∴N是CF的中点,∵BC=2BF,∴,又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴ED= DM= CN= a(2)解:如图所示:过点E作MN⊥BC,垂直为N,交AD于M,∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.∴FN=CN.又∵BC=2BF,∴FC= a,∴CN= a,∴EN=BN= a,∴DE= a.【考点】全等三角形的判定与性质,等腰三角形的性质,正方形的性质,等腰直角三角形21.在平面直角坐标系中,已知二次函数y=k(x-a)(x-b),其中a≠b.(1)若此二次函数图象经过点(0,k),试求a,b满足的关系式.(2)若此二次函数和函数y=x2﹣2x的图象关于直线x=2对称,求该函数的表达式.(3)若a+b=4,且当0≤x≤3时,有1≤y≤4,求a的值.【答案】(1)解:将(0,k)代入y=k(x﹣ax﹣b),得kab=k,∵k≠0,∴ab=1(2)解:由(1)知,k=1,易得函数y=x2﹣2x与x轴交点的坐标为(0,0)、(2,0),因为此二次函数和函数y=x2﹣2x的图象关于直线x=2对称,所以此二次函数与x轴的交点坐标为(2,0),(4,0),∴该函数解析式为:y=(x﹣2)(x﹣4)=x2﹣6x+8(3)解:∵a+b=4,∴函数表达式变形为y=k(x﹣a)(x+a﹣4).①当k>0时,则根据题意可得:当x=2,y=1;当x=0时,y=4,∴,消去k,整理,得3a2﹣12a+16=0,∵△=﹣48<0,∴此方程无解;②当k<0时,则根据题意可得:当x=2,y=4,当x=0时,y=1,∴,消去k,整理,得,3a2﹣12a﹣4=0,解得a= .【考点】二次函数图象的几何变换,二次函数图像与坐标轴的交点问题22.如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF.(1)若∠A=70°,请直接写出∠ABF的度数.(2)若点F是CD的中点,①求sinA的值;②求证:S△ABE= S ABCD.(3)设=k, =m,试用含k的代数式表示m.【答案】(1)解:如图1中,∵四边形ABCD是菱形,∴AB∥CD,∠C=∠A=70°,∵BA=BF=BC,∴∠BFC=∠C=70°,∴∠ABF=∠BFC=70°(2)解:①如图2中,延长EF交BC的延长线于M,作BG⊥CD于G.∵BC=BA=BF,∴CG=GF= CD= BC,∴cosA=cos∠BCG= ,∴sinA=sin∠BCG= ;②∵四边形ABCD是菱形,F是CD中点,∴DF=CF,∠D=∠FCM,∠EFD=∠MFC,∴△DEF≌△CMF,∴EF=FM,∴S=S△EMB,S△BEF= S△MBE,四边形BCDE∴S△ABE= S ABCD(3)解:如图3中,设菱形的边长为a.∵∠A=∠BFE=∠BCD,∴∠MFC=∠DFE=∠FBC,∵∠M=∠M,∴△MFC∽△MBF,∴FM2=MC•MB,∵AD∥MB,∴△DEF∽△CMF,∴=m,∵=k,∴DE=ka,AE=EF=(1﹣k)a,CM= ,FM= ,∴[ ]2= •(a+ ),∴m=【考点】三角形的面积,等边三角形的判定与性质,菱形的性质,相似三角形的判定与性质,锐角三角函数的定义,同角三角函数的关系11 / 11。

2019年浙江省杭州市萧山区中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.下列各式从左到右的变形正确的是()A.﹣2x+4y=﹣2(x﹣4y)B.a2﹣6=(a+2)(a﹣3)C.(a+b)2=a2+b2D.x2﹣y2=(x﹣y)(x+y)3.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD4.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A .B .C .D .5.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,56.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.47.下面平面图形中能围成三棱柱的是()A.B.C.D.8.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:①<0;②a ﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A.①②③B.①③④C.①②④D.①②③④10.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二.填空题(共6小题,满分24分,每小题4分)11.有10个正实数,这些数中每两个乘积恰好为1,这时甲同学断言,任何9个数的和不小于;乙同学断言:任何9个数的和小于,则两位同学正确.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为.16.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=.三.解答题(共7小题,满分66分)17.(6分)定义的运算符号“@”的运算法则为X@Y=,试求(2@6)@8的值.18.(8分)为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?19.(8分)我们学习了因式分解之后可以解某些高次方程,例如,一元二次方程x2+x﹣2=0可以通过因式分解化为:(x﹣1)(x+2)=0,则方程的两个解为x=1和x=﹣2.反之,如果x=1是某方程ax2+bx+c=0的一个解,则多项式ax2+bx+c必有一个因式是(x﹣1),在理解上文的基础上,试找出多项式x3+x2﹣3x+1的一个因式,并将这个多项式因式分解.20.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.21.(10分)有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为;22.(12分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.23.(12分)抛物线y1=ax2+c与x轴交于A、B两点,与y轴交于点C,点P在抛物线上,过P(1,﹣3),B(4,0)两点作直线y2=kx+b.