华师大版八年级数学上培优状元笔记11.1平方根与立方根(含答案)
八年级华数上 11.1 平方根与立方根

11.1平方根与立方根——平方根三维教学目标知识与技能:1、了解平方根的概念、开平方的概念.会用根号表示一个数的平方根.2、了解平方运算与开平方运算是互为逆运算.3、会用平方根的概念求某些非负数的平方根.过程与方法:1、让学生经历概念形成过程,提高学生的思维水平.2、培养学生的求同和求异思维,能从相似的事物中观察到他们的共同点和不同点.情感态度与价值观:1、创设学生熟悉的问题情景,培养他们对数学的好奇心和求知欲.2、在学生已有数学经验的基础上,探求新知,让学生获得成功的快乐.3、提高学生“用数学”的意识.教学重点:会用平方根的概念求某些非负数的平方根.教学难点:对只有非负数才有平方根的理解.课堂导入1、到目前为止我们已学过哪些运算?2、一个正方形边长为5厘米,它的面积为多少?是什么运算?它的逆运算是什么呢?教学过程一、创设问题情景学校要举行美术作品比赛,小明很高兴,她想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果画布的面积依次改为:9、16、36……那么相应的边长是多少?二、探索归纳(1) 平方根的概念2若,则x叫做a的平方根.ax(2) 举例:∵2552=∴5是25的一个平方根问:25的平方根只有一个吗?还有哪些数的平方也等于25?(3)总结求一个数平方根的方法.三、举例应用例1 求100的平方根.解 因为10=100, (-10)=100,除了10和-10以外,任何数的平方22都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.例2 求36的平方根.解:因为所以36的平方根为±6.,36)6(2=±四、试一试(1) 144的平方根是什么?(2) 0的平方根是什么?(3) -4有没有平方根?为什么?答案:(1) (3)-4没有平方根,因为没有一个12144±=±00)2(=±、数的平方是-4.请你自己也编三道求平方根的题目,并给出解答.通过以上题目的解答,你发现了什么?概括:一个正数必定有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.五、课堂练习1、平方得81的数是 ,因此81的平方根是 .2、平方根是它本身的数是 .3、如果-b 是a 的平方根,那么A 、;B 、 ;C 、;D 、2a b =2b a =2a b -=2b a -=4、求下列各式中的x 的值⑴ ⑵1962=x 01052=-x答案:1、±9,±9,2、03、B4、x=±16,x=±2六、课堂小结1、平方根的定义.2、平方根的性质:正数有两个平方根它们互为相反数,0的平方根是0,负数没有平方根.课堂作业1、求下列各数的平方根:(1)49(2)(3)36(4).8116()22-2、已知2a-1的一个平方根是+3,求2a-1的另一个平方根及a 的值.答案:1、(1)∵ (3)∵()4972=±()4972=±∴±7是49的平方根.∴±7是49的平方根.(2)∵ (4)∵8116942=⎪⎭⎫ ⎝⎛±()422=- ∴是的平方根. 94±8116()422=± ∴±2是的平方根.()22-2、因为一个数如果有平方根,那么它的两个平方根互为相反数.已知2a-1的一个平方根是+3,所以2a-1的另一个平方根是-3.∵2a-1= ∴ a=5()23±教学反思易错点:对平方根的意义不理解;对平方与开平方两种运算之间的互逆关系不理解.(1)在求一个正数的平方根时,容易只写正的平方根,丢掉负的平方根.(2)如果已知一个数的一个平方根,求这个数.不知道该怎么做.11.1平方根与立方根——立方根三维教学目标知识与技能:1、了解立方根的概念,会用根号表示一个数的立方根.2、了解立方与开立方运算互为逆运算.3、能利用开立方运算求某些数的立方根.4、能用计算器求某些数的立方.过程与方法:1、创设学生熟悉的问题情景,激发学生的求知欲.2、鼓励学生积极思维,体会类比的数学方法.情感态度与价值观:1、培养学生积极思维,动口、动手能力.2、培养学生团结协作的团队精神.教学重点:会用根号表示一个数的立方根,能通过立方运算求某些数的立方根.教学难点:立方根与平方根性质的区分.课堂导入现有一个体积为216立方厘米的正方体纸盒,它的每一条棱长是多少?教学过程一、探索发现问题:1、这个实际问题,是个怎样的计算问题?2、你能找一个数,使这个数的立方等于216吗?3、如果,正方体的体积依次为:64,125,343,那么相应的正方体的棱长为多少?4、从这里可以抽象出一个什么数学概念?概括:立方根的概念如果一个数的立方等于a,那么这个数叫做a的立方根.二、试一试(1)27的立方根是什么?(2) -27的立方根是什么?(3) 0的立方根是什么?请你自己也编三道求立方根的题目,并给出解答.思考:通过计算你发现了什么?(和平方根的性质比较.)概括:立方根的性质和表示方法.正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.为了计算方便,数a 的立方根,记作,读作“三次根号a”,a 称为被开方数.a 三、举例应用例4求下列各数的立方根:(1); (2) -125; (3) -0.008.278解(1) 因为(),所以323.322783=(2) 因为(-5)=-125,所以=-5.33125-(3)因为所以(),008.02.03-=-2.0008.03-=-例5用计算器求下列各数的立方根:(1) 1331;(2)9.263(精确到0.01)解(1) 在计算器上依次键入(,3■显示结果为11,所以=11.31331(2)略四、课堂练习1、判断下列说法是否正确,并说明理由.(1)的立方根为 ()27832±(2) 25的平方根是5 ()(3) -64没有立方根 ()(4) -4的平方根是 -2( )(5) 0的平方根和立方根都是0 ()2、求下列各式的值.(1) (2) (3) (4)64643+-36427-327327102-答案:1、(1)错 (2)错(3)错 (4)错 (5)正确五、课堂小结1、什么是立方根?2、正数、0、负数的立方根有何特点?3、通过本节课的学习,有何体会? 课堂作业1、求下列各数的立方根:(1) 0.125;(2) -;(3) 1728.64272、求下列各式的值.(1) (2)3、在哪两个整数之间?10答案:1、(1)0.5因为所以(2) (3)12125.0)5.0(3=5.0125.03=43-2、(1) (2)1.0001.03-=-54125643-=-3、因为 所以16109<<4103<<教学反思:混淆平方根与立方根的性质平方根与立方根是两个不同的概念,具有不同的性质.它们有如下区别:(1)只有非负数有平方根,而任何数都有立方根:(2)正数有两个平方根,而立方根只有一个.如果对以上区别理解不清,解题时就容易把平方根与立方根混淆起来.3001.0-312564-。
华师版八年级数学上册第11章 数的开方1 平方根

试一试
1. 144的平方根是什么?
12
2. 0的平方根是什么?
0
4
3.25
的平方根是什么?
2
5
4. -4有没有平方根?为什么? 没有,因为一个数的平
方不可能是负数
试 一 试
(1)144的平方根是什么?
±12
(2)0的平方根是什么?
0
通过这些题
目的解答,你能
发现什么?
(3)-4有没有平方根?为什么?
平方根可以记作 a,其中a称为被开方数.
特殊:0的算术平方根是0. 记作 0=0 .
根号
± a
(a是非负数,a≥
被开方数
0)
典例精析
【例2】若|x|=5,y是9的算术平方根,则x+y的值是( )
A.8
B.-8
C.-2
D.-2或8
【详解】解:∵|x|=5,y是9的算术平方根,
∴x=±5,y=3
第11章 数的开方
11.1 平方根与立方根
第1课时 平方根
1.了解一个数的平方根与算术平方根的意义,会用根号表示一
个数的平方根、算术平方根;
2.了解开方与乘方是互逆运算,会利用这个逆运算关系求某些
非负数的算术平方根;
问题1:已知一幅正方形的油画的面积是36cm2,这幅油画的
边长是多少?
( 6 )2=25.
4
3
,
2
(4)∵(±0.7)2=0.49,
,
∴0.49的平方根为±0.7.
知识点二 算术平方根的概念
一个正数如果有平方根,那么必定有两个,它们互为相
反数.显然,如果我们知道了这两个平方根中的一个,那么立
华师大版八年级数学上册《11.1平方根与立方根—立方根》同步练习含答案解析

《11.1 平方根与立方根—立方根》一、选择题1.若8x3+1=0,则x为()A.﹣ B.± C.D.﹣2.的平方根与﹣8的立方根之和为()A.﹣4 B.0 C.﹣6或2 D.﹣4或03.如果=a,那么a是()A.±1 B.1,0 C.±1,0 D.以上都不对二、填空题4.的立方根是,平方根是.5.若(x﹣1)3=125,则x= .6.立方根等于它本身的数为.三、选择题7.若﹣1<m<0,且n=,则m、n的大小关系是()A.m>n B.m<n C.m=n D.不能确定8.﹣27的立方根与的平方根之和为()A.0 B.6 C.0或﹣6 D.0或6四、填空题9.若x4=16,则x= ;若3n=81,则n= .10.若,则x= ;若,则x .11.当x 时,有意义;当x 时,有意义.12.若,则x+y= .13.计算:+﹣+= .五、解答题14.求下列各数的立方根(1)﹣0.001;(2)3;(3)(﹣4)3.15.求下列各式中的x的值.(1)x3﹣216=0;(2)(x+5)3=64;(3)(x+1)3=8.16.计算题(1)××3(2)×.17.若与互为相反数,求的值.18.已知=1﹣a2,求a的值.《11.1 平方根与立方根—立方根》参考答案与试题解析一、选择题1.若8x3+1=0,则x为()A.﹣ B.± C.D.﹣【考点】立方根.【分析】先求得x3的值,然后依据立方根的性质求解即可.【解答】解:∵8x3+1=0,∴x3=﹣.∴x=﹣.故选:A.【点评】本题主要考查的是立方根的性质,求得x3的值是解题的关键.2.的平方根与﹣8的立方根之和为()A.﹣4 B.0 C.﹣6或2 D.﹣4或0【考点】立方根;平方根.【分析】先求的平方根,再求﹣8的立方根,然后求和.