(1)求a、c的值;(2)根据图象直接写出y1>y2时,x的取值范围;(3)在抛物线上是否存在点M,使得S△ABP=5S△ABM,若存在,求出点M的坐标,若不存在,请说明理由.2019年浙江省杭州市萧山区中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】分别利用因式分解,完全平方公式和平方差公式进行分析即可.【解答】解:A、﹣2x+4y=﹣2(x+2y),故原题计算错误;B、a2﹣6≠(a+2)(a﹣3),故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、x2﹣y2=(x﹣y)(x+y),故原题计算正确;故选:D.【点评】此题主要考查了分解因式和完全平方公式和平方差公式,关键是掌握完全平方公式:(a ±b)2=a2±2ab+b2.3.【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B.【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.4.【分析】有工作总量180或120,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“小明打120个字所用的时间和小张打180个字所用的时间相等”.等量关系为:小明打120个字所用的时间=小张打180个字所用的时间.【解答】解:小明打字速度为x个/分钟,那么小明打120个字所需要的时间为:;易得小张打字速度为(x+6)个/分钟,小张打180个字所需要的时间为:;∴可列方程为:,故选:C.【点评】解决本题的关键是根据不同的工作量用的时间相等得到相应的等量关系.5.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故选:A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.7.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、能围成三棱柱,故选项正确;B、折叠后有两个面重合,不能围成三棱柱,故选项错误;C、不能围成三棱柱,故选项错误;D、折叠后有两个侧面重合,不能围成三棱柱,故选项错误.故选:A.【点评】考查了展开图折叠成几何体,解题时勿忘记三棱柱的特征及正方体展开图的各种情形.8.【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.【解答】解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.【点评】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a与邻边b的比叫做∠A的正切.9.【分析】根据开口方向得出a<0,抛物线与y轴的交点得出c>0,对称轴x=﹣=﹣1,得出b=2a,当x=2时,y=0,得出4a+2b+c=0,根据抛物线的增减性得出y>y2;根据上加下减左1加右减的原则得出平移后的解析式.【解答】解:∵开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵对称轴x=﹣=﹣1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=﹣8a,∴a﹣b+c=﹣9a,故②正确;∵对称轴为x=﹣1,当x=﹣1时,抛物线有最大值,﹣3距离﹣1有2个单位长度,距离﹣1有个单位长度,∴y1>y2,故③正确;∵抛物线过(﹣4,0)(2,0),对称轴为x=﹣1,∴设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=﹣8a,∴k=﹣9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9),故④正确;正确结论有①②③④;故选:D.【点评】本题考查了二次函数的图象与几何变换以及二次函数的图象与系数的关系,掌握二次函数的性质是解题的关键.10.【分析】依据全等三角形的性质即可得到∠ADG=∠AFG;依据DG=GF=DE=EF,即可得到四边形DEFG为菱形;依据相似三角形的对应边成比例,即可得到DG2=AE•EG;依据Rt △CEF中,CE2+CF2=EF2,即可得到方程x2+22=(4﹣x)2,求得x的值即可得出结论.【解答】解:①由折叠可得,AD=AF,DG=FG,在△ADG和△AFG中,,∴△ADG≌△AFG(SSS),∴∠ADG=∠AFG,故①正确;②∵GF∥DC,∴∠EGF=∠DEG,由翻折的性质可知:GD=GF,DE=EF,∠DGE=∠EGF,∴∠DGE=∠DEG,∴GD=DE,∴DG=GF=DE=EF,∴四边形DEFG为菱形,故②正确;③如图所示,连接DF交AE于O,∵四边形DEFG为菱形,∴GE⊥DF,OG=OE=GE,∵∠DOE=∠ADE=90°,∠OED=∠DEA,∴△DOE∽△ADE,∴=,即DE2=EO•AE,∵EO=GE,DE=DG,∴DG2=AE•EG,故③正确;④由折叠可得,AF=AD=5,∴Rt△ABF中,BF==3,∴CF=5﹣3=2,设CE=x,则DE=EF=4﹣x,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(4﹣x)2,解得x=,∴CE=,故④错误;故选:B.【点评】本题属于折叠问题,主要考查了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到对应边成比例,依据勾股定理列出关于x的方程是解题答问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.【分析】由每两个乘积恰好为1,判断任意两数互为倒数,任意9数的和列出代数式,根据a2+b2≥2ab从而确定和的范围.【解答】解:∵这些数中每两个乘积恰好为1,且都是正数,∴任意两个数互为倒数,故可设这两数分别为x,(x>0,>0),且x•=1;根据题意,任意9个数的和为:①=5x+≥2=4;②=4x+≥2=4;∵4>,∴任意9个数的和不小于.故答案为:甲.【点评】本题主要考查倒数的性质及a2+b2≥2ab的应用,根据题意列出代数式并确定范围是关键.12.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.13.【分析】根据若从中任摸一个球,恰好是黑球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.14.【分析】根据该方程是关于x得一元二次方程,得到关于k得一个不等式,根据该方程有两个不相等的实数根,结合根的判别式公式,得到一个关于k得不等式,分别解两个不等式,解之取公共部分即可得到答案.