【解答】解:∵ =4,4的平方根为±2,﹣8的立方根为﹣2故它们的和是﹣4或0.故选D.【点评】本题主要考查了平方根和立方根的定义.3.如果=a,那么a是()A.±1 B.1,0 C.±1,0 D.以上都不对【考点】立方根.【分析】利用立方根的定义分析得出答案.【解答】解:∵ =1, =﹣1, =0,∴=a,那么a是±1,0.故选:C.【点评】此题主要考查了立方根,正确把握定义是解题关键.二、填空题4.的立方根是 2 ,平方根是±2.【考点】立方根;平方根;算术平方根.【分析】先根据算术平方根的定义得到=8,然后根据平方根和立方根的定义分别求出8的平方根与立方根.【解答】解:∵ =8,∴8的平方根为±2,8的立方根为=2.故答案为:2,±2.【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作±,也考查了立方根的定义.5.若(x﹣1)3=125,则x= 6 .【考点】立方根.【分析】根据立方根定义得出x﹣1=5,求出即可.【解答】解:(x﹣1)3=125=53,x﹣1=5,x=6,故答案为:6.【点评】本题考查了立方根的定义的应用,能得出方程x﹣1=5是解此题的关键.6.立方根等于它本身的数为1,﹣1,0 .【考点】立方根.【分析】根据立方根的意义得出即可.【解答】解:立方根等于它本身的本身的数为1,﹣1,0,故答案为:1,﹣1,0.【点评】本题考查了立方根的应用,主要考查学生的理解能力和计算能力.三、选择题7.若﹣1<m<0,且n=,则m、n的大小关系是()A.m>n B.m<n C.m=n D.不能确定【考点】实数大小比较.【分析】取特殊值,m=﹣,再比较即可.【解答】解:∵﹣1<m<0,∴取m=﹣,∴m=﹣=﹣,∵n==﹣=﹣,∴n<m,故选A.【点评】本题考查了实数的大小比较的应用,能选择适当的方法比较两个实数的大小是解此题的关键.8.﹣27的立方根与的平方根之和为()A.0 B.6 C.0或﹣6 D.0或6【考点】实数的运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:±=﹣3±3,则﹣27的立方根与的平方根之和为为0或﹣6.故选C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四、填空题9.若x4=16,则x= ±2 ;若3n=81,则n= 4 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用乘方的意义计算即可确定出x的值;根据已知等式,利用乘方的意义确定出n的值即可.【解答】解:若x4=16,则x=±2;若3n=81,则n=4.故答案为:±2;4.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.10.若,则x= 1或0 ;若,则x ≤0 .【考点】立方根;算术平方根.【分析】根据立方根和算术平方根的定义计算即可.【解答】解:∵,∴x=1或0,∵,∴x≤0,故答案为:1或0;≤0.【点评】本题主要考查立方根和算术平方根的知识点,比较简单.11.当x ≥时,有意义;当x 取任意实数时,有意义.【考点】二次根式有意义的条件;立方根.【专题】常规题型.【分析】根据被开方数大于等于0列式求解即可;根据立方根的被开方数可以是任意实数解答.【解答】解:根据题意得,3x﹣1≥0,解得x≥;5x+2可以取任意实数,∴x取任意实数.故答案为:≥,取任意实数.【点评】本题考查了二次根式有意义的条件,以及任意实数都有立方根的性质,需熟练掌握.12.若,则x+y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【专题】计算题.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【解答】解:根据题意得,x+1=0,y﹣2=0,解得x=﹣1,y=2,∴x+y=﹣1+2=1.故答案为:1.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.计算:+﹣+= ﹣.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用平方根及立方根定义计算即可得到结果.【解答】解:原式=×+×﹣2+2=﹣,故答案为:﹣【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.五、解答题14.求下列各数的立方根(1)﹣0.001;(2)3;(3)(﹣4)3.【考点】立方根.【分析】根据立方根的计算方法可以解答本题.【解答】解:(1);(2);(3).【点评】本题考查立方根,解题的关键是明确立方根的计算方法.15.求下列各式中的x的值.(1)x3﹣216=0;(2)(x+5)3=64;(3)(x+1)3=8.【考点】立方根.【分析】根据立方根的计算方法和解方程的方法可以解答各个方程.【解答】解:(1)x3﹣216=0x3=216x=x=6;(2)(x+5)3=64x+5=x+5=4x=﹣1;(3)(x+1)3=8x+1=x+1=2x=2.