【解答】解:∵原方程是关于x得一元二次方程,∴k﹣1≠0解得:k≠1,又∵原方程有两个不相等的实数根,∴△=4+4(k﹣1)>0,解得:k>0,即k得取值范围是:k>0且k≠1,故答案为:k>0且k≠1.【点评】本题考查了根的判别式和一元二次方程的定义,正确掌握根的判别式公式和一元二次方程的定义是解题的关键.15.【分析】作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.【解答】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S=BC•DH=10,△BDC=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或﹣5(舍),故答案为:5..【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.16.【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.故答案为:15°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.三.解答题(共7小题,满分66分)17.【分析】根据新定义先运算2@6,得到2@6=4,然后再运算4@8.【解答】解:(2@6)@8=@8=4@8==6.【点评】本题考查了实数的运算:先进行实数的乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了阅读理解能力.18.【分析】(1)根据C等级的人数和所占的百分比求出这次随机抽取的学生数;(2)用抽取的总人数乘以B等级所占的百分比,从而补全统计图;(3)用该校九年级的总人数乘以优秀的人数所占的百分比,即可得出答案.【解答】解:(1)这次随机抽取的学生共有:20÷50%=40(人);(2)B等级的人数是:40×27.5%=11人,如图:(3)根据题意得:×1200=480(人),答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.19.【分析】由已知得出多项式x3+x2﹣3x+1的一个因式是x﹣1,设x3+x2﹣3x+1=(x﹣1)(x2+ax ﹣1),展开后根据对应系数相等得出1=a﹣1,﹣3=﹣a﹣1,求出a即可.【解答】解:∵x=1是方程x3+x2﹣3x+1=0的一个解,∴多项式x3+x2﹣3x+1的一个因式是x﹣1,设x3+x2﹣3x+1=(x﹣1)(x2+ax﹣1),∴x3+x2﹣3x+1=x3+ax2﹣x2﹣ax﹣x+1=x3+(a﹣1)x2+(﹣a﹣1)x+1,∴1=a﹣1,﹣3=﹣a﹣1,解得:a=2,∴x3+x2﹣3x+1=(x﹣1)(x2+2x﹣1),即多项式x3+x2﹣3x+1的另一个因式是x2+2x﹣1,这个多项式因式分解为x3+x2﹣3x+1=(x﹣1)(x2+2x﹣1).【点评】本题考查了解一元二次方程﹣因式分解法和因式分解的应用,主要考查学生的理解能力和阅读能力,题目比较好,但有一定的难度.20.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键.21.【分析】(1)依据函数表达式中分母不等于0,即可得到自变量x的取值范围;(2)把x=﹣1代入函数解析式,即可得到m的值;(3)依据各点的坐标描点连线,即可得到函数图象;(4)依据函数图象,即可得到函数的增减性;(5)依据函数图象,即可得到当x1<3时,y1<1;当0<x2<x3时,1<y3<y2.【解答】解:(1)∵x﹣3≠0,∴x≠3;(2)当x=﹣1时,y===;(3)如图所示:(4)由图象可得,当x>3时,y随x的增大而减小(答案不唯一);(5)由图象可得,当x1<3时,y1<1;当0<x2<x3时,1<y3<y2.∴y1、y2、y3之间的大小关系为y1<y3<y2.故答案为:x≠3;;当x>3时,y随x的增大而减小;y1<y3<y2.【点评】本题主要考查了反比例函数的图象与性质,用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.22.【分析】(1)先求出PC=6、PB=10、RP=2,再证△PBC∽△PRQ得,据此可得;(2)证△RMQ∽△PCB得,根据PC=6、BC=8知,据此可得答案;(3)由PD∥AB知,据此可得、PN=,由、RM=y知,根据PD∥MQ得,即,整理可得函数解析式,当点R与点A重合时,PQ取得最大值,根据△ABQ∽△NAB知=,求得x=,从而得出x的取值范围.【解答】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,在Rt△BCP中,∠C=90°,∴,∵,∴PC=6,∴RP=2,∴,∵RQ⊥BQ,∴∠RQP=90°,∴∠C=∠RQP,∵∠BPC=∠RPQ,∴△PBC∽△PRQ,∴,∴,∴;(2)的比值随点Q的运动没有变化,如图1,∵MQ∥AB,∴∠1=∠ABP,∠QMR=∠A,∵∠C=∠A=90°,∴∠QMR=∠C=90°,∵RQ⊥BQ,∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,∴△RMQ∽△PCB,∴,∵PC=6,BC=8,∴,∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,∵PD∥AB,∴,∵NA=ND+AD=8+ND,∴,∴,∴,∵PD∥AB,MQ∥AB,∴PD∥MQ,∴,∵,RM=y,∴又PD=2,,∴,∴,如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,∴△ABQ∽△NAB,∴=,即=,解得x=,则它的定义域是.【点评】本题主要考查相似三角形的综合题,解题的关键是熟练掌握正方形的性质、勾股定理及相似三角形的判定与性质.23.【分析】(1)把P点和B点的坐标代入抛物线解析式,即可求出答案;(2)根据函数的图象得出即可;(3)根据面积公式求出M点到x轴的距离,得出M点的纵坐标,再求出M点的横坐标即可.【解答】解:(1)将P(1,﹣3)、B(4,0)代入y=ax2+c得:,解得:;(2)由图象得x>4或x<1;(3)在抛物线上存在点M,使得S△ABP=5S△ABM,理由是:抛物线的解析式是y=x2﹣,设M点的纵坐标为e,∵P(1,﹣3),∴由S△ABP=5S△ABM得:×AB×|﹣3|=5×AB×|e|,解得;|e|=,当e=时,x2﹣=,解得:x=±,当e=﹣时,x2﹣=﹣,解得:x=±,即M点的坐标是(,)(﹣,)(,﹣)(﹣,﹣).【点评】本题考查了用待定系数法求出二次函数的解析式、二次函数和一次函数的图象和性质,函数图象上点的坐标特征等知识点,能正确运用性质进行计算是解此题的关键.。

萧山区中考数学模拟试题及参考答案

萧山区中考数学模拟试题及参考答案

2019年萧山区中考数学模拟试题及参考答案2019年萧山区中考数学模拟试题
考生须知:
1.本试卷分试题卷和答题卷两局部,总分值120分,考试时间100分钟。

2.答题时,应该在答题卷指定位置内写明学校、姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷。

试题卷
一、仔细选一选(此题有10个小题,每题3分,共30分)
下面每题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案。

1.【原创】按100分制60分及格来算,总分值是150分的及格分是( )
A、60分
B、72分
C、90分
D、105分
2.【原创】地球的外表积约为5.1亿Km2 ,其中陆地面积约为地球外表积的0.29 ,那么地球上陆地面积约为( )
A、B、C、D、
3.【原创】函数中自变量的取值范围是( )
A、B、C、D、
4.【原创】以下哪一个数与方程的根最接近( )
A、2
B、3
C、4
D、5
5.【原创】。

当时, =7 ,那么,当=3时, = ( )
A、B、C、D、
2019年萧山区中考数学模拟试题及参考答案完整版下载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省杭州市萧山中学中考数学二模试卷含2019中考试题一.选择题(共10小题,满分30分,每小题3分)1.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±52.下列代数式变形正确的是()A.﹣a+b=﹣(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣33.图1是边长为4的正方形硬纸片ABCD,点E、F分别是AB、BC的中点,若沿图1的虚线剪开并拼成图2的“小屋”,则图中阴影部分的面积()A.2B.4C.8D.104.一列列车自全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米/时,则根据题意所列方程正确的是()A.﹣=1B.﹣=1C.﹣=1D.﹣=15.近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某中学举行了“建设宜居白银,关注环境保护”的知识竞赛,某班学生的成绩统计如下表.则该班学生成绩的众数和中位数分别是()A.70分80分B.80分80分C.90分80分D.80分90分6.如图,AB是⊙O的直径,弦CD⊥AB于H,且CD=2,BD=,则AB的长为()A.2B.3C.4D.57.如图所示的是一个小正方体的展开图,把展开图折叠成小正方体,有“粤”字一面的相对面上的字是()A.澳B.大C.湾D.区8.在Rt△ABC中,∠B=90°,AB=3,BC=4,则cos C的值为()A.B.C.D.9.已知抛物线y=a(x﹣1)(x﹣3)﹣2(a≠0)与x轴交点的横坐标为m,n,且m<n,又点(x0,y0)是抛物线上一点,则下列结论正确的是()A.该抛物线可由抛物线y=ax2向右平移2个单位,向下平移2个单位得到B.若1<m<n<3,则a>0C.若1<x0<3,则y0<0D.不论a取何值,m+n=410.如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是()A.B.C.1D.二.填空题(共6小题,满分24分,每小题4分)11.﹣12018+(﹣1)0=.12.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.13.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是.14.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.15.如图,△ABC中,∠C=90°,CA=CB,D为AC上的一点,AD=3CD,AE⊥AB交BD的延长线于E,记△EAD,△DBC的面积分别为S1,S2,则S1:S2=.16.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,则∠BEC=.三.解答题(共7小题,满分66分)17.(6分)定义新运算:a★b=a(1﹣b),a,b是实数,如﹣2★3=﹣2×(1﹣3)=4(1)求(﹣2)★(﹣1)的值;(2)已知a≠b,试说明:a★b≠b★a.18.(8分)为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?19.(8分)已知M=5x2+3,N=4x2+4x.(1)求当M=N时x的值;(2)当1<x<时,试比较M,N的大小.20.(10分)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.21.(10分)小邱同学根据学习函数的经验,研究函数y=的图象与性质.通过分析,该函数y与自变量x的几组对应值如下表,并画出了部分函数图象如图所示.(1)函数y=的自变量x的取值范围是;(2)在图中补全当1≤x<2的函数图象;(3)观察图象,写出该函数的一条性质:;(4)若关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是.22.(12分)在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N,动点P在线段BA上以每秒cm的速度由点B向点A运动.同时,动点Q在线段AC上由点N 向点C运动,且始终保持MQ⊥MP.一个点到终点时两个点同时停止运动,设运动的时间为t 秒(t>0).(1)求证:△PBM∽△QNM.(2)若∠ABC=60°,AB=4cm,①求动点Q的运动速度;②设△APQ的面积为S(cm2),求S与t的等量关系式(不必写出t的取值范围).23.(12分)阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3≤0的解集是;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.2019年浙江省杭州市萧山中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接利用绝对值的性质得出答案即可.