【点评】本题考查立方根,解题的关键是明确立方根的计算方法和解方程的方法.16.计算题(1)××3(2)×.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=10×(﹣2)×3×0.7=﹣42;(2)原式=60×=240.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.若与互为相反数,求的值.【考点】立方根;相反数.【分析】根据相反数得出+=0,得到x与y的关系,再代入求出即可.【解答】解:∵与互为相反数,∴+=0,∴1﹣2x+3y﹣2=0,1+2x=3y,∴==3.【点评】本题考查了立方根,代数式的值,相反数的应用,能求出x与y的关系是解此题的关键.18.已知=1﹣a2,求a的值.【考点】立方根.【分析】分三种情况:1﹣a2=﹣1,1﹣a2=﹣0,1﹣a2=1,进行讨论求解即可.【解答】解:依题意有1﹣a2=﹣1,解得a=±;1﹣a2=0,解得a=±1;1﹣a2=1,解得a=0.故a的值是=±,a=±1,a=0.【点评】此题考查了立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.注意分类思想的应用.。
(完整)八年级数学华师大版上册【能力培优】11.1平方根与立方根(含答案),推荐文档

4. 解:∵ a 1 0 , b2 6b 9 (b 3)2 0 ,且 a 1 b2 6b 9 0 ,
∴ a 1 0 , (b 3)2 0 ,
∴ a 1 , b 3 .由三角形三边关系得 a b c a b ,
∴2 c 4 .
m
m 0
5. 解:同意小刚的说法.理由:在
2013
2013
(2)用你发现的规律说明 3 2013
与20133
的关系.
20133 1
20133 1
状元笔记:
[知识要点]
1. 平方根与立方根
1 一般地,如果 x2 a ,那么 x 就叫做 a 的平方根.
2 一个正数 a 的正的平方根 a 叫做 a 的算术平方根.
3 一般地,如果 x3 a ,那么 x 就叫做 a 的立方根.
a 9 0
2.
解:根据算术平方根的意义,得 9
a
,
0
∴ a 9 , b 7 , ∴ a b 16 . 故 a b 的平方根是4 .
3. 解:根据题意得 x y 1
0 ,即x y 1 0 ,解得x 2 .
x y 5
x y 50
y 3
∴ 3x y 3 2 3 9 ,
∴ 3x y 的算术平方根是 3.
2013
2013
(2) 32013
20133
.
20133 1
20133 1
“
”
“
”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
华东师大版八年级数学上册第11章 11.1.1平方根 同步测试题(含答案)

华东师大版八年级数学上册第11章 11.1.1平方根同步测试题一、选择题1.4的平方根是( )A.±2B.-2C.2D.± 42.425的平方根是±25,这句话用式子表示为( )A.425=±25B.±425=±25C.425=25D.-425=-253.121的算术平方根是( )A.11B.-11C.±11D.±1214.若a=2,则a的值为( )A.-4B.4C.-2D. 25.下列各数只有一个平方根的是( )A.5B.-2C.0D.-(-3)6.下列说法正确的是(B)A.16的平方根是4B.4是16的平方根C.81的平方根是-9D.0没有平方根7.下列各数没有算术平方根的是( )A.0B.-1C.10D.1028.设x=15,则x的取值范围是( )A.2<x<3B.3<x<4C.4<x<5D.无法确定9.0.49的算术平方根的相反数是( )A.0.7B.-0.7C.±0.7D.010.16的算术平方根是( )A.2B.4C.±2D.±411.估计10+1的值在( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间12.一个正数的两个不同的平方根是a+3和2a-6,则这个正数是( )A.1B.4C.9D.16二、填空题13.9的平方根是_______.14.计算:16=_______.15.某数的一个平方根是-5,则这个数为_______. 16.在表格中填写下列各数的平方根和算术平方根:17.我们可以利用计算器求一个正数a 的算术平方根,其操作方法是按顺序进行按键输入:a =.小明按键输入16=后显示的结果为4,则他按键输入1600=后显示的结果为_______.18.81的平方根是±3,算术平方根是_______.19.计算:(-6)2=_______.,-(-7)2=_______.,±52=_______. 20.观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈_______.,52 170≈_______.;(2)若x =0.022 84,则x≈_______.. 三、解答题21.写出下列各数的平方根:(1)36; (2)0;(3)1.69; (4)196225.22.求下列各式的值:(1)36; (2)-81;(3)125.23.用计算器计算(精确到0.001):(1)800; (2)0.58.24.计算:(1)(-2)2+(-3)×2-9;(2)1381+(-5)2.25.求下列各式中的x:(1)4x2-49=0;(2)9(2x-1)2=36.26.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是0.09的10倍,求a+2b -c2的平方根.27.已知y=x-2+2-x+5,求2x+3y的算术平方根.参考答案一、选择题1.4的平方根是(A)A.±2B.-2C.2D.± 42.425的平方根是±25,这句话用式子表示为(B)A.425=±25B.±425=±25C.425=25D.-425=-253.121的算术平方根是(A)A.11B.-11C.±11D.±1214.若a=2,则a的值为(B)A.-4B.4C.-2D. 25.下列各数只有一个平方根的是(C)A.5B.-2C.0D.-(-3)6.下列说法正确的是(B)A.16的平方根是4B.4是16的平方根C.81的平方根是-9D.0没有平方根7.下列各数没有算术平方根的是(B)A.0B.-1C.10D.1028.设x=15,则x的取值范围是(B)A.2<x<3B.3<x<4C.4<x<5D.无法确定9.0.49的算术平方根的相反数是(B)A.0.7B.-0.7C.±0.7D.010.16的算术平方根是(A)A.2B.4C.±2D.±411.估计10+1的值在(B)A.3和4之间B.4和5之间C.5和6之间D.6和7之间12.一个正数的两个不同的平方根是a+3和2a-6,则这个正数是(D)A.1B.4C.9D.16二、填空题13.9的平方根是±3.14.计算:16=4.15.某数的一个平方根是-5,则这个数为25.16.在表格中填写下列各数的平方根和算术平方根:17.我们可以利用计算器求一个正数a 的算术平方根,其操作方法是按顺序进行按键输入:a =.小明按键输入16=后显示的结果为4,则他按键输入1600=后显示的结果为40.18.81的平方根是±3,算术平方根是3.19.计算:(-6)2=6,-(-7)2=-7,±52=±5. 20.观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228_4,52 170≈228.4;(2)若x =0.022 84,则x≈0.000_521_7. 三、解答题21.写出下列各数的平方根:(1)36; (2)0; 解:±36=±6. 解:±0=0.(3)1.69; (4)196225.解:± 1.69=±1.3. 解:±196225=±1415. 22.求下列各式的值:(1)36; (2)-81; 解:原式=6. 解:原式=-9.(3)125. 解:原式=15.23.用计算器计算(精确到0.001):(1)800; (2)0.58. 解:28.284. 解:0.762.24.计算:(1)(-2)2+(-3)×2-9; 解:原式=4-6-3=-5.(2)1381+(-5)2. 解:原式=13×9+5=3+5=8.25.求下列各式中的x :(1)4x 2-49=0;解: 4x 2=49,x 2=494, x =±72.(2)9(2x -1)2=36.解:(2x -1)2=4,2x -1=±2,2x -1=2或2x -1=-2,∴x =32或x =-12.26.已知2a -1的算术平方根是3,3a +b -1的平方根是±4,c 是0.09的10倍,求a +2b -c 2的平方根.解:由题意,得2a -1=9,3a +b -1=16,c =0.3×10=3.解得a =5,b =2,c =3.∴a+2b-c2=0.∴a+2b-c2的平方根是0.27.已知y=x-2+2-x+5,求2x+3y的算术平方根. 解:∵负数没有平方根,∴x-2≥0,2-x≥0.∴x=2.∴y=5.∴2x+3y=19.∴2x+3y的算术平方根是19.。
华师版八年级数学上册第11章2 立方根

知3-练
例 5 用计算器求下列各数的立方根: (1)343;(2)100(精确到0.01); (3)-13.27(精确到0.0 01). 解题秘方:根据计算器求立方根的步骤进行按键 操作.
解:(1)依次按键
3
显示:7. 所以 343=7.
(2)依次按键
,
3
显示:4.641 588 834. 所以 100 ≈4.64.
(3)0.216;
因为0.63=0.216,所以0.216的立方根是0.6.
(4)-5;
3
解:-5 的立方根是- 5.
(5)41277. 因为 41277=12275,533=12275, 所以 41277的立方根是53.
知1-练
知1-练
例 2 已知x-2的平方根是±2,2x+y+7的立方根是3,求 x2+y2的算术平方根. 解题秘方:一个数等于它的平方根的平方,等于 它的立方根的立方.
3-1. 求下列各式的值:
知2-练
3
(1)-
- 18;
3
解:- -18=--12=12.
3
(2)
1+ 19215;
3
3
1+19215= 211265=65.
3
3
3
(3) 24×45×200. 24×45×200= 23×33×103=60.