【解答】解:∵|﹣x|=5,∴﹣x=±5,∴x=±5.故选:D.【点评】此题主要考查了绝对值,利用绝对值等于一个正数的数有两个进而得出是解题关键.2.【分析】直接利用添括号法则以及公式法分解因式、配方法的应用分别分析得出答案.【解答】解:A、﹣a+b=﹣(a﹣b),故此选项错误;B、﹣4a2+b2=(b﹣2a)(2a+b),故此选项错误;C、(﹣x﹣y)2=(x+y)2,正确;D、x2﹣4x﹣3=(x﹣2)2﹣7,故此选项错误;故选:C.【点评】此题主要考查了添括号法则以及公式法分解因式、配方法的应用,正确掌握运算法则是解题关键.3.【分析】根据图形的变换可得:阴影部分面积为正方形面积的,把相关数值代入计算即可求得答案.【解答】解:∵阴影部分由一个等腰直角三角形和一个直角梯形组成,∴阴影部分面积为正方形面积的,∵正方形ABCD的边长为4,∴正方形ABCD的面积为:42=16,∴图中阴影部分的面积为:×16=4.故选:B.【点评】此题考查了剪纸问题.注意得到阴影部分面积与原正方形面积的关系是解决本题的突破点.4.【分析】设列车提速前的速度是x千米/时,根据该列车从甲站到乙站所用的时间比原来减少了1小时,列出方程解答即可.【解答】解:设列车提速前的速度是x千米/时,根据题意可得:,故选:A.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,80分出现次数最多,所以众数为80分;由于一共调查了4+8+12+11+5=40人,所以中位数为第20、21个数据的平均数,即中位数为=80(分),故选:B.【点评】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.【分析】连接OD,如图,先利用垂径定理得到CH=,再利用勾股定理计算出BH=1,设⊙O的半径为r,则OH=r﹣1,OD=r,利用勾股定理得到(r﹣1)2+()2=r2,解方程求出r 即可得到直径AB的长.【解答】解:连接OD,如图,∵CD⊥AB,∴DH=CH=CD=,在Rt△BDH中,BH==1,设⊙O的半径为r,则OH=r﹣1,OD=r,在Rt△OHD中,(r﹣1)2+()2=r2,解得r=,∴AB=2r=3.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.7.【分析】根据正方体的展开图中,相对的面不存在公共点进行判断即可.【解答】解:根据正方体展开图可知:港、澳、湾、区四个字所在的面与奥所在的面都有公共点,故他们不可能是对面,∴有“粤”字一面的相对面上的字是“大”.故选:B.【点评】本题主要考查的是正方体相对两个面上的文字,明确正方体的展开图中相对的面不存在公共点是解题的关键.8.【分析】先根据勾股定理求出斜边AC的长,再根据余弦函数的定义求解可得.【解答】解:∵Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC===5,∴cos C==,故选:A.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握余弦函数的定义与勾股定理.9.【分析】根据二次函数图象与系数的关系,可得答案.【解答】解:化简,得y=ax2﹣4ax+3a﹣2,当y=0时,ax2﹣4ax+3a﹣2=0,m+n=4,故D符合题意;故选:D.【点评】本题考查了二次函数图象与系数的关系,利用一元二次方程的两个之和等于一次项系数与二次项系数的比的相反数是解题关键.10.【分析】设MD=a,MF=x,利用△ADM∽△DFM,得到∴,利用△DMF∽△DCE,∴.得到a与x的关系式,化简可得x的值,得到D选项答案.【解答】解:∵AE平分∠BAF交BC于点E,且DE⊥AF,∠B=90°,∴AB=AM,BE=EM=3,又∵AE=2,∴,设MD=a,MF=x,在△ADM和△DFM中,,∴△ADM∽△DFM,,∴DM2=AM•MF,∴,在△DMF和△DCE中,,∴△DMF∽△DCE,∴.∴,∴,解之得:,故选:D.【点评】本题考查了角平分线的性质以及三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度.二.填空题(共6小题,满分24分,每小题4分)11.【分析】直接利用幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.【分析】根据平行线的性质得到∠EDC=∠E=45°,根据三角形的外角性质得到∠AFD=∠C+∠EDC,代入即可求出答案.【解答】解:∵∠EAD=∠E=45°,∵AE∥BC,∴∠EDC=∠E=45°,∵∠C=30°,∴∠AFD=∠C+∠EDC=75°,故答案为:75°.【点评】本题主要考查对平行线的性质,三角形的外角性质等知识点的理解和掌握,能利用性质进行推理是解此题的关键,题型较好,难度适中.13.【分析】由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.【解答】解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,所以朝上一面的点数不小于3的概率是=,故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.14.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.【分析】如图,作DF∥BC交AB于F,作DH⊥AB于H.想办法证明DE:DB=3:5,推出S=•S1,根据=,即可解决问题.△ADB【解答】解:如图,作DF∥BC交AB于F,作DH⊥AB于H.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵DF∥BC,∴∠DFA=∠CBA=45°,∴∠DAF=∠DFA,∴DA=DF,∴DH⊥AF,∴AH=HF,∵DF∥BC,∴==3,∴=,∵DH⊥AB,AE⊥AB,∴DH∥AE,∴==,=•S1,∴S△ADB∵=,∴=,∴S1:S2=9:5,故答案为9:5.【点评】本题考查等腰直角三角形的性质和判定,平行线的性质,等高模型等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.16.【分析】ED是AC的垂直平分线,可得AE=EC;∠A=∠ACE;已知∠A=36°,可求∠ACE,再根据三角形外角的性质即可求解.【解答】解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°,∴∠BEC=∠A+∠ECD=36°+36°=72°;故答案为:72°.【点评】本题考查了线段垂直平分线,等腰三角形性质,三角形外角的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.三.解答题(共7小题,满分66分)17.【分析】(1)根据★的含义,以及实数的运算方法,求出(﹣2)★(﹣1)的值是多少即可.(2)首先分别求出a★b、b★a的值各是多少;然后根据a≠b,说明a★b≠b★a即可.【解答】解:(1)(﹣2)★(﹣1)=(﹣2)×[1﹣(﹣1)]=(﹣2)×2=﹣4(2)a★b=a(1﹣b)=a﹣ab,b★a=b(1﹣a)=b﹣ab,∵a≠b,∴a﹣ab≠b﹣ab∴a★b≠b★a.【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【分析】(1)用7次的人数除以7次所占的百分比即可求得总人数,然后求得6次的人数即可确定众数;(2)补齐6次小组的小长方形即可.(2)用总人数乘以达标率即可.【解答】解:(1)观察统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(2)(3)(人).答:该校125名九年级男生约有90人体能达标.…【点评】本题考查了条形统计图的知识,解题的关键是从统计图中整理出进一步解题的有关信息.19.【分析】(1)利用题意列方程5x2+3=4x2+4x,然后利用因式分解法解方程即可;(2)利用求差法得到M﹣N=(x﹣1)(x﹣3),然后根据x的取值范围确定积的符合,从而得到M与N的关系关系.【解答】解:(1)根据题意得5x2+3=4x2+4x,整理得x2﹣4x+3=0,(x﹣1)(x﹣3)=0,x﹣1=0或x﹣3=0,所以x1=1,x2=3;(2)M﹣N=5x2+3﹣(x2+4x)=x2﹣4x+3=(x﹣1)(x﹣3),∵1<x<,∴x﹣1>0,x﹣3<0,∴M﹣N=(x﹣1)(x﹣3)<0,【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.注意因式分解的应用.20.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.21.【分析】(1)根据函数表达式中,根号内的被开方数为非负数以及分母不为零,即可得到自变量x的取值范围;(2)根据列表中的对应值进行描点、连线,即可得到当1≤x<2时的函数图象;(3)根据函数图象的增减性,即可得到该函数的一条性质;(4)根据函数y=和y=x+b的图象可知:当b>﹣2时,有一个交点;当b≤﹣2时,有两个交点,据此即可得到实数b的取值范围.【解答】解:(1)由x﹣1≥0且x﹣1≠1,可得x≥1且x≠2;(2)当1≤x<2的函数图象如图所示:(3)由图可得,当1≤x<2(或x>2)时,函数图象从左往右下降,即y随x的增大而减小;(4)关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是b≤﹣2.故答案为:x≥1且x≠2;当1≤x<2(或x>2)时,y随x的增大而减小;b≤﹣2.【点评】本题主要考查了反比例函数的图象与性质,用描点法画反比例函数的图象的步骤为:列表﹣﹣﹣描点﹣﹣﹣连线.连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.22.【分析】(1)由条件可以得出∠BMP=∠NMQ,∠B=∠MNC,就可以得出△PBM∽△QNM;(2)①根据直角三角形的性质和中垂线的性质BM、MN的值,再由△PBM∽△QNM就可以求出Q的运动速度;②先由条件表示出AN、AP和AQ,再由三角形的面积公式就可以求出其解析式.【解答】解:(1)∵MQ⊥MP,MN⊥BC,∴∠PMN+∠PMB=90°,∠QMN+∠PMN=90°,∴∠PMB=∠QMN.∵∠B+∠C=90°,∠C+∠MNQ=90°,∴∠B=∠MNQ,∴△PBM∽△QNM.(2)∵∠BAC=90°,∠ABC=60°,∴BC=2AB=8cm.AC=12cm,∵MN垂直平分BC,∴BM=CM=4cm.∵∠C=30°,∴MN=CM=4cm.①设Q点的运动速度为v(cm/s).∵△PBM∽△QNM.∴=,∴=,∴v=1,答:Q点的运动速度为1cm/s.②∵AN=AC﹣NC=12﹣8=4cm,∴AP=4﹣t,AQ=4+t,∴S=AP•AQ=(4﹣t)(4+t)=﹣t2+8.【点评】本题主要考查了相似三角形的综合问题,考查了相似三角形的判定与性质的运用,三角形的面积公式的运用的运用,解答本题时求出△PBM∽△QNM是关键.23.【分析】(1)直接利用x2﹣2x﹣3≤0即y≤0得出对应的x的值;(2)画出y=x2﹣1的函数图象,进而得出答案.【解答】解:(1)一元二次不等式x2﹣2x﹣3≤0的解集是:﹣1≤x≤3;故答案为:﹣1≤x≤3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1,∴由此得抛物线y=x2﹣1的大致图象如图所示,观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.【点评】此题主要考查了二次函数与一元二次方程,正确数形结合是解题关键.2019年杭州市中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.计算下列各式,值最小的是 ( )A .20+19?B .2019+?C .2019+-?D .2019++-【考点】实数【解析】8A =- 7B =- 7C =- 6D =-【答案】故选A2.在平面直角坐标系中,点(),2A m 与点()3,b n 关于y 轴对称,则 ( )A . 3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =【考点】直角坐标系【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同【答案】故选B3.如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 两点,若3PA =,则PB = ( )A .2B .3C .4D .5P【考点】圆与切线长【解析】因为P A 和PB 与⊙O 相切,所以P A =PB =3【答案】故选B4.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=【考点】一元一次方程【解析】设男生x 人,则女生有(30-x )人,由题意得:()323072x x +-=【答案】故选D5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是 ( )A .