知2-练
例 4 已知3 3y-1和3 1-2x互为相反数,且x ≠ 0,y ≠ 0,
解:由题意得(a-3)+(a-11)=0,所以 2a=14,即 a=7. 因为 a+2b-3 的立方根是 2,所以 a+2b-3=23=8,即 a+2b=11.因为 a=7,所以 b=2.所以 2a+b=16. 所以 2a+b 的算术平方根是 1. 性质 (1)正数的立方根是正数;
华东师大版数学八年级上册11.1平方根与立方根学习要点

平方根与立方根学习要点一.算术平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2那么这个正数x 叫做a 的算术平方根,记为a 读作“根号a 〞.特别地,规定0的算术平方根是0,即00=.2.算术平方根的性质:算术平方根a 具有双重非负性:⑴被开方数a 是非负数;⑵算术平方根a 本身是非负数.例1 6449的算术平方根是 . 分析:因为6449)87(2=,所以6449的算术平方根是87,即876449=. 二.平方根1.平方根的概念:一般地,如果一个数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的平方根〔也叫二次方根〕.正数a 有两个平方根,一个是a 的算术平方根“a 〞,另一个是“-a 〞,这两个平方根合起来可记作“±a 〞,读作“正、负根号a 〞.2.平方根的性质⑴一个正数有两个平方根,且它们互为相反数;⑵0只有一个平方根,它是0本身;⑶负数没有平方根.3.开平方:求一个数a 的平方根的运算,叫做开平方,其中a 叫做被开方数. 例2 9的平方根是A.3B.-3C.81D.±3分析:因为〔±3〕2=9,所以9的平方根是±3,即39±=±.故应选D.三.立方根1.立方根:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 叫做a 的立方根〔也叫三次方根〕.2.立方根的表示方法:数a 立方根记为“3a 〞,读作“三次根号a 〞,其中a是被开方数,这里的根指数“3”不能省略.3.开立方:求一个数a 的立方根的运算叫做开立方.开立方运算与立方运算是互逆运算.4.立方根的性质:⑴正数的立方根是正数,负数的立方根是负数,0的立方根是0;⑵立方根的符号与被开方数的符号一致;⑶a a a a a a ==-=-333333)(,,.例3 求以下各数的立方根:⑴-27;⑵1258;⑶0.216; ⑷-5 分析:⑴因为27)3(3-=-,所以-27的立方根是-3,即3273-=-; ⑵因为1258)52(3=,所以1258的立方根是52,即5212583=; ⑶因为216.0)6.0(3=,所以的立方根是,即6.0216.03=;⑷-5的立方根是35-例4 64的平方根的立方根是 .分析:此题包含两层含义:⑴64的平方根,即864±=±;⑵±8的立方根,28,2833-=-=.故64的平方根的立方根是±2.。
华师大数学八年级上《11.1.2立方根》同步练习含答案解析

新华师大版数学八年级上册第十一章11.1.2 立方根同步练习一、选择题1、64的立方根是()A、4B、±4C、8D、±82、若a是的平方根,则=()A、﹣3B、C、或D、3或﹣33、如果一个有理数的平方根和立方根相同,那么这个数是()A、±1B、0C、1D、0和14、用计算器计算某个运算式,若正确的按键顺序是,则此运算式应是()A、43B、34C、D、5、下列语句正确的是()A、如果一个数的立方根是这个数的本身,那么这个数一定是零B、一个数的立方根不是正数就是负数C、负数没有立方根D、一个数的立方根与这个数同号,零的立方根是零6、下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A、①③B、②④C、①④D、③④7、已知x没有平方根,且|x|=125,则x的立方根为()A、25B、﹣25C、±5D、﹣58、下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±3,其中正确的个数是()A、1个B、2个C、3个D、4个9、若,则x和y的关系是()A、x=y=0B、x和y互为相反数C、x和y相等D、不能确定10、下列说法中,正确的是()A、一个数的立方根有两个,它们互为相反数B、负数没有立方根C、如果一个数有立方根,那么它一定有平方根D、一个数的立方根的符号与被开方数的符号相同11、若a2=36,b3=8,则a+b的值是()A、8或﹣4B、+8或﹣8C、﹣8或﹣4D、+4或﹣412、﹣a2的立方根的值一定为()A、非正数B、负数C、正数D、非负数13、下列说法正确的是()A、﹣0.064的立方根是0.4B、﹣9的平方根是±3C、16的立方根是D、0.01的立方根是0.00000114、将一个大的正方体木块锯成n个同样大小的小正方体木块,其中n的取值不可能的是()A、216B、343C、25D、6415、若是m+n+3的算术平方根,是m+2n的立方根,则B-A的立方根是()A、1B、-1C、0D、无法确定二、填空题16、若一个数的立方根就是它本身,则这个数是________.17、已知1.53=3.375,则=________.18、若一个偶数的立方根比2大,平方根比4小,则这个数一定是________.19、在数集上定义运算a﹡b ,规则是:当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2.根据这个规则,方程4﹡x=64的解是________.三、解答题20、求下列各式的值:(1).(2)(3)21、某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米(球的体积V= ,π取3.14,结果精确到0.1米)?22、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.23、我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求的值.24、数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答:________位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:________(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答:________.因此59319的立方根是________.(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是________位数,②它的立方根的个位数是________,③它的立方根的十位数是________,④185193的立方根是________.答案解析部分一、<h3 >选择题</h3>1、【答案】A【考点】立方根【解析】【解答】∵43=64,∴64的立方根等于4.【分析】如果一个数x的立方等于a ,那么x是a的立方根,根据此定义求解即可.2、【答案】C【考点】平方根,立方根【解析】解答:∵,∴a=±3,∴= ,或= .分析:本题考查平方根和立方根的定义,记住一个正数的平方根有两个;一个数的立方根只有一个.3、【答案】B【考点】立方根【解析】【解答】0的平方根和立方根相同.【分析】根据平方根和立方根的概念可知,一个有理数的平方根和立方根相同,那么这个数是0.4、【答案】C【考点】立方根,计算器—数的开方【解析】解答:根据符号可知,求的是4的立方根,选C.分析:此题考查对计算器的使用.5、【答案】D【考点】立方根【解析】【解答】A:0,-1,1的立方根都是它们本身;B:0的立方根是0;C:负数有立方根;D正确. 【分析】此题考查立方根的定义及性质判定;注意区别立方根与平方根.6、【答案】A【考点】平方根,立方根【解析】解答:①0.33=0.027,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,a ,b同号,∴ab≥0,故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.分析:根据立方根和平方根的定义.7、【答案】D【考点】立方根【解析】【解答】由题意得,x为负数,又∵|x|=125,∴x=﹣125,故可得x的立方根为:﹣5.【分析】根据x没有平方根可得出x为负数,再由|x|=125,可得出x的值,继而可求出其立方根.8、【答案】B【考点】立方根【解析】解答:∵33=27,,∴3是27的立方根,①错误;②=a正确,表示a3的立方根是a ,正确;③的立方根是,错误;④=±3,正确;故②④正确.分析:根据立方根的定义和性质去判断.9、【答案】B【考点】立方根,等式的性质【解析】解答:∵,∴,等式两同时立方得,x=﹣y ,即x、y互为相反数,故选B.分析:运用等式的性质,先进行移项,再立方即可得到x与y之间的关系.10、【答案】D【考点】立方根【解析】解答:A.一个数的立方根只有1个,故选项错误;B.负数有立方根,故选项错误;C.一个负数有立方根,负数没有平方根,故选项错误;D.一个数的立方根的符号与被开方数的符号相同是正确的,故选项正确.分析:立方根的定义:如果一个数的立方等于a ,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a ,那么x叫做a的立方根.记作:.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.依此即可求解.11、【答案】A【考点】平方根,立方根【解析】【解答】a2=36,得a=6或a=﹣6;b3=8,得b=2;故a+b=8或﹣4.【分析】根据已知可得a=6或﹣6,b=2,所以a+b=8或﹣4..12、【答案】A【考点】立方根【解析】【解答】﹣a2是一个非正数,则它的立方根的值一定为非正数,故选A.【分析】利用立方根的性质:一个数的立方根与它本身同号.13、【答案】C【考点】立方根【解析】解答:A、﹣0.064的立方根是﹣0.4,故本选项错误;B、﹣9没有平方根,故本选项错误;C、16的立方根是,故本选项正确;D、0.000000000000000001的立方根是0.000001,故本选项错误;故选C.分析:根据立方根、平方根的定义逐个进行判断即可.14、【答案】C【考点】立方根【解析】解答:,,不是整数,,不可能是C.分析:求出每个数字的立方根是解题的关键.15、【答案】B【考点】算术平方根,立方根,二元一次方程组【解析】解答:∵是m+n+3的算术平方根,∴m-n=2,∵是m+2n的立方根,∴m-2n+3=3.∴解得∴,,∴B-A=-1.分析:根据算术平方根和立方根的定义,可知m-n=2和m-2n+3=3,从而解出m ,n .二、<h3 >填空题</h3>16、【答案】±1,0【考点】立方根【解析】【解答】∵立方根是它本身有3个,分别是±1,0.【分析】如果一个数x的立方等于a ,那么x是a的立方根,所以根据立方根的对应即可求解.18、【答案】﹣150【考点】立方根【解析】【解答】∵1.53=3.375,∴(150)3=3375000,∴=-150.【分析】根据立方根的定义,被开方数小数点移动三位,立方根的小数点移动一位解答.19、【答案】10,12,14【考点】平方根,立方根【解析】【解答】∵2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14.【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题.20、【答案】4或8【考点】平方根,立方根【解析】【解答】∵当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2.