平均数B .中位数C .方差D .标准差【考点】数据【解析】这组数据中的中位数是41,与涂污数字无关【答案】故选B6.如图,在ABC △中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C重合),连结AM 交DE 于点N ,则 ( )A .AD AN AN AE =B .BD MN MN CE =C .DN NE BM MC =D .DN NE MC BM= E N DCB A【考点】相似三角形【解析】∵//DE BC ,∴△ADN ∽△ABM ,△ANE ∽△AMC ∴,DN AN AN NE DN NE BM AM AM MC BM MC==? 【答案】故选C7.在ABC △中,若一个内角等于另外两个角的差,则 ( )A .必有一个角等于30°B . 必有一个角等于45°C . 必有一个角等于60°D . 必有一个角等于90°【考点】三角形内角和【解析】设三角形的一个内角为x ,另一个角为y ,则三个角为(180°-x -y ),则有三种情况: ①(180)9090x y x y y x y =-︒--⇒=+=o o 或 ②(180)9090y x x y x x y =---⇒=+=o o o 或 ③(180)9090x y x y x y --=-⇒==o o o 或综上所述,必有一个角等于90°【答案】故选D8.已知一次函数1y ax b =+和2y bx a =+()a b ≠,函数1y 和2y 的图象可能是 ( )A .B .C .D .【考点】一次函数的图象【解析】①当0,0a b >>,1y 、2y 的图象都经过一、二、三象限 ②当0,0a b <<,1y 、2y 的图象都经过二、三、四象限③当0,0a b ><,1y 的图象都经过一、三、四象限,2y 的图象都经过一、二、四象限 ④当0,0a b <>,1y 的图象都经过一、二、四象限,2y 的图象都经过一、三、四象限满足题意的只有A 【答案】故选A9.如图,一块矩形木板ABCD 斜靠在墙边,(OC OB ^,点A 、B 、C 、D 、O 在同一平面内),已知AB a =,AD b =,BCO x ?.则点A 到OC 的距离等于 ( ) A . sin sin a x b x + B .cos cos a x b x + C .sin cosa xb x + D .cos sin a x b x +【考点】三角函数、矩形的性质【解析】过点A 作AE ⊥OB 于点E ,因为四边形ABCD 是矩形,且AB =a ,AD =b 所以BC =AD =b ,∠ABC =90° 所以∠ABE =∠BCO =x因为sin OB x BC =,cos BEx AB= 所以sin OB b x =,cos BE a x =所以点A 到OC 的距离cos sin d BE OB a x b x =+=+【答案】故选DE10.在平面直角坐标系中,已知a b ¹,设函数()()y x a x b =++的图像与x 轴有M 个交点,函数()()11y ax bx =++的图像与x 轴有N 个交点,则 ( ) A . 1M N =-或1M N =+ B . 1M N =-或2M N =+ C . M N =或1M N =+ D . M N =或1M N =- 【考点】二次函数与x 轴交点问题【解析】对于函数()()y x a x b =++,当0y =时,函数与x 轴两交点为(-a ,0)、(-b ,0), ∵a b ≠,所以有2个交点,故2M = 对于函数()()11y ax bx =++①0a b ≠≠,交点为11(,0),(,0)a b --,此时2N M N =⇒= ②0,0a b =≠,交点为1(,0)b -,此时11N M N =⇒=+③0,0b a =≠,交点为1(,0)a-,此时11N M N =⇒=+综上所述,M N =或1M N =+【答案】故选C二、填空题(本大题有6小题,每小题4分,共24分) 11.因式分解:21x -= . 【考点】因式分解【解析】二项用平方差公式,22211(1)(1)x x x x -=-=+- 【答案】(1)(1)x x +-12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这()m n +个数据的平均数等于 .【考点】数据统计【解析】平均数等于总和除以个数,所以平均数mx nym n+=+【答案】mx nym n++13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于 2cm (计算结果精确到个位).【考点】圆锥的侧面积【解析】3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈侧 【答案】11314.在直角三角形ABC 中,若2AB AC =,则cos C = . 【考点】解直角三角形【解析】如图所示,分两种情况讨论,AC 可以是直角边,也可以是斜边 ①当AC 是斜边,设AB =x ,则AC =2x ,由勾股定理可得: BC,则cos 22BC C AC x === ①当AC 是直角边,设AB =x ,则AC =2x ,由勾股定理可得: BC,则cos AC C BC ====综上所述,cos C =【答案】2或515.某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 . 【考点】函数的解析式【解析】答案不唯一,可以是一次函数,也可以是二次函数 【答案】1y x =-+或21y x =-+或1y x =-等16.如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A ¢点,D 点的对称点为D ¢点,若90FPG ??,A EP ¢△的面积为4,D PH ¢△的32x面积为1,则矩形ABCD 的面积等于 .D 1A 1G PFECDB A【考点】矩形性质、折叠 【解析】∵A'E ∥PF ∴∠A'EP=∠D'PH又∵∠A=∠A'=90°,∠D=∠D'=90° ∴∠A'=∠D'∴△A'EP ~△D'PH又∵AB=CD ,AB=A'P ,CD=D'P ∴A'P= D'P 设A'P=D'P=x∵S △A'EP :S △D'PH =4:1 ∴A'E=2D'P=2x ∴S △A'EP =2112422A E A P x x x ''⨯⨯=⨯⨯== ∵0x >∴2x = ∴A'P=D'P=2 ∴A'E=2D'P=4∴EP ===∴1=2PH EP =∴112DH D H A P ''===∴415AD AE EP PH DH =+++=+=+∴2AB A P '==∴25)10ABCD S AB AD =⨯=⨯=矩形【答案】10三、解答题(本大题有7个小题,共66分) 17.