∴4﹡x=64,当4≥x ,∴x3=64,∴x=4,当4<x ,∴x2=64,∴x=8.故答案为:4或8.【分析】根据已知当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2.运用规律求出4﹡x=64即可.三、<h3 >解答题</h3>21、【答案】(1)解:;(2)解:;(3)解:.【考点】立方根【解析】【分析】根据立方根的定义求解即可.22、【答案】解:根据球的体积公式,得=13.5,解得r≈1.5.故这个球罐的半径r为1.5米.【考点】立方根【解析】【分析】利用球体的体积公式和立方根的定义计算即可.23、【答案】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27,b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:± =±4.【考点】平方根,立方根【解析】【分析】根据平方根的定义求出a的值,再根据立方根的定义求出b的值,最后计算2(a+b)的值,即可解答.24、【答案】(1)解:∵3+(﹣3)=0,而且33=27,(﹣3)3=﹣27,有27﹣27=0,∴结论成立;∴“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)解:由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴=1﹣2=﹣1.【考点】平方根,立方根,解一元一次方程【解析】【分析】(1)题是一个开放题,举一个符合题意的即可;(2)运用(1)的结论可得1﹣2x与3x﹣5互为相反数,即而算出x的值即可.25、【答案】(1)2(2)9(3)3;39(4)2;7;5;57【考点】立方根【解析】【解答】(1)103=1000,1003=1000000,则59319的立方根是2位数;(2)由59319的个位数是9,因为93=729,则59319的立方根的个位数是9.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几3.因此59319的立方根是39.(4)∵103=1000,1003=1000000,1000<185193<1000000,∴185193的立方根是一个两位数,∵185193的最后一位是3,∴它的立方根的个位数是7,185193去掉后3位,得到185,∵53<185<63,∴立方根的十位数是5,则立方根一定是:57.【分析】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章 数的开方 11.1平方根与立方根
专题一 算术平方根与绝对值的综合运用
1. 如果320a b ++-=,则2013()
a b +=______. 2. 已知a 、b 满足997b a a =
-+--,求a b -的平方根.
3. 如果1x y -+与
5x y +-互为相反数,求3x y +的算术平方根.
专题二 被开方数中字母的取值问题
4. 已知△ABC 的三边长分别为a b c ,,,且满足21690a b b -+-+=,求c 的取值范围.
5.在学习平方根知识时,老师提出一个问题:2
m m -与2m m -中的m 的取值范围相同吗?小明说相同,小刚说不同,你同意谁的说法?说出你的理由.
6.
专题三 (算术)平方根与立方根的规律探究
6. 111233+=112344+=113455
+=,…,请你将猜想到的规律用含自然数n (1)n ≥的代数式表示出来.
7. 33222=27733333=3262633444=46363
(1)你能用含有n (n 为整数,且1n >)的等式来表示你发现的规律吗?
(23320132013
20131-332013201320131
-的关系.
状元笔记:
[知识要点]
1. 平方根与立方根
=,那么x就叫做a的平方根.
(1)一般地,如果2x a
(2)一个正数a的正的平方根a a的算术平方根.
=,那么x就叫做a的立方根.
(3)一般地,如果3x a
2. 性质
(1)平方根的性质:①一个正数有两个平方根,它们互为相反数;②0只有一个平方根,是0本身;③负数没有平方根.
(2a
a≥;
①被开方数a非负,即0
a0
a≥.
(3)立方根的性质:
①一个正数有一个正的立方根;
②一个负数有一个负的立方根;
③0的立方根是0.
[温馨提示]
1. 负数没有平方根,但是它有立方根.
2. 注意利用绝对值、算术平方根的非负性求解.
[方法技巧]
体会从一般到特殊的数学思想,从中得到规律.
参考答案
1. 1- 【解析】 30a +=,20b -=,即3a =-,2b =.
∴2013()a b +=2013(32)1-+=-.
2. 解:根据算术平方根的意义,得9090
a a -≥⎧⎨
-≥⎩, ∴9a =,7b =-, ∴16a b -=.
故a b - 的平方根是4±. 3. 解:根据题意得150x y x y -++-=,即1050
x y x y -+=⎧⎨
+-=⎩,解得23x y =⎧⎨=⎩. ∴33239x y +=⨯+=,
∴3x y +的算术平方根是3. 4. 10a -≥,2269(3)0b b b -+=-≥21690a b b --+=,
10a -=,2(3)0b -=,
∴1a =,3b =.由三角形三边关系得a b c a b -<<+,
∴24c <<.
5. 解:同意小刚的说法.2m m -中,020
m m ≥⎧⎨->⎩,得2m >; 2m m -020m m ≥⎧⎨->⎩,或020m m ≤⎧⎨-<⎩
,得2m >,或0m ≤. 2
m m -2m m -m 的取值范围是不同的,故小刚的说法正确.
6. 11(1)(1)22
n n n n n +=+≥++. 7. 解:(1333311
n n n n n n +=--. (2333320132013201320132013120131
=--.。