(本题满分6分) 化简:242142x x x ----圆圆的解答如下:H()()2224214224422x x x x x x x x--=-+----=-+ 圆圆的解答正确吗?如果不正确,写出正确的解答. 【解析】圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2xx =-+.18.(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克)实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号⑴补充完整乙组数据的折线统计图;⑵①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【解析】(1)补全折线统计图,如图所示.实际称量读数折线统计图 记录数据折线统计图(2)①50x x =+甲乙.②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲, 所以22S S =甲乙.19.(本题满分8分)如图,在ABC △中,AC AB BC <<.⑴已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ??;⑵以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ??,求B Ð的度数.PCBAQABC【解析】(1)证明:因为点P 在AB 的垂直平分线上, 所以PA=PB , 所以∠PAB=∠B ,所以∠APC=∠PAB+∠B=2∠B . (2)根据题意,得BQ=BA , 所以∠BAQ=∠BQA , 设∠B=x ,所以∠AQC=∠B+∠BAQ=3x , 所以∠BAQ=∠BQA=2x , 在△ABQ 中,x +2x +2x =180°, 解得x =36°,即∠B=36°.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行使到B 地,行驶里程为480千米,设小汽车的行使时间为t (单位:小时),行使速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v 关于t 的函数表达式;⑵方方上午8点驾驶小汽车从A 出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解析】(1)根据题意,得480vt =, 所以480v t=, 因为4800>,所以当120v ≤时,4t ≥, 所以480(4)v t t=≥ (2)①根据题意,得4.86t ≤≤, 因为4800>, 所以4804806 4.8v ≤≤, 所以80100v ≤≤②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地.21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在CD 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. ⑴求线段CE 的长;⑵若点H 为BC 边的中点,连结HD ,求证:HD HG =.GFEH DCBA【解析】根据题意,得AD=BC=CD=1,∠BCD=90°. (1)设CE=x (0<x <1),则DE=1-x , 因为S 1=S 2,所以x 2=1-x , 解得x(负根舍去), 即(2)因为点H 为BC 边的中点, 所以CH=12,所以HD=2,因为CG=CE=12,点H ,C ,G 在同一直线上, 所以HG=HC+CG=12HD=HG22.(本题满分12分)设二次函数()()12y x x x x =--(1x 、2x 是实数).⑴甲求得当0x =时,0y =;当1x =时,0y =,乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;⑵写出二次函数的对称轴,并求出该函数的最小值(用含1x 、2x 的代数式表示); ⑶已知二次函数的图像经过()0,m ,()1,n 两点(m 、n 是实数),当1201x x <<<时, 求证:1016mn <<.【解析】(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0),所以(1)y x x =-, 当12x =时,1111(1)2242y =⨯-=-≠-, 所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=, 当122x x x +=时,函数有最小值M , 212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=--22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象,所以211110()244x <--+≤,221110()244x <--+≤所以1016mn <≤,因为12x x ≠,所以1016mn <<23.(本题满分12分)如图,已知锐角ABC △内接于⊙O , OD BC ^于点D ,连结AO . ⑴若60BAC ??. ①求证:12OD OA =;②当1OA =时,求ABC △面积的最大值; ⑵点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ??,ACB n OED ??(m 、n 是正数), 若ABC ACB ??,求证:20m n -+=【解析】(1)①证明:连接OB ,OC , 因为OB=OC ,OD ⊥BC ,所以∠BOD=12∠BOC=12×2∠BAC=60°,所以OD=12OB=12OA②作AF ⊥BC ,垂足为点F , 所以AF ≤AD ≤AO+OD=32,等号当点A ,O ,D 在同一直线上时取到由①知,所以△ABC 的面积113222BC AF =⋅≤=即△ABC (2)设∠OED=∠ODE=α,∠COD=∠BOD=β, 因为△ABC 是锐角三角形,所以∠AOC+∠AOB+2∠BOD=360°, 即()180m n αβ++=o(*) 又因为∠ABC<∠ACB , 所以∠EOD=∠AOC+∠DOC 2m αβ=+因为∠OED+∠ODE+∠EOD=180°, 所以2(1)180m αβ++=o (**) 由(*),(**),得2(1)m n m +=+, 即20m n -+=。

相